Influence of the arterial elastic component on the response to balloon angioplasty in femoral arteries of a healthy porcine model

María Gracia de Garnica García , Marina Gil Bernabé , Claudia Pérez-Martínez , Laura Mola Solà , Luis Duocastella Codina , María Molina Crisol , Alex Gómez Castel , Armando Pérez de Prado

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (8) : 1503 -1512.

PDF
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (8) :1503 -1512. DOI: 10.1002/ame2.70024
ORIGINAL ARTICLE

Influence of the arterial elastic component on the response to balloon angioplasty in femoral arteries of a healthy porcine model

Author information +
History +
PDF

Abstract

Background: The efficacy of balloon angioplasty for treating peripheral artery disease is influenced by various factors, some of them not yet totally understood. This study aimed to evaluate the role of elastin content in vascular responses 28 days post-angioplasty using uncoated and paclitaxel-coated balloons with the same platform in femoral arteries of a healthy porcine model.

Methods: Eight animals underwent balloon angioplasty on the external and internal branches of femoral arteries. Histopathologic evaluation was conducted at follow-up to assess the elastin content, vascular damage, morphological features, and neointimal formation.

Results: The elastin content was significantly higher in the external than in the internal femoral artery (p = 0.0014). After balloon angioplasty, it was inversely correlated with vascular injury score (ρ = −0.4510, p = 0.0096), neointimal inflammation (ρ = −0.3352, p = 0.0607), transmural (ρ = −0.4474, p = 0.0103) and circumferential (ρ = −0.4591, p = 0.0082) smooth muscle cell loss, presence of proteoglycans (ρ = −0.5172, p = 0.0024), fibrin deposition (ρ = −0.3496, p = 0.0499), and adventitial fibrosis (ρ = −0.6229, p = 0.0002). Neointimal formation inhibition with paclitaxel was evident only in arteries with disruption of the internal elastic lamina, with a significant smaller neointimal area in arteries treated with paclitaxel-coated balloons compared to uncoated balloons (median [Q1–Q3]: 10.25 [7.49–15.64] vs. 24.44 [18.96–30.52], p = 0.0434).

Conclusions: Elastin content varies between branches of the femoral artery and significantly influences the integrity of the internal elastic lamina, the vessel's adaptive response, and paclitaxel efficacy after balloon angioplasty.

Keywords

angioplasty / elastin / femoral artery / histology / paclitaxel / porcine model

Cite this article

Download citation ▾
María Gracia de Garnica García, Marina Gil Bernabé, Claudia Pérez-Martínez, Laura Mola Solà, Luis Duocastella Codina, María Molina Crisol, Alex Gómez Castel, Armando Pérez de Prado. Influence of the arterial elastic component on the response to balloon angioplasty in femoral arteries of a healthy porcine model. Animal Models and Experimental Medicine, 2025, 8(8): 1503-1512 DOI:10.1002/ame2.70024

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adou C, Magne J, Gazere N, Aouida M, Chastaingt L, Aboyans V. Global epidemiology of lower extremity artery disease in the 21st century (2000-21): a systematic review and meta-analysis. Eur J Prev Cardiol. 2024; 31(7): 803-811.

[2]

Shu H, Xiong X, Chen X, et al. Endovascular revascularization vs. open surgical revascularization for patients with lower extremity artery disease: a systematic review and meta-analysis. Front Cardiovasc Med. 2023; 10: 1223841.

[3]

Scheinert D, Scheinert S, Sax J, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol. 2005; 45(2): 312-315.

[4]

Giacoppo D, Cassese S, Harada Y, et al. Drug-coated balloon versus plain balloon angioplasty for the treatment of femoropopliteal artery disease: an updated systematic review and meta-analysis of randomized clinical trials. JACC Cardiovasc Interv. 2016; 9(16): 1731-1742.

[5]

Biscetti F, Nardella E, Rando MM, et al. Outcomes of lower extremity endovascular revascularization: potential predictors and prevention strategies. Int J Mol Sci. 2021; 22(4): 1-16.

[6]

Kokkinidis DG, Schizas D, Pargaonkar S, et al. Differences between lower extremity arterial occlusion vs. stenosis and predictors of successful endovascular interventions. Medicina. 2023; 59(11): 2029.

[7]

Perkins LEL, Rippy MK. Balloons and stents and scaffolds: preclinical evaluation of interventional devices for occlusive arterial disease. Toxicol Pathol. 2019; 47(3): 297-310.

[8]

Burke SK, Bingham K, Moss E, et al. Recombinant human elastase alters the compliance of atherosclerotic tibial arteries after ex vivo angioplasty. J Cardiovasc Pharmacol. 2016; 67(4): 305-311.

[9]

Kunio M, Arai T. The deformation rate of smooth muscle cells in vessel walls after short-duration heating dilatation in a porcine model ex vivo and in vivo. Cardiovasc Eng Technol. 2012; 3(3): 311-318.

[10]

Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res. 2012; 5(3): 264-273.

[11]

Parliament E. European Directive 2010/63 on the protection of animals used for scientific purposes. 2010.

[12]

de la presidencia EM. Real Decreto 53/2013, de 1 de febrero, por el que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia. Boletín Oficial del Estado; 2013: 11370-11421.

[13]

Kolodgie FD, Pacheco E, Yahagi K, Mori H, Ladich E, Virmani R. Comparison of particulate embolization after femoral artery treatment with IN.PACT admiral versus Lutonix 035 paclitaxel-coated balloons in healthy swine. J Vasc Interv Radiol. 2016; 27(11): 1676-1685.

[14]

Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017; 7(1): 16878.

[15]

Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol. 1992; 19(2): 267-274.

[16]

Yazdani SK, Pacheco E, Nakano M, et al. Vascular, downstream, and pharmacokinetic responses to treatment with a low dose drug-coated balloon in a swine femoral artery model. Catheter Cardiovasc Interv. 2014; 83(1): 132-140.

[17]

Lin CJ, Cocciolone AJ, Wagenseil JE. Elastin, arterial mechanics, and stenosis. Am J Physiol Cell Physiol. 2022; 322(5): C875-C886.

[18]

Donati T, De Donato G, Tshomba Y. Endovascular therapies for aorto-iliac and femoro-popliteal arterial disease: Buridan's ass and the journey towards patient-tailored plaque therapy (PTPT). Eur Heart J. 2023; 44(11): 951-953.

[19]

Gardiner J, Bonn J, Sullivan KL. Quantification of elastic recoil after balloon angioplasty in the iliac arteries. J Vasc Interv Radiol. 2001; 12(12): 1389-1393.

[20]

Chen CJ, Kumar JS, Chen SH, et al. Optical coherence tomography future applications in cerebrovascular imaging. Stroke. 2018; 49(4): 1044-1050.

[21]

Schulze-Bauer CAJ, Regitnig P, Holzapfel GA. Mechanics of the human femoral adventitia including the high-pressure response. Am J Physiol Heart Circ Physiol. 2002; 282(6): 51-56.

[22]

Moreno PR, Purushothaman KR, Fuster V, O'Connor WN. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation. 2002; 105(21): 2504-2511.

[23]

Nankivell V, Primer K, Vidanapathirana A, Psaltis P, Bursill C. Vascular biology of smooth muscle cells and restenosis. Mechanisms of Vascular Disease. Springer International Publishing; 2020: 117-139.

[24]

Allahverdian S, Ortega C, Francis GA. Smooth muscle cell-proteoglycan-lipoprotein interactions as drivers of atherosclerosis. Handbook of Experimental Pharmacology. Vol 270. Springer Science and Business Media Deutschland GmbH; 2022: 335-358.

[25]

Radke PW, Joner M, Joost A, et al. Vascular effects of paclitaxel following drug-eluting balloon angioplasty in a porcine coronary model: the importance of excipients. EuroIntervention. 2011; 7(6): 730-737.

[26]

Michel JB, Thaunat O, Houard X, Meilhac O, Caligiuri G, Nicoletti A. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol. 2007; 27(6): 1259-1268.

[27]

Nienhaus F, Walz M, Rothe M, et al. Quantitative assessment of angioplasty-induced vascular inflammation with 19F cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson. 2023; 25(1): 54.

[28]

Rebello KR, LeMaire SA, Shen YH. Aortic neointimal formation: the role of elastin in conjunction with vascular smooth muscle cell origin. Arterioscler Thromb Vasc Biol. 2021; 41(12): 2906-2908.

[29]

Sirianni RW, Kremer J, Guler I, Chen YL, Keeley FW, Saltzman WM. Effect of extracellular matrix elements on the transport of paclitaxel through an arterial wall tissue mimic. Biomacromolecules. 2008; 9(10): 2792-2798.

[30]

Diego A, Pérez De Prado A, Cuellas C, et al. La reestenosis en el stent depende del daño vascular inducido. ¿Son válidos los modelos experimentales actuales de análisis de los stents farmacoactivos? Rev Esp Cardiol. 2011; 64(9): 745-751.

[31]

Maurice P, Blaise S, Gayral S, et al. Elastin fragmentation and atherosclerosis progression: the elastokine concept. Trends Cardiovasc Med. 2013; 23(6): 211-221.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/