Research advances in dysphagia animal models

Junhui Bai , Keling Cheng , Nannan Zhang , Yunfang Chen , Jun Ni , Zhiyong Wang

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (9) : 1579 -1589.

PDF
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (9) : 1579 -1589. DOI: 10.1002/ame2.70054
REVIEW

Research advances in dysphagia animal models

Author information +
History +
PDF

Abstract

Dysphagia is a common complication of stroke, Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The construction of animal models of dysphagia is an important way to explore its pathogenesis and treatment. At present, the animal models of dysphagia mainly include rodents, nonhuman primates, and other mammals, such as pigs and dogs. This review systematically summarizes the establishment and evaluation of dysphagia animal models in stroke, PD, and ALS in three kinds of experimental animals, providing a basis for the selection of appropriate animal models of dysphagia.

Keywords

assessment / dysphagia / mammals / nonhuman primates / rodent

Cite this article

Download citation ▾
Junhui Bai, Keling Cheng, Nannan Zhang, Yunfang Chen, Jun Ni, Zhiyong Wang. Research advances in dysphagia animal models. Animal Models and Experimental Medicine, 2025, 8(9): 1579-1589 DOI:10.1002/ame2.70054

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Espinosa-Val MC, Martin-Martinez A, Graupera M, et al. Prevalence, risk factors, and complications of oropharyngeal dysphagia in older patients with dementia. Nutrients. 2020; 12(3): 863.

[2]

Rommel N, Hamdy S. Oropharyngeal dysphagia: manifestations and diagnosis. Nat Rev Gastroenterol Hepatol. 2016; 13(1): 49-59.

[3]

Clave P, Terre R, de Kraa M, Serra M. Approaching oropharyngeal dysphagia. Rev Esp Enferm Dig. 2004; 96(2): 119-131.

[4]

German RZ, Crompton AW, Gould FD, Thexton AJ. Animal models for dysphagia studies: what have we learnt so far. Dysphagia. 2017; 32(1): 73-77.

[5]

Kim HN, Kim JY. A systematic review of oropharyngeal dysphagia models in rodents. Int J Environ Res Public Health. 2021; 18(9): 4987.

[6]

Arnold M, Liesirova K, Broeg-Morvay A, et al. Dysphagia in acute stroke: incidence, burden and impact on clinical outcome. PLoS One. 2016; 11(2): e0148424.

[7]

Suntrup-Krueger S, Minnerup J, Muhle P, et al. The effect of improved dysphagia care on outcome in patients with acute stroke: trends from 8-year data of a large stroke register. Cerebrovasc Dis. 2018; 45(3-4): 101-108.

[8]

Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001; 81(2): 929-969.

[9]

Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology. 2000; 92(4): 977-984.

[10]

Cullins MJ, Russell JA, Booth ZE, Connor NP. Central activation deficits contribute to post stroke lingual weakness in a rat model. J Appl Physiol (1985). 2021; 130(4): 964-975.

[11]

Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1): 84-91.

[12]

Cullins MJ, Connor NP. Reduced tongue force and functional swallowing changes in a rat model of post stroke dysphagia. Brain Res. 2019; 1717: 160-166.

[13]

Schroeter M, Jander S, Stoll G. Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses. J Neurosci Methods. 2002; 117(1): 43-49.

[14]

Cheng I, Takahashi K, Miller A, Hamdy S. Cerebral control of swallowing: an update on neurobehavioral evidence. J Neurol Sci. 2022; 442: 120434.

[15]

Fuse S, Sugiyama Y, Dhingra RR, et al. Spatio-temporal segregation between sensory relay and swallowing pre-motor population activities by optical imaging in the rat nucleus of the solitary tract. Pflugers Arch. 2025; 477: 719-727.

[16]

Cui S, Yao S, Wu C, et al. Electroacupuncture involved in motor cortex and hypoglossal neural control to improve voluntary swallowing of poststroke dysphagia mice. Neural Plast. 2020; 2020: 8857543.

[17]

Kim YR, Kim HN, Ahn SM, Choi YH, Shin HK, Choi BT. Electroacupuncture promotes post-stroke functional recovery via enhancing endogenous neurogenesis in mouse focal cerebral ischemia. PLoS One. 2014; 9(2): e90000.

[18]

Bieger D, Neuhuber W. Neural circuits and mediators regulating swallowing in the brainstem. GI Motil Online. 2006.

[19]

Sugiyama N, Nishiyama E, Nishikawa Y, et al. A novel animal model of dysphagia following stroke. Dysphagia. 2014; 29(1): 61-67.

[20]

Asano T, Matsuzaki H, Iwata N, et al. Protective effects of ferulic acid against chronic cerebral hypoperfusion-induced swallowing dysfunction in rats. Int J Mol Sci. 2017; 18(3): 550.

[21]

Gulyaeva N, Thompson C, Shinohara N, et al. Tongue protrusion: a simple test for neurological recovery in rats following focal cerebral ischemia. J Neurosci Methods. 2003; 125(1-2): 183-193.

[22]

Ahmed J, Dwyer DM, Farr TD, Harrison DJ, Dunnett SB, Trueman RC. Lickometry: a novel and sensitive method for assessing functional deficits in rats after stroke. J Cereb Blood Flow Metab. 2017; 37(3): 755-761.

[23]

Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986; 17(3): 472-476.

[24]

Chiang T, Messing RO, Chou WH. Mouse model of middle cerebral artery occlusion. J Vis Exp. 2011; 48: 2761.

[25]

Meredith GE, Kang UJ. Behavioral models of Parkinson's disease in rodents: a new look at an old problem. Mov Disord. 2006; 21(10): 1595-1606.

[26]

Chia SJ, Tan EK, Chao YX. Historical perspective: models of Parkinson's disease. Int J Mol Sci. 2020; 21(7): 2464.

[27]

Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience. 1994; 59(2): 401-415.

[28]

Bezard E, Gross CE, Fournier MC, Dovero S, Bloch B, Jaber M. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol. 1999; 155(2): 268-273.

[29]

Ossowska K, Wardas J, Smialowska M, et al. A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: an animal model of preclinical stages of Parkinson's disease? Eur J Neurosci. 2005; 22(6): 1294-1304.

[30]

Bisbal M, Sanchez M. Neurotoxicity of the pesticide rotenone on neuronal polarization: a mechanistic approach. Neural Regen Res. 2019; 14(5): 762-766.

[31]

Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000; 287(5456): 1265-1269.

[32]

Alessi DR, Sammler E. LRRK2 kinase in Parkinson's disease. Science. 2018; 360(6384): 36-37.

[33]

Nuckolls AL, Worley C, Leto C, Zhang H, Morris JK, Stanford JA. Tongue force and tongue motility are differently affected by unilateral vs bilateral nigrostriatal dopamine depletion in rats. Behav Brain Res. 2012; 234(2): 343-348.

[34]

Skitek EB, Fowler SC, Tessel RE. Effects of unilateral striatal dopamine depletion on tongue force and rhythm during licking in rats. Behav Neurosci. 1999; 113(3): 567-573.

[35]

Cullen KP, Grant LM, Kelm-Nelson CA, et al. Pink1−/− rats show early-onset swallowing deficits and correlative brainstem pathology. Dysphagia. 2018; 33(6): 749-758.

[36]

Ciucci MR, Russell JA, Schaser AJ, Doll EJ, Vinney LM, Connor NP. Tongue force and timing deficits in a rat model of Parkinson disease. Behav Brain Res. 2011; 222(2): 315-320.

[37]

Russell JA, Ciucci MR, Hammer MJ, Connor NP. Videofluorographic assessment of deglutitive behaviors in a rat model of aging and Parkinson disease. Dysphagia. 2013; 28(1): 95-104.

[38]

Mu L, Chen J, Li J, Nyirenda T, Hegland KW, Beach TG. Mechanisms of swallowing, speech and voice disorders in Parkinson's disease: literature review with our first evidence for the periperal nervous system involvement. Dysphagia. 2024; 39(6): 1001-1012.

[39]

Gao J, Guan X, Cen Z, et al. Alteration of brain functional connectivity in Parkinson's disease patients with dysphagia. Dysphagia. 2019; 34(4): 600-607.

[40]

Haney MM, Sinnott J, Osman KL, et al. Mice lacking brain-derived serotonin have altered swallowing function. Otolaryngol Head Neck Surg. 2019; 161(3): 468-471.

[41]

Mueller M, Thompson R, Osman KL, et al. Impact of limb phenotype on tongue denervation atrophy, dysphagia penetrance, and survival time in a mouse model of ALS. Dysphagia. 2022; 37(6): 1777-1795.

[42]

Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci. 2004; 27: 723-749.

[43]

Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet. 2007; 369(9578): 2031-2041.

[44]

Umemoto G, Furuya H, Tsuboi Y, et al. Characteristics of tongue and pharyngeal pressure in patients with neuromuscular diseases. Degener Neurol Neuromuscul Dis. 2017; 7: 71-78.

[45]

Weikamp JG, Schelhaas HJ, Hendriks JC, de Swart BJ, Geurts AC. Prognostic value of decreased tongue strength on survival time in patients with amyotrophic lateral sclerosis. J Neurol. 2012; 259(11): 2360-2365.

[46]

Lever TE, Gorsek A, Cox KT, et al. An animal model of oral dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2009; 24(2): 180-195.

[47]

Lever TE, Simon E, Cox KT, et al. A mouse model of pharyngeal dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2010; 25(2): 112-126.

[48]

Osman KL, Kohlberg S, Mok A, et al. Optimizing the translational value of mouse models of ALS for dysphagia therapeutic discovery. Dysphagia. 2020; 35(2): 343-359.

[49]

Smittkamp SE, Spalding HN, Brown JW, et al. Measures of bulbar and spinal motor function, muscle innervation, and mitochondrial function in ALS rats. Behav Brain Res. 2010; 211(1): 48-57.

[50]

Lind LA, Murphy ER, Lever TE, Nichols NL. Hypoglossal motor neuron death via intralingual CTB-saporin (CTB-SAP) injections mimic aspects of amyotrophic lateral sclerosis (ALS) related to dysphagia. Neuroscience. 2018; 390: 303-316.

[51]

Yang X, Ji Y, Wang W, et al. Amyotrophic lateral sclerosis: molecular mechanisms, biomarkers, and therapeutic strategies. Antioxidants (Basel). 2021; 10(7): 1012.

[52]

German RZ, Crompton AW, Thexton AJ. The role of animal models in understanding feeding behavior in infants. Int J Orofacial Myology. 2004; 30: 20-30.

[53]

Holman SD, Campbell-Malone R, Ding P, et al. Swallowing kinematics and airway protection after palatal local anesthesia in infant pigs. Laryngoscope. 2014; 124(2): 436-445.

[54]

Ding P, Fung GS, Lin M, Holman SD, German RZ. The effect of bilateral superior laryngeal nerve lesion on swallowing: a novel method to quantitate aspirated volume and pharyngeal threshold in videofluoroscopy. Dysphagia. 2015; 30(1): 47-56.

[55]

Gould FDH, Yglesias B, Ohlemacher J, German RZ. Pre-pharyngeal swallow effects of recurrent laryngeal nerve lesion on bolus shape and airway protection in an infant pig model. Dysphagia. 2017; 32(3): 362-373.

[56]

Gross A, Ohlemacher J, German R, Gould F. LVC timing in infant pig swallowing and the effect of safe swallowing. Dysphagia. 2018; 33(1): 51-62.

[57]

Ballester A, Gould F, Bond L, et al. Maturation of the coordination between respiration and deglutition with and without recurrent laryngeal nerve lesion in an animal model. Dysphagia. 2018; 33(5): 627-635.

[58]

Broniatowski M, Dessoffy R, Azar K, et al. Electronic integration of glottic closure and circopharyngeal relaxation for the control of aspiration: a canine study. Otolaryngol Head Neck Surg. 1995; 112(3): 424-429.

[59]

Hadley AJ, Thompson P, Kolb I, Hahn EC, Tyler DJ. Targeted transtracheal stimulation for vocal fold closure. Dysphagia. 2014; 29(3): 346-354.

[60]

Suzuki T, Yoshihara M, Sakai S, et al. Effect of peripherally and cortically evoked swallows on jaw reflex responses in anesthetized rabbits. Brain Res. 2018; 1694: 19-28.

[61]

Spearman DG, Poliacek I, Rose MJ, Bolser DC, Pitts T. Variability of the pharyngeal phase of swallow in the cat. PLoS One. 2014; 9(8): e106121.

[62]

Atchaneeyasakul K, Guada L, Ramdas K, et al. Large animal canine endovascular ischemic stroke models: a review. Brain Res Bull. 2016; 127: 134-140.

[63]

Amiridze N, Gullapalli R, Hoffman G, Darwish R. Experimental model of brainstem stroke in rabbits via endovascular occlusion of the basilar artery. J Stroke Cerebrovasc Dis. 2009; 18(4): 281-287.

[64]

Cai B, Wang N. Large animal stroke models vs. rodent stroke models, pros and cons, and combination? Acta Neurochir Suppl. 2016; 121: 77-81.

[65]

Yang W, Chen X, Li S, Li XJ. Genetically modified large animal models for investigating neurodegenerative diseases. Cell Biosci. 2021; 11(1): 218.

[66]

Wang HY, Lin ZL, Yu XF, Bao Y, Cui XS, Kim NH. Computational prediction of Alzheimer's and Parkinson's disease MicroRNAs in domestic animals. Asian Australas J Anim Sci. 2016; 29(6): 782-792.

[67]

Holm IE, Alstrup AK, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol. 2016; 238(2): 267-287.

[68]

Nardone R, Holler Y, Taylor AC, et al. Canine degenerative myelopathy: a model of human amyotrophic lateral sclerosis. Zoology (Jena). 2016; 119(1): 64-73.

[69]

Coates JR, Wininger FA. Canine degenerative myelopathy. Vet Clin North Am Small Anim Pract. 2010; 40(5): 929-950.

[70]

Morgan BR, Coates JR, Johnson GC, Shelton GD, Katz ML. Characterization of thoracic motor and sensory neurons and spinal nerve roots in canine degenerative myelopathy, a potential disease model of amyotrophic lateral sclerosis. J Neurosci Res. 2014; 92(4): 531-541.

[71]

Bonifacino T, Zerbo RA, Balbi M, et al. Nearly 30 years of animal models to study amyotrophic lateral sclerosis: a historical overview and future perspectives. Int J Mol Sci. 2021; 22(22): 12236.

[72]

Chieppa MN, Perota A, Corona C, et al. Modeling amyotrophic lateral sclerosis in hSOD1 transgenic swine. Neurodegener Dis. 2014; 13(4): 246-254.

[73]

Wang G, Yang H, Yan S, et al. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol Neurodegener. 2015; 10: 42.

[74]

Yang H, Wang G, Sun H, et al. Species-dependent neuropathology in transgenic SOD1 pigs. Cell Res. 2014; 24(4): 464-481.

[75]

Phillips KA, Bales KL, Capitanio JP, et al. Why primate models matter. Am J Primatol. 2014; 76(9): 801-827.

[76]

Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013; 110(9): 3507-3512.

[77]

Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res. 2016; 17(2): 352-366.

[78]

Fan J, Li Y, Fu X, Li L, Hao X, Li S. Nonhuman primate models of focal cerebral ischemia. Neural Regen Res. 2017; 12(2): 321-328.

[79]

Morecraft RJ, Stilwell-Morecraft KS, Solon-Cline KM, Ge J, Darling WG. Cortical innervation of the hypoglossal nucleus in the non-human primate (Macaca mulatta). J Comp Neurol. 2014; 522(15): 3456-3484.

[80]

Verhave PS, Vanwersch RA, van Helden HP, Smit AB, Philippens IH. Two new test methods to quantify motor deficits in a marmoset model for Parkinson's disease. Behav Brain Res. 2009; 200(1): 214-219.

[81]

Schwartzman RJ, Alexander GM. Changes in the local cerebral metabolic rate for glucose in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of Parkinson's disease. Brain Res. 1985; 358(1-2): 137-143.

[82]

Bonifacio MJ, Sousa F, Soares-da-Silva P. Opicapone enhances the reversal of MPTP-induced Parkinson-like syndrome by levodopa in cynomolgus monkeys. Eur J Pharmacol. 2021; 892: 173742.

[83]

Kumar S, Hedges SB. A molecular timescale for vertebrate evolution. Nature. 1998; 392(6679): 917-920.

[84]

Verdier JM, Acquatella I, Lautier C, et al. Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases. Front Neurosci. 2015; 9: 64.

[85]

Borel F, Gernoux G, Cardozo B, et al. Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1(G93A) mice and nonhuman primates. Hum Gene Ther. 2016; 27(1): 19-31.

[86]

Borel F, Gernoux G, Sun H, et al. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Sci Transl Med. 2018; 10(465): eaau6414.

[87]

Endo K, Ishigaki S, Masamizu Y, et al. Silencing of FUS in the common marmoset (Callithrix jacchus) brain via stereotaxic injection of an adeno-associated virus encoding shRNA. Neurosci Res. 2018; 130: 56-64.

[88]

Uchida A, Sasaguri H, Kimura N, et al. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain. 2012; 135(pt 3): 833-846.

[89]

Stevens M, Mayerl CJ, Bond L, German RZ, Barkmeier-Kraemer JM. Pathophysiology of aspiration in a unilateral SLN lesion model using quantitative analysis of VFSS. Int J Pediatr Otorhinolaryngol. 2021; 140: 110518.

[90]

Yao L, Ye Q, Liu Y, et al. Electroacupuncture improves swallowing function in a post-stroke dysphagia mouse model by activating the motor cortex inputs to the nucleus tractus solitarii through the parabrachial nuclei. Nat Commun. 2023; 14(1): 810.

[91]

Lever TE, Braun SM, Brooks RT, et al. Adapting human videofluoroscopic swallow study methods to detect and characterize dysphagia in murine disease models. J Vis Exp. 2015; 1(97): 52319.

[92]

Inokuchi H, Gonzalez-Fernandez M, Matsuo K, et al. Electromyography of swallowing with fine wire intramuscular electrodes in healthy human: amplitude difference of selected hyoid muscles. Dysphagia. 2016; 31(1): 33-40.

[93]

Liu L, Lu TL, Nie LM, Tian W, Zhao LP, Li B. Observation on the efficacy of post-stroke dysphagia treated with He's santong acupuncture therapy through surface electromyography: a randomized controlled trial. Zhen Ci Yan Jiu. 2022; 47(3): 256-261.

[94]

Miller CK, Schroeder JW, Langmore S. Fiberoptic endoscopic evaluation of swallowing across the age spectrum. Am J Speech Lang Pathol. 2020; 29(2S): 967-978.

[95]

Marks SL, Douthitt KL, Belafsky PC. Feasibility of flexible endoscopic evaluation of swallowing in healthy dogs. Am J Vet Res. 2016; 77(3): 294-299.

[96]

Shock LA, Gallemore BC, Hinkel CJ, et al. Improving the utility of laryngeal adductor reflex testing: a translational tale of mice and men. Otolaryngol Head Neck Surg. 2015; 153(1): 94-101.

[97]

Feng S, Cao S, Du S, et al. Acuuncture combined with swallowing training for post-stroke dysphagia: a randomized controlled trial. Zhongguo Zhen Jiu. 2016; 36(4): 347-350.

[98]

Yang H, Ang KK, Wang C, Phua KS, Guan C. Neural and cortical analysis of swallowing and detection of motor imagery of swallow for dysphagia rehabilitation-a review. Prog Brain Res. 2016; 228: 185-219.

[99]

Kamarunas E, Mulheren R, Palmore K, Ludlow C. Timing of cortical activation during spontaneous swallowing. Exp Brain Res. 2018; 236(2): 475-484.

[100]

Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia. 1993; 8(3): 195-202.

[101]

Mihai PG, von Bohlen Und Halbach O, Lotze M. Differentiation of cerebral representation of occlusion and swallowing with fMRI. Am J Physiol Gastrointest Liver Physiol. 2013; 304(10): G847-G854.

[102]

You H, Hu S, Ye QP, et al. Role of 5-HT1A in the nucleus of the solitary tract in the regulation of swallowing activities evoked by electroacupuncture in anesthetized rats. Neurosci Lett. 2018; 687: 308-312.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/