Attenuating the experimental autoimmune encephalomyelitis model improves preclinical evaluation of candidate multiple sclerosis therapeutics

Vernise J. T. Lim , Melanie J. Murphy , W. Stephen Penrose , Coral Warr , M. Cristina Keightley , Jacqueline M. Orian

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (8) : 1428 -1440.

PDF
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (8) :1428 -1440. DOI: 10.1002/ame2.70071
ORIGINAL ARTICLE

Attenuating the experimental autoimmune encephalomyelitis model improves preclinical evaluation of candidate multiple sclerosis therapeutics

Author information +
History +
PDF

Abstract

Background: Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), exhibiting hallmarks of both inflammation and neurodegeneration and with limited treatment options. The intricate nature of MS pathophysiology and its variable progression pose severe challenges for the development of effective therapies. The experimental autoimmune encephalomyelitis (EAE) MS model, in its most common form, is an aggressive disease, which is not representative of the MS course and offers a limited time window for drug evaluation. This study aimed to generate an attenuated EAE variant, which extends the clinical testing window while preserving the high incidence of the standard EAE model.

Methods: Components of the EAE induction protocol were titrated to develop a milder disease profile. In a subsequent drug trial using the MS medication fingolimod hydrochloride (FTY, Gilenya), the new variant was validated under prophylactic and therapeutic treatment regimens.

Results: The attenuated EAE variant retains the standard hallmarks of neuroinflammation and, crucially, significantly extends the time frame for clinical drug testing. Unlike the standard variant, where FTY efficacy could only be demonstrated by prophylactic treatment, the attenuated variant facilitated differentiation of drug effects by therapeutic treatment initiated early in the acute phase of disease.

Conclusion: The new EAE variant is suitable for use in preclinical assessment of candidate therapeutics and the identification of targetable molecular mechanisms underpinning disease development and progression. This study illustrates the importance of optimizing and refining the experimental tool to enhance the translational success of the candidate therapeutics for MS.

Keywords

drug evaluation / experimental autoimmune encephalomyelitis / fingolimod hydrochloride / multiple sclerosis / multiple sclerosis therapeutic / preclinical drug evaluation

Cite this article

Download citation ▾
Vernise J. T. Lim, Melanie J. Murphy, W. Stephen Penrose, Coral Warr, M. Cristina Keightley, Jacqueline M. Orian. Attenuating the experimental autoimmune encephalomyelitis model improves preclinical evaluation of candidate multiple sclerosis therapeutics. Animal Models and Experimental Medicine, 2025, 8(8): 1428-1440 DOI:10.1002/ame2.70071

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Waubant E, Lucas R, Mowry E, et al. Environmental and genetic risk factors for MS: an integrated review. Ann Clin Transl Neurol. 2019; 6(9): 1905-1922.

[2]

Alharbi FM. Update in vitamin D and multiple sclerosis. Neurosciences (Riyadh). 2015; 20(4): 329-335.

[3]

Sintzel MB, Rametta M, Reder AT. Vitamin D and multiple sclerosis: a comprehensive review. Neurol Ther. 2018; 7(1): 59-85.

[4]

Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol. 2023; 19(3): 160-171.

[5]

Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023; 21(1): 51-64.

[6]

Wingerchuk DM. Smoking: effects on multiple sclerosis susceptibility and disease progression. Ther Adv Neurol Disord. 2012; 5(1): 13-22.

[7]

Wu J, Olsson T, Hillert J, Alfredsson L, Hedström AK. Influence of oral tobacco versus smoking on multiple sclerosis disease activity and progression. J Neurol Neurosurg Psychiatry. 2023; 94(8): 589-596.

[8]

Harroud A, Mitchell RE, Richardson TG, et al. Childhood obesity and multiple sclerosis: a mendelian randomization study. Mult Scler J. 2021; 27(14): 2150-2158.

[9]

Huppke B, Ellenberger D, Hummel H, et al. Association of Obesity with Multiple Sclerosis Risk and Response to first-line disease modifying drugs in children. JAMA Neurol. 2019; 76(10): 1157-1165.

[10]

Shah A, Panchal V, Patel K, et al. Pathogenesis and management of multiple sclerosis revisited. Dis Mon. 2023; 69(9): 101497.

[11]

Collongues N, Becker G, Jolivel V, et al. A narrative review on axonal neuroprotection in multiple sclerosis. Neurol Ther. 2022; 11(3): 981-1042.

[12]

Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation-a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol. 2023; 14: 1127704.

[13]

Vanderdonckt P, Aloisi F, Comi G, et al. Tissue donations for multiple sclerosis research: current state and suggestions for improvement. Brain Commun. 2022; 4(2): fcac094.

[14]

Neumann B, Foerster S, Zhao C, et al. Problems and pitfalls of identifying remyelination in multiple sclerosis. Cell Stem Cell. 2020; 26(5): 617-619.

[15]

Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci. 2012; 15(8): 1074-1077.

[16]

Rice J. Animal models: not close enough. Nature. 2012; 484(7393): S9.

[17]

DiSano KD, Linzey MR, Royce DB, Pachner AR, Gilli F. Differential neuro-immune patterns in two clinically relevant murine models of multiple sclerosis. J Neuroinflammation. 2019; 16(1): 109.

[18]

Libbey JE, Fujinami RS. Viral mouse models used to study multiple sclerosis: past and present. Arch Virol. 2021; 166(4): 1015-1033.

[19]

Lindner M, Fokuhl J, Linsmeier F, Trebst C, Stangel M. Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci Lett. 2009; 453(2): 120-125.

[20]

Torkildsen Ø, Brunborg LA, Myhr KM, L. The cuprizone model for demyelination. Acta Neurol Scand. 2008; 117: 72-76.

[21]

Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. Neurología. 2020; 35(1): 32-39.

[22]

Dedoni S, Scherma M, Camoglio C, et al. An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis. 2023; 184: 106230.

[23]

Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011; 164(4): 1079-1106.

[24]

Shahi SK, Freedman SN, Dahl RA, Karandikar NJ, Mangalam AK. Scoring disease in an animal model of multiple sclerosis using a novel infrared-based automated activity-monitoring system. Sci Rep. 2019; 9(1): 19194.

[25]

Orian JM. A new perspective on mechanisms of neurodegeneration in experimental autoimmune encephalomyelitis and multiple sclerosis: the early and critical role of platelets in neuro/axonal loss. J Neuroimmune Pharmacol. 2025; 20(1): 14.

[26]

Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat Med. 2008; 14(3): 337-342.

[27]

Orian JM, Maxwell DL, Lim VJT. Active induction of a multiple sclerosis-like disease in common laboratory mouse strains. Methods Mol Biol. 2024; 2746: 179-200.

[28]

Lu C, Pelech S, Zhang H, et al. Pertussis toxin induces angiogenesis in brain microvascular endothelial cells. J Neurosci Res. 2008; 86(12): 2624-2640.

[29]

Rabchevsky AG, Degos JD, Dreyfus PA. Peripheral injections of Freund's adjuvant in mice provoke leakage of serum proteins through the blood-brain barrier without inducing reactive gliosis. Brain Res. 1999; 832(1-2): 84-96.

[30]

t’ Hart BA. Primate autoimmune disease models; lost for translation? Clin Transl Immunol. 2016; 5(12): e122.

[31]

Bennett J, Basivireddy J, Kollar A, et al. Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010; 229(1): 180-191.

[32]

Borjini N, Fernández M, Giardino L, Calzà L. Cytokine and chemokine alterations in tissue, CSF, and plasma in early presymptomatic phase of experimental allergic encephalomyelitis (EAE), in a rat model of multiple sclerosis. J Neuroinflammation. 2016; 13(1): 291.

[33]

Kurschus FC. T cell mediated pathogenesis in EAE: molecular mechanisms. Biom J. 2015; 38(3): 183-193.

[34]

Álvarez-Sánchez N, Cruz-Chamorro I, Álvarez-López AI, et al. Seasonal variations in macrophages/microglia underlie changes in the mouse model of multiple sclerosis severity. Mol Neurobiol. 2020; 57(10): 4082-4089.

[35]

Montgomery TL, Künstner A, Kennedy JJ, et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc Natl Acad Sci USA. 2020; 117(44): 27516-27527.

[36]

Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L. The value of animal models for drug development in multiple sclerosis. Brain. 2006; 129(8): 1940-1952.

[37]

Kocovski P, Tabassum-Sheikh N, Marinis S, Dang PT, Hale MW, Orian JM. Immunomodulation eliminates inflammation in the hippocampus in experimental autoimmune encephalomyelitis, but does not ameliorate anxiety-like behavior. Front Immunol. 2021; 12: 639650.

[38]

Harbo HF, Gold R, Tintoré M. Sex and gender issues in multiple sclerosis. Ther Adv Neurol Disord. 2013; 6(4): 237-248.

[39]

Kocovski P, Jiang X, D'Souza CS, et al. Platelet depletion is effective in ameliorating anxiety-like behavior and reducing the pro-inflammatory environment in the hippocampus in murine experimental autoimmune encephalomyelitis. J Clin Med. 2019; 8(2): 162.

[40]

Levy Barazany H, Barazany D, Puckett L, et al. Brain MRI of nasal MOG therapeutic effect in relapsing-progressive EAE. Exp Neurol. 2014; 255: 63-70.

[41]

Miyamoto K, Nagaosa N, Motoyama M, Kataoka K, Kusunoki S. Upregulation of water channel aquaporin-4 in experimental autoimmune encephalomyeritis. J Neurol Sci. 2009; 276(1-2): 103-107.

[42]

Bonfiglio T, Olivero G, Merega E, et al. Prophylactic versus therapeutic fingolimod: restoration of presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis. PLoS One. 2017; 12(1): e0170825.

[43]

Pham H, Doerrbecker J, Ramp AA, et al. Experimental autoimmune encephalomyelitis (EAE) IN C57Bl/6 mice is not associated with astrogliosis. J Neuroimmunol. 2011; 232(1-2): 51-62.

[44]

Copland DA, Liu J, Schewitz-Bowers LP, et al. Therapeutic dosing of fingolimod (FTY720) prevents cell infiltration, rapidly suppresses ocular inflammation, and maintains the blood-ocular barrier. Am J Pathol. 2012; 180(2): 672-681.

[45]

Sonia D'Souza C, Li Z, Luke Maxwell D, et al. Platelets drive inflammation and target gray matter and the retina in autoimmune-mediated encephalomyelitis. J Neuropathol Exp Neurol. 2018; 77(7): 567-576.

[46]

Perugini M, Gallucci M, Costantini G. A practical primer to power analysis for simple experimental designs. Int. Rev. Soc. Psychol. 2018; 31(1): 20, 1-23.

[47]

Ferguson CJ. An effect size primer: A guide for clinicians and researchers. In: Kazhin A.E. (Ed.) Methodological issues and strategies in clinical research, 4th ed. American Psychological Association; 2016: 301-310.

[48]

Recks MS, Addicks K, Kuerten S. Spinal cord histopathology of MOG peptide 35-55-induced experimental autoimmune encephalomyelitis is time-and score-dependent. Neurosci Lett. 2011; 494(3): 227-231.

[49]

Berard JL, Wolak K, Fournier S, David S. Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia. 2010; 58(4): 434-445.

[50]

Mowry EM, Glenn JD. The dynamics of the gut microbiome in multiple sclerosis in relation to disease. Neurol Clin. 2018; 36(1): 185-196.

[51]

Cignarella F, Cantoni C, Ghezzi L, et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 2018; 27(6): 1222-1235.e6.

[52]

Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2008; 84(4): 940-948.

[53]

Ronchi F, Basso C, Preite S, et al. Experimental priming of encephalitogenic Th1/Th17 cells requires pertussis toxin-driven IL-1β production by myeloid cells. Nat Commun. 2016; 7(1): 1-11.

[54]

Berghmans N, Dillen C, Heremans H. Exogenous IL-12 suppresses experimental autoimmune encephalomyelitis (EAE) by tuning IL-10 and IL-5 levels in an IFN-γ-dependent way. J Neuroimmunol. 2006; 176(1-2): 63-75.

[55]

Ellmerich S, Mycko M, Takacs K, et al. High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model. J Immunol. 2005; 174(4): 1938-1946.

[56]

Nissen JC, Tsirka SE. Preclinical model of multiple sclerosis: Methods in autoimmune demyelination. Methods in Cell Biology. Elsevier; 2022: 67-86.

[57]

Orian JM, Keating P, Downs LL, et al. Deletion of IL-4R α in the BALB/c mouse is associated with altered lesion topography and susceptibility to experimental autoimmune encephalomyelitis. Autoimmunity. 2015; 48(4): 208-221.

[58]

de Rosbo NK, Mendel I, Ben-Nun A. Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol. 1995; 25(4): 985-993.

[59]

Muller DM, Pender MP, Greer JM. A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol. 2000; 100(2): 174-182.

[60]

De Bruin NMWJ, Schmitz K, Tegeder I, et al. Treatment with FTY-720 reverses social recognition deficits without affecting clinical scores or impaired motor performance in EAE in SJL mice. J Neuroimmunol. 2014; 275(1): 115.

[61]

Mi S, Hu B, Hahm K, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007; 13(10): 1228-1233.

[62]

Højsgaard Chow H, Talbot J, Lundell H, et al. Dimethyl fumarate treatment in patients with primary progressive multiple sclerosis: a randomized, controlled trial. Neurol Neuroimmunol Neuroinflamm. 2021; 8(5): e1037.

[63]

Vidal-Jordana A. New advances in disease-modifying therapies for relapsing and progressive forms of multiple sclerosis. Neurol Clin. 2018; 36(1): 173-183.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/