Paternity testing for crab-eating macaques and rhesus macaques using microsatellite markers

Yiming Yuan , Tianqi Sun , Lu Zhang , Wensheng Zhang , Teng Meng , Jianhua Zheng , Rui Zhang , Lei Lu , Zirong Pu , Yan Li , Yefeng Qiu

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (9) : 1710 -1716.

PDF
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (9) : 1710 -1716. DOI: 10.1002/ame2.70072
SHORT COMMUNICATION

Paternity testing for crab-eating macaques and rhesus macaques using microsatellite markers

Author information +
History +
PDF

Abstract

Accurate macaque paternity identification is of great significance in various fields, yet relevant research remains scarce. Our study aimed to screen effective microsatellite markers for macaque paternity testing. Initially, 300 microsatellite markers were randomly selected from the genome of the crab-eating macaque (Macaca fascicularis), and 12 highly polymorphic tetra-nucleotide repeat markers were identified. These markers' genetic parameters and exclusion probabilities in both crab-eating and rhesus macaque (Macaca mulatta) populations were calculated, meeting the paternity testing requirements for both species. To validate the markers, 16 crab-eating macaque and 10 rhesus macaque families with known pedigrees were randomly chosen for testing. The genotypes of the 12 markers in the macaques' offspring could be traced back to their parents, confirming the accuracy and applicability of the marker combination for paternity identification in both macaque species.

Keywords

crab-eating macaques / microsatellite / paternity test / rhesus macaques

Cite this article

Download citation ▾
Yiming Yuan, Tianqi Sun, Lu Zhang, Wensheng Zhang, Teng Meng, Jianhua Zheng, Rui Zhang, Lei Lu, Zirong Pu, Yan Li, Yefeng Qiu. Paternity testing for crab-eating macaques and rhesus macaques using microsatellite markers. Animal Models and Experimental Medicine, 2025, 8(9): 1710-1716 DOI:10.1002/ame2.70072

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y, Shan L, Liu T, et al. Molecular and cellular mechanisms of the first social relationship: a conserved role of 5-HT from mice to monkeys, upstream of oxytocin. Neuron. 2023; 111(9): 1468-1485.e7.

[2]

Qu J, Yang F, Zhu T, et al. A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys. Nat Commun. 2022; 13(1): 4069.

[3]

Finch CL, Crozier I, Lee JH, et al. Characteristic and quantifiable COVID-19-like abnormalities in CT- and PET/CT-imaged lungs of SARS-CoV-2-infected crab-eating macaques (Macaca fascicularis). bioRxiv. 2020:14.096727.

[4]

Munster VJ, Feldmann F, Williamson BN, et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature. 2020; 585(7824): 268-272.

[5]

Chandrashekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020; 369(6505): 812-817.

[6]

Malouli D, Taher H, Mansouri M, et al. Human cytomegalovirus UL18 prevents priming of MHC-E- and MHC-II-restricted CD8(+) T cells. Sci Immunol. 2024; 9(100): eadp5216.

[7]

Ren S, Fu X, Guo W, et al. Profound cellular defects attribute to muscular pathogenesis in the rhesus monkey model of Duchenne muscular dystrophy. Cell. 2024; 187(23): 6669-6686.e16.

[8]

Skinner DM, Beattie WG, Blattner FR, Stark BP, Dahlberg JE. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (−T-A-G-G-)n-(−A-T-C-C-)n. Biochemistry. 1974; 13(19): 3930-3937.

[9]

Xu YR, Li JH, Zhu Y, Sun BH. Development of a microsatellite set for paternity assignment of captive rhesus macaques (Macaca mulatta) from Anhui province, China. Genetika. 2013; 49(7): 838-845.

[10]

Nair S, Ha J, Rogers J. Nineteen new microsatellite DNA polymorphisms in pigtailed macaques (Macaca nemestrina). Primates. 2000; 41(3): 343-350.

[11]

Ling C, Lixia W, Rong H, et al. Comparative analysis of microsatellite and SNP markers for parentage testing in the golden snub-nosed monkey (Rhinopithecus roxellana). Conserv Genet Resour. 2020; 12(4): 611-620.

[12]

Bercovitch FB, Nurnberg P. Genetic determination of paternity and variation in male reproductive success in two populations of rhesus macaques. Electrophoresis. 1997; 18(9): 1701-1705.

[13]

Nurnberg P, Sauermann U, Kayser M, et al. Paternity assessment in rhesus macaques (Macaca mulatta): multilocus DNA fingerprinting and PCR marker typing. Am J Primatol. 1998; 44(1): 1-18.

[14]

Rogers J, Bergstrom M, Garcia R, et al. A panel of 20 highly variable microsatellite polymorphisms in rhesus macaques (Macaca mulatta) selected for pedigree or population genetic analysis. Am J Primatol. 2005; 67(3): 377-383.

[15]

Untergasser A, Cutcutache I, Koressaar T, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012; 40(15): e115.

[16]

Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007; 16(5): 1099-1106.

[17]

Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012; 28(19): 2537-2539.

[18]

Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004; 5(6): 435-445.

[19]

McClure MC, Sonstegard TS, Wiggans GR, et al. Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds. Front Genet. 2013; 4: 176.

[20]

Kim SM, Yun SW, Cho GJ. Assessment of genetic diversity using microsatellite markers to compare donkeys (Equus asinus) with horses (Equus caballus). Anim Biosci. 2021; 34(9): 1460-1465.

[21]

Huang J, Li YZ, Du LM, et al. Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system. BMC Genomics. 2015; 16(1): 61.

[22]

Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992; 12(2): 241-253.

[23]

Weng Z, Yang Y, Wang X, et al. Parentage analysis in Giant grouper (Epinephelus lanceolatus) using microsatellite and SNP markers from genotyping-by-sequencing data. Genes. 2021; 12(7): 1042.

[24]

Yoshiki A, Moriwaki K. Mouse phenome research: implications of genetic background. ILAR J. 2006; 47(2): 94-102.

[25]

Rogers J, Garcia R, Shelledy W, et al. An initial genetic linkage map of the rhesus macaque (Macaca mulatta) genome using human microsatellite loci. Genomics. 2006; 87(1): 30-38.

[26]

Green CL, Pak HH, Richardson NE, et al. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab. 2022; 34(2): 209-226.e5.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/