PDF
Abstract
Sugars are one of the major metabolites and are essential for nucleic acid synthesis and energy production. In addition, sugars can act as signaling molecules. To study sugar signaling at the systemic level, there is an urgent need to systematically identify sugar-sensing proteins and nucleic acids. I propose the terms “swodkoreceptor” and “swodkocrine signaling,” derived from the Polish word “słodki” meaning “sweet,” to comprise all sugar-sensing proteins and signaling events, respectively, regardless of their cellular location and signaling domains. This proposal is intended to facilitate the inclusion of proteins such as the Escherichia coli LacI repressor as an allolactose receptor, human glucokinase regulatory protein (GCKR) as a fructose receptor, and other sugar-binding based allosterically regulated enzymes and transcription factors as sugar-sensing receptors. In addition, enzyme-interacting proteins whose interaction state is regulated by sugar binding have also been proposed as sugar receptors. The systemic study of protein- and nucleic-acid-based swodkoreceptors may help to identify organelle-specific swodkoreceptors and to also address receptor duality. The study of intra- and inter-organism swodkocrine signaling and its crosstalk with gasocrine signaling may help to understand the etiology of diseases due to dysregulation in sugar homeostasis and signaling.
Keywords
chemoreceptor
/
glucose sensor
/
glucose receptor
/
glucokinase
/
glucokinase regulatory protein (GKRP)
/
protocell
/
protoorganelle
/
protoreceptor
/
receptor duality
/
receptor multimodality
/
riboceptor
/
ribozyme
/
sugar receptor
/
sugar sensor
/
taste receptor
/
enzyme receptor duality
Cite this article
Download citation ▾
Savani Anbalagan.
Sugar-sensing swodkoreceptors and swodkocrine signaling.
Animal Models and Experimental Medicine, 2025, 8(5): 944-961 DOI:10.1002/ame2.70007
| [1] |
Taylor ME, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J. 2019; 286(10): 1800-1814.
|
| [2] |
Soty M, Gautier-Stein A, Rajas F, Mithieux G. Gut-brain glucose signaling in energy homeostasis. Cell Metab. 2017; 25(6): 1231-1242.
|
| [3] |
Li L, Sheen J. Dynamic and diverse sugar signaling. Curr Opin Plant Biol. 2016; 33: 116-125.
|
| [4] |
Choudhary A, Kumar A, Kaur N, Kaur H. Molecular cues of sugar signaling in plants. Physiol Plant. 2022; 174(1): e13630.
|
| [5] |
Sakr S, Wang M, Dédaldéchamp F, et al. The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network. Int J Mol Sci. 2018; 19(9): 2506.
|
| [6] |
Vanaporn M, Titball RW. Trehalose and bacterial virulence. Virulence. 2020; 11(1): 1192-1202.
|
| [7] |
Gesteland RF, Cech T, Atkins JF. The RNA World: the Nature of Modern RNA Suggests a Prebiotic RNA World. CSHL Press; 2006.
|
| [8] |
McBride MJ, Ensign JC. Effects of intracellular trehalose content on Streptomyces griseus spores. J Bacteriol. 1987; 169(11): 4995-5001.
|
| [9] |
Pilonieta MC, Nagy TA, Jorgensen DR, Detweiler CS. A glycine betaine importer limits Salmonella stress resistance and tissue colonization by reducing trehalose production. Mol Microbiol. 2012; 84: 296-309.
|
| [10] |
Foster AJ, Jenkinson JM, Talbot NJ. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J. 2003; 22(2): 225-235.
|
| [11] |
Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G. Insights on the evolution of trehalose biosynthesis. BMC Evol Biol. 2006; 6(1): 109.
|
| [12] |
Febbraio MA, Karin M. “Sweet death”: fructose as a metabolic toxin that targets the gut-liver axis. Cell Metab. 2021; 33(12): 2316-2328.
|
| [13] |
Kawano Y, Edwards M, Huang Y, et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell. 2022; 185(19): 3501-3519.e20.
|
| [14] |
Ashcroft FM, Lloyd M, Haythorne EA. Glucokinase activity in diabetes: too much of a good thing? Trends Endocrinol Metab. 2023; 34(2): 119-130.
|
| [15] |
Potter S, Fothergill-Gilmore LA. Molecular evolution: the origin of glycolysis. Biochem Educ. 1993; 21(1): 45-48.
|
| [16] |
Bräsen C, Esser D, Rauch B, Siebers B. Carbohydrate metabolism in archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev. 2014; 78(1): 89-175.
|
| [17] |
Verhees CH, Kengen SWM, Tuininga JE, et al. The unique features of glycolytic pathways in archaea. Biochem J. 2003; 375(Pt 2): 231-246.
|
| [18] |
Grüning NM, Ralser M. Glycolysis: how a 300yr long research journey that started with the desire to improve alcoholic beverages kept revolutionizing biochemistry. Curr Opin Syst Biol. 2021; 28: 100380.
|
| [19] |
Kresge N, Simoni RD, Hill RL. Otto Fritz Meyerhof and the elucidation of the glycolytic pathway. J Biol Chem. 2005; 280(4): e3.
|
| [20] |
Grmek MD. First steps in Claude Bernard's discovery of the glycogenic function of the liver. J Hist Biol. 1968; 1(1): 141-154.
|
| [21] |
Olmsted JMD. Claude Bernard, 1813-1878: a Pioneer in the study of carbohydrate metabolism. Diabetes. 1953; 2(2): 162-164.
|
| [22] |
Miyamoto T, Amrein H. Gluconeogenesis: an ancient biochemical pathway with a new twist. Fly (Austin). 2017; 11(3): 218-223.
|
| [23] |
Jia B, Yuan DP, Lan WJ, Xuan YH, Jeon CO. New insight into the classification and evolution of glucose transporters in the Metazoa. FASEB J. 2019; 33(6): 7519-7528.
|
| [24] |
Swami R, Vij S, Sharma S. Unlocking the power of sugar: carbohydrate ligands as key players in nanotherapeutic-assisted targeted cancer therapy. Nanomedicine (London). 2024; 19(5): 431-453.
|
| [25] |
Jastrzebska B, Park PSH. GPCRs: Structure, Function, and Drug Discovery. Academic Press; 2019.
|
| [26] |
Wang S, Zheng H, Choi JS, Lee JK, Li X, Hu H. A systematic evaluation of the computational tools for ligand-receptor-based cell-cell interaction inference. Brief Funct Genomics. 2022; 21(5): 339-356.
|
| [27] |
Chodkowski M, Zielezinski A, Anbalagan S. A ligand-receptor interactome atlas of the zebrafish. iScience. 2023; 26(8): 107309.
|
| [28] |
Maehle AH. A binding question: the evolution of the receptor concept. Endeavour. 2009; 33(4): 135-140.
|
| [29] |
Horst BG, Yokom AL, Rosenberg DJ, et al. Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy. elife. 2019; 8: e50634.
|
| [30] |
Hall BK, Hallgrímsson B. Strickberger's Evolution. Jones & Bartlett Publishers; 2011.
|
| [31] |
Kashio M, Tominaga M. TRP channels in thermosensation. Curr Opin Neurobiol. 2022; 75: 102591.
|
| [32] |
Kandori H. History and Perspectives of ion-transporting Rhodopsins. Adv Exp Med Biol. 2021; 1293: 3-19.
|
| [33] |
Ribatti D. The discovery of the fundamental role of VEGF in the development of the vascular system. Mech Dev. 2019; 160: 103579.
|
| [34] |
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019; 116: 135-170.
|
| [35] |
Ahern GP, Brooks IM, Miyares RL, Wang X b. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci. 2005; 25(21): 5109-5116.
|
| [36] |
Johnson LN, Snape P, Martin JL, Acharya KR, Barford D, Oikonomakos NG. Crystallographic binding studies on the allosteric inhibitor glucose-6-phosphate to T state glycogen phosphorylase b. J Mol Biol. 1993; 232(1): 253-267.
|
| [37] |
Baskaran S, Roach PJ, DePaoli-Roach AA, Hurley TD. Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci USA. 2010; 107(41): 17563-17568.
|
| [38] |
Marr L, Biswas D, Daly LA, et al. Mechanism of glycogen synthase inactivation and interaction with glycogenin. Nat Commun. 2022; 13(1): 3372.
|
| [39] |
Potapova IA, El-Maghrabi MR, Doronin SV, Benjamin WB. Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars. Biochemistry. 2000; 39(5): 1169-1179.
|
| [40] |
Vyas MN, Vyas NK, Quiocho FA. Crystallographic analysis of the epimeric and anomeric specificity of the periplasmic transport/chemosensory protein receptor for D-glucose and D-galactose. Biochemistry. 1994; 33(16): 4762-4768.
|
| [41] |
Vyas NK, Vyas MN, Quiocho FA. Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science. 1988; 242(4883): 1290-1295.
|
| [42] |
Quiocho FA. Protein-carbohydrate interactions: basic molecular features. Pure Appl Chem. 1989; 61(7): 1293-1306.
|
| [43] |
Kojima I, Nakagawa Y, Hamano K, Medina J, Li L, Nagasawa M. Glucose-sensing receptor T1R3: a new signaling receptor activated by glucose in pancreatic β-cells. Biol Pharm Bull. 2015; 38(5): 674-679.
|
| [44] |
Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R. The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des. 2006; 12(35): 4591-4600.
|
| [45] |
Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA. 2002; 99(7): 4692-4696.
|
| [46] |
Kashani-Amin E, Sakhteman A, Larijani B, Ebrahim-Habibi A. Presence of carbohydrate binding modules in extracellular region of class C G-protein coupled receptors (C GPCR): an in silico investigation on sweet taste receptor. J Biosci. 2019; 44(6): 138.
|
| [47] |
Chen W, Zhong Y, Shu J, et al. Characterization of glucose-binding proteins isolated from health volunteers and human type 2 diabetes mellitus patients. Proteins. 2021; 89(11): 1413-1424.
|
| [48] |
Scholle A, Vreemann J, Blank V, Nold A, Boos W, Manson MD. Sequence of the mglB gene from Escherichia coli K12: comparison of wild-type and mutant galactose chemoreceptors. Mol Gen Genet. 1987; 208(1-2): 247-253.
|
| [49] |
Adler J, Hazelbauer GL, Dahl MM. Chemotaxis toward sugars in Escherichia coli. J Bacteriol. 1973; 115(3): 824-847.
|
| [50] |
Hazelbauer GL, Mesibov RE, Adler J. Escherichia coli mutants defective in chemotaxis toward specific chemicals. Proc Natl Acad Sci USA. 1969; 64(4): 1300-1307.
|
| [51] |
Armstrong JB, Adler J, Dahl MM. Nonchemotactic mutants of Escherichia coli. J Bacteriol. 1967; 93(1): 390-398.
|
| [52] |
Snowdon C, Johnston M. A novel role for yeast casein kinases in glucose sensing and signaling. Mol Biol Cell. 2016; 27(21): 3369-3375.
|
| [53] |
Gancedo JM. The early steps of glucose signalling in yeast. FEMS Microbiol Rev. 2008; 32(4): 673-704.
|
| [54] |
Moriya H, Johnston M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA. 2004; 101(6): 1572-1577.
|
| [55] |
Ozcan S, Dover J, Johnston M. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 1998; 17(9): 2566-2573.
|
| [56] |
Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell. 2004; 16(2): 293-299.
|
| [57] |
Rolland F, De Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol. 2000; 38(2): 348-358.
|
| [58] |
Xue Y, Batlle M, Hirsch JP. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J. 1998; 17(7): 1996-2007.
|
| [59] |
Welton RM, Hoffman CS. Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. Genetics. 2000; 156(2): 513-521.
|
| [60] |
Brown NA, Dos Reis TF, Ries LNA, et al. G-protein coupled receptor-mediated nutrient sensing and developmental control in aspergillus nidulans. Mol Microbiol. 2015; 98(3): 420-439.
|
| [61] |
Li L, Borkovich KA. GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot Cell. 2006; 5(8): 1287-1300.
|
| [62] |
Kojima I, Medina J, Nakagawa Y. Role of the glucose-sensing receptor in insulin secretion. Diabetes Obes Metab. 2017; 19(1): 54-62.
|
| [63] |
Nakagawa Y, Ohtsu Y, Nagasawa M, Shibata H, Kojima I. Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3. Endocr J. 2014; 61(2): 119-131.
|
| [64] |
Kohno D. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J Physiol Sci. 2017; 67(4): 459-465.
|
| [65] |
Chhabra KH, Bathina S, Faniyan TS, et al. ADGRL1 is a glucose receptor involved in mediating energy and glucose homeostasis. Diabetologia. 2024; 67(1): 170-189.
|
| [66] |
Oike H, Nagai T, Furuyama A, et al. Characterization of ligands for fish taste receptors. J Neurosci. 2007; 27(21): 5584-5592.
|
| [67] |
Yuan XC, Liang XF, Cai WJ, He S, Guo WJ, Mai KS. Expansion of sweet taste receptor genes in grass carp (Ctenopharyngodon idellus) coincided with vegetarian adaptation. BMC Evol Biol. 2020; 20(1): 25.
|
| [68] |
Hidaka I, Yokota S. Taste receptor stimulation by sweet-tasting substances in the carp. Jpn J Physiol. 1967; 17(6): 652-666.
|
| [69] |
Grigston JC, Osuna D, Scheible WR, Liu C, Stitt M, Jones AM. D-glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett. 2008; 582(25-26): 3577-3584.
|
| [70] |
Moore B, Zhou L, Rolland F, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 2003; 300(5617): 332-336.
|
| [71] |
Cho JI, Ryoo N, Eom JS, et al. Role of the Rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol. 2009; 149(2): 745-759.
|
| [72] |
Vega M, Riera A, Fernández-Cid A, Herrero P, Moreno F. Hexokinase 2 is an intracellular glucose sensor of yeast cells that maintains the structure and activity of Mig1 protein repressor complex. J Biol Chem. 2016; 291(14): 7267-7285.
|
| [73] |
Lesko MA, Chandrashekarappa DG, Jordahl EM, et al. Changing course: glucose starvation drives nuclear accumulation of hexokinase 2 in S. cerevisiae. PLoS Genet. 2023; 19(5): e1010745.
|
| [74] |
Matschinsky FM, Wilson DF. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front Physiol. 2019; 10: 148.
|
| [75] |
De Backer I, Hussain SS, Bloom SR, Gardiner JV. Insights into the role of neuronal glucokinase. Am J Physiol Endocrinol Metab. 2016; 311(1): E42-E55.
|
| [76] |
Gersing S, Hansen T, Lindorff-Larsen K, Hartmann-Petersen R. Glucokinase: from allosteric glucose sensing to disease variants. Trends Biochem Sci. 2025; S0968-0004: 00279-2.
|
| [77] |
Li J, Liu Q, Li J, et al. RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa. Biotechnol Biofuels. 2021; 14(1): 33.
|
| [78] |
Madi L, McBride SA, Bailey LA, Ebbole DJ. Rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics. 1997; 146(2): 499-508.
|
| [79] |
Mitro N, Mak PA, Vargas L, et al. The nuclear receptor LXR is a glucose sensor. Nature. 2007; 445(7124): 219-223.
|
| [80] |
Abrahamian M, Kagda M, Ah-Fong AMV, Judelson HS. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria. BMC Evol Biol. 2017; 17(1): 241.
|
| [81] |
Plaxton WC. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol. 1996; 47: 185-214.
|
| [82] |
Holman GD. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflugers Arch. 2020; 472(9): 1155-1175.
|
| [83] |
Jun HS, Lee YM, Cheung YY, et al. Lack of glucose recycling between endoplasmic reticulum and cytoplasm underlies cellular dysfunction in glucose-6-phosphatase-beta-deficient neutrophils in a congenital neutropenia syndrome. Blood. 2010; 116(15): 2783-2792.
|
| [84] |
Müller MS, Fouyssac M, Taylor CW. Effective glucose uptake by human astrocytes requires its sequestration in the endoplasmic reticulum by Glucose-6-phosphatase-β. Curr Biol. 2018; 28(21): 3481-3486.
|
| [85] |
Dienel GA. The “protected” glucose transport through the astrocytic endoplasmic reticulum is too slow to serve as a quantitatively-important highway for nutrient delivery. J Neurosci Res. 2019; 97(8): 854-862.
|
| [86] |
Li M, Zhang CS, Zong Y, et al. Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab. 2019; 30(3): 508-524.
|
| [87] |
Imle R, Wang BT, Stützenberger N, et al. ADP-dependent glucokinase regulates energy metabolism via ER-localized glucose sensing. Sci Rep. 2019; 9(1): 14248.
|
| [88] |
Hedeskov CJ. Mechanism of glucose-induced insulin secretion. Physiol Rev. 1980; 60(2): 442-509.
|
| [89] |
Moede T, Leibiger B, Vaca Sanchez P, et al. Glucokinase intrinsically regulates glucose sensing and glucagon secretion in pancreatic alpha cells. Sci Rep. 2020; 10(1): 20145.
|
| [90] |
Niki A, Niki H, Miwa I. Effect of alpha-D-mannose and equilibrated D-mannose of insulin release. Endocrinol Jpn. 1978; 25(2): 205-208.
|
| [91] |
Malaisse WJ, Sener A. Glucokinase is not the pancreatic B-cell glucoreceptor. Diabetologia. 1985; 28(8): 520-527.
|
| [92] |
Nakagawa Y, Nagasawa M, Medina J, Kojima I. Glucose evokes rapid Ca2+ and cyclic AMP signals by activating the cell-surface glucose-sensing receptor in pancreatic β-cells. PLoS One. 2015; 10(12): e0144053.
|
| [93] |
Kojima I, Nakagawa Y, Ohtsu Y, Hamano K, Medina J, Nagasawa M. Return of the glucoreceptor: glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic β-cells. J Diabetes Investig. 2015; 6(3): 256-263.
|
| [94] |
Leclercq-Meyer V, Kadiata MM, Malaisse WJ. Stimulation by 2-deoxy-D-glucose tetraacetates of hormonal secretion from the perfused rat pancreas. Am J Phys. 1999; 276(4): E689-E696.
|
| [95] |
Liu S, Ammirati MJ, Song X, et al. Insights into mechanism of glucokinase activation: observation of multiple distinct protein conformations. J Biol Chem. 2012; 287(17): 13598-13610.
|
| [96] |
Petit P, Antoine M, Ferry G, et al. The active conformation of human glucokinase is not altered by allosteric activators. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 11): 929-935.
|
| [97] |
Antoine M, Boutin JA, Ferry G. Binding kinetics of glucose and allosteric activators to human glucokinase reveal multiple conformational states. Biochemistry. 2009; 48(23): 5466-5482.
|
| [98] |
Anbalagan S. Gas-sensing riboceptors. RNA Biol. 2024; 21(1): 1-6.
|
| [99] |
Chowdhury R, Leung IKH, Tian YM, et al. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat Commun. 2016; 7(1): 12673.
|
| [100] |
Walker DG, Rao S. The role of glucokinase in the phosphorylation of glucose by rat liver. Biochem J. 1964; 90(2): 360-368.
|
| [101] |
Basco D, Zhang Q, Salehi A, et al. α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nat Commun. 2018; 9(1): 546.
|
| [102] |
Heimberg H, De Vos A, Moens K, et al. The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells. Proc Natl Acad Sci USA. 1996; 93(14): 7036-7041.
|
| [103] |
MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic β-cells. Philos Trans R Soc Lond Ser B Biol Sci. 2005; 360(1464): 2211-2225.
|
| [104] |
Molnes J, Bjørkhaug L, Søvik O, Njølstad PR, Flatmark T. Catalytic activation of human glucokinase by substrate binding: residue contacts involved in the binding of D-glucose to the super-open form and conformational transitions. FEBS J. 2008; 275(10): 2467-2481.
|
| [105] |
Riggs JW, Rockwell NC, Cavales PC, Callis J. Identification of the Plant Ribokinase and discovery of a role for Arabidopsis Ribokinase in nucleoside metabolism. J Biol Chem. 2016; 291(43): 22572-22582.
|
| [106] |
Park J, van Koeverden P, Singh B, Gupta RS. Identification and characterization of human ribokinase and comparison of its properties with E. Coli ribokinase and human adenosine kinase. FEBS Lett. 2007; 581(17): 3211-3216.
|
| [107] |
Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984; 311(5983): 271-273.
|
| [108] |
Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012; 55(8): 2096-2108.
|
| [109] |
Sweet IR, Cook DL, DeJulio E, et al. Regulation of ATP/ADP in pancreatic islets. Diabetes. 2004; 53(2): 401-409.
|
| [110] |
Mesto N, Movassat J, Tourrel-Cuzin C. P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity as a promising novel therapeutic approach for the treatment of type 2 diabetes? Front Endocrinol Lausanne. 2022; 13: 1099152.
|
| [111] |
Frommer WB, Schulze WX, Lalonde S. Plant science. Hexokinase, Jack-of-all-trades. Science. 2003; 300(5617): 261-263.
|
| [112] |
Ronner P. 2-Deoxyglucose stimulates the release of insulin and somatostatin from the perfused catfish pancreas. Gen Comp Endocrinol. 1991; 81(2): 276-283.
|
| [113] |
Xu LZ, Weber IT, Harrison RW, Gidh-Jain M, Pilkis SJ. Sugar specificity of human beta-cell glucokinase: correlation of molecular models with kinetic measurements. Biochemistry. 1995; 34(18): 6083-6092.
|
| [114] |
Zhai Z, Keereetaweep J, Liu H, Feil R, Lunn JE, Shanklin J. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell. 2018; 30(10): 2616-2627.
|
| [115] |
Nunes C, Primavesi LF, Patel MK, et al. Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate. Plant Physiol Biochem. 2013; 63: 89-98.
|
| [116] |
Zhang Y, Primavesi LF, Jhurreea D, et al. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 2009; 149(4): 1860-1871.
|
| [117] |
Villar-Palasí C, Guinovart JJ. The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 1997; 11(7): 544-558.
|
| [118] |
Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE. MondoA-mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol. 2006; 26(13): 4863-4871.
|
| [119] |
Zhang X, Fu T, He Q, Gao X, Luo Y. Glucose-6-phosphate upregulates Txnip expression by interacting with MondoA. Front Mol Biosci. 2019; 6: 147.
|
| [120] |
McCorvie TJ, Loria PM, Tu M, et al. Molecular basis for the regulation of human glycogen synthase by phosphorylation and glucose-6-phosphate. Nat Struct Mol Biol. 2022; 29(7): 628-638.
|
| [121] |
Chandana T, Venkatesh YP. Occurrence, functions and biological significance of arginine-rich proteins. Curr Protein Pept Sci. 2016; 17(5): 507-516.
|
| [122] |
Jones S, Marin A, Thornton JM. Protein domain interfaces: characterization and comparison with oligomeric protein interfaces. Protein Eng. 2000; 13(2): 77-82.
|
| [123] |
Hall BG. Transgalactosylation activity of ebg beta-galactosidase synthesizes allolactose from lactose. J Bacteriol. 1982; 150(1): 132-140.
|
| [124] |
Lewis M. The lac repressor. C R Biol. 2005; 328(6): 521-548.
|
| [125] |
Otero-Rodiño C, Librán-Pérez M, Velasco C, et al. Glucosensing in liver and Brockmann bodies of rainbow trout through glucokinase-independent mechanisms. Comp Biochem Physiol B Biochem Mol Biol. 2016; 199: 29-42.
|
| [126] |
Anbalagan S. “Blind men and an elephant”, the need for animals in research, drug safety studies, and understanding civilizational diseases. Anim Model Exp Med. 2023; 6(6): 627-633.
|
| [127] |
Aono S. Gas Sensing in Cells. Royal Society of Chemistry; 2017.
|
| [128] |
Lincoln TM, Cornwell TL. Intracellular cyclic GMP receptor proteins. FASEB J. 1993; 7(2): 328-338.
|
| [129] |
Toyoda Y, Miwa I, Kamiya M, et al. Evidence for glucokinase translocation by glucose in rat hepatocytes. Biochem Biophys Res Commun. 1994; 204(1): 252-256.
|
| [130] |
Salgado M, Tarifeño-Saldivia E, Ordenes P, et al. Dynamic localization of glucokinase and its regulatory protein in hypothalamic Tanycytes. PLoS One. 2014; 9(4): e94035.
|
| [131] |
Kaminski MT, Schultz J, Waterstradt R, Tiedge M, Lenzen S, Baltrusch S. Glucose-induced dissociation of glucokinase from its regulatory protein in the nucleus of hepatocytes prior to nuclear export. Biochim Biophys Acta. 2014; 1843(3): 554-564.
|
| [132] |
Beck T, Miller BG. Structural basis for regulation of human glucokinase by glucokinase regulatory protein. Biochemistry. 2013; 52(36): 6232-6239.
|
| [133] |
Karlsson M, Zhang C, Méar L, et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021; 7(31): eabh2169.
|
| [134] |
Johansson BB, Fjeld K, Solheim MH, et al. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation. Mol Cell Endocrinol. 2017; 454: 146-157.
|
| [135] |
Brand IA, Heinickel A. Key enzymes of carbohydrate metabolism as targets of the 11.5-kDa Zn(2+)-binding protein (parathymosin). J Biol Chem. 1991; 266(31): 20984-20989.
|
| [136] |
Trompeter HI, Schiermeyer A, Blankenburg G, Hennig E, Söling HD. Factors involved in the cell density-dependent regulation of nuclear/cytoplasmic distribution of the 11.5-kDa Zn(2+)-binding protein (parathymosin-alpha) in rat hepatocytes. J Cell Sci. 1999; 112(Pt 22): 4113-4122.
|
| [137] |
Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci. 2016; 41(8): 712-730.
|
| [138] |
Tao BB, Liu SY, Zhang CC, et al. VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal. 2013; 19(5): 448-464.
|
| [139] |
Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology. 2013; 154(1): 114-126.
|
| [140] |
Tiedge M, Richter T, Lenzen S. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch Biochem Biophys. 2000; 375(2): 251-260.
|
| [141] |
Caing-Carlsson R, Goyal P, Sharma A, et al. Crystal structure of N-acetylmannosamine kinase from fusobacterium nucleatum. Acta Crystallogr F Struct Biol Commun. 2017; 73(Pt 6): 356-362.
|
| [142] |
Nakamura T, Kashima Y, Mine S, Oku T, Uegaki K. Characterization and crystal structure of the thermophilic ROK hexokinase from Thermus thermophilus. J Biosci Bioeng. 2012; 114(2): 150-154.
|
| [143] |
Miyazono K i, Tabei N, Morita S, Ohnishi Y, Horinouchi S, Tanokura M. Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J Bacteriol. 2012; 194(3): 607-616.
|
| [144] |
Schiefner A, Gerber K, Seitz S, Welte W, Diederichs K, Boos W. The crystal structure of Mlc, a global regulator of sugar metabolism in Escherichia coli. J Biol Chem. 2005; 280(32): 29073-29079.
|
| [145] |
MacDiarmid CW, Taggart J, Kubisiak M, Eide DJ. Restricted glycolysis is a primary cause of the reduced growth rate of zinc-deficient yeast cells. J Biol Chem. 2024; 300(4): 107147.
|
| [146] |
St Charles R, Harrison RW, Bell GI, Pilkis SJ, Weber IT. Molecular model of human beta-cell glucokinase built by analogy to the crystal structure of yeast hexokinase B. Diabetes. 1994; 43(6): 784-791.
|
| [147] |
Kamata K, Mitsuya M, Nishimura T, Eiki JI, Nagata Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure. 2004; 12(3): 429-438.
|
| [148] |
Liu Q, Shen Y, Liu S, Weng J, Liu J. Crystal structure of E339K mutated human glucokinase reveals changes in the ATP binding site. FEBS Lett. 2011; 585(8): 1175-1179.
|
| [149] |
Anbalagan S. Heme-based oxygen gasoreceptors. Am J Physiol Endocrinol Metab. 2024; 326(2): E178-E181.
|
| [150] |
Anbalagan S. Oxygen is an essential gasotransmitter directly sensed via protein gasoreceptors. Anim Models Exp Med. 2024; 7(2): 189-193.
|
| [151] |
Gilbert W, Müller-Hill B. Isolation of the lac repressor. Proc Natl Acad Sci USA. 1966; 56(6): 1891-1898.
|
| [152] |
Lespagnol A, Montreuil J, Segard E. The problem of “allolactose” of human milk. CR Seances Soc Biol Fil. 1960; 154: 130-132.
|
| [153] |
Wheatley RW, Lo S, Jancewicz LJ, Dugdale ML, Huber RE. Structural explanation for allolactose (lac operon inducer) synthesis by lacZ β-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor. J Biol Chem. 2013; 288(18): 12993-13005.
|
| [154] |
Kraus A, Hueck C, Gärtner D, Hillen W. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol. 1994; 176(6): 1738-1745.
|
| [155] |
Rodionov DA, Mironov AA, Gelfand MS. Transcriptional regulation of pentose utilisation systems in the bacillus/clostridium group of bacteria. FEMS Microbiol Lett. 2001; 205(2): 305-314.
|
| [156] |
Rezácová P, Kozísek M, Moy SF, et al. Crystal structures of the effector-binding domain of repressor central glycolytic gene regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates. Mol Microbiol. 2008; 69(4): 895-910.
|
| [157] |
Gaugué I, Oberto J, Plumbridge J. Regulation of amino sugar utilization in Bacillus subtilis by the GntR family regulators, NagR and GamR. Mol Microbiol. 2014; 92(1): 100-115.
|
| [158] |
Yamashita Y, Takamatsu S, Glasbrenner M, Becker T, Naito S, Beckmann R. Sucrose sensing through nascent peptide-meditated ribosome stalling at the stop codon of Arabidopsis bZIP11 uORF2. FEBS Lett. 2017; 591(9): 1266-1277.
|
| [159] |
Krug M, Lee SJ, Diederichs K, Boos W, Welte W. Crystal structure of the sugar binding domain of the archaeal transcriptional regulator TrmB. J Biol Chem. 2006; 281(16): 10976-10982.
|
| [160] |
Lee SJ, Engelmann A, Horlacher R, et al. TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem. 2003; 278(2): 983-990.
|
| [161] |
Richet E, Raibaud O. Purification and properties of the MalT protein, the transcription activator of the Escherichia coli maltose regulon. J Biol Chem. 1987; 262(26): 12647-12653.
|
| [162] |
Raibaud O, Richet E. Maltotriose is the inducer of the maltose regulon of Escherichia coli. J Bacteriol. 1987; 169(7): 3059-3061.
|
| [163] |
Lee N, Francklyn C, Hamilton EP. Arabinose-induced binding of AraC protein to araI2 activates the araBAD operon promoter. Proc Natl Acad Sci USA. 1987; 84(24): 8814-8818.
|
| [164] |
Franco IS, Mota LJ, Soares CM, de Sá-Nogueira I. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon. Nucleic Acids Res. 2007; 35(14): 4755-4766.
|
| [165] |
Xu Y, Liu M, Zhao R, et al. TetR family regulator AbrT controls lincomycin production and morphological development in Streptomyces lincolnensis. Microb Cell Factories. 2024; 23(1): 223.
|
| [166] |
Lazazzera BA, Bates DM, Kiley PJ. The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev. 1993; 7(10): 1993-2005.
|
| [167] |
Shelver D, Kerby RL, He Y, Roberts GP. CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Proc Natl Acad Sci USA. 1997; 94(21): 11216-11220.
|
| [168] |
Gomis RR, Favre C, García-Rocha M, Fernández-Novell JM, Ferrer JC, Guinovart JJ. Glucose 6-phosphate produced by gluconeogenesis and by glucokinase is equally effective in activating hepatic glycogen synthase. J Biol Chem. 2003; 278(11): 9740-9746.
|
| [169] |
Seoane J, Gómez-Foix AM, O'Doherty RM, Gómez-Ara C, Newgard CB, Guinovart JJ. Glucose 6-phosphate produced by glucokinase, but not hexokinase I, promotes the activation of hepatic glycogen synthase. J Biol Chem. 1996; 271(39): 23756-23760.
|
| [170] |
Mahalingan KK, Baskaran S, DePaoli-Roach AA, Roach PJ, Hurley TD. Redox switch for the inhibited state of yeast glycogen synthase mimics regulation by phosphorylation. Biochemistry. 2017; 56(1): 179-188.
|
| [171] |
Liu X, Kim CS, Kurbanov FT, Honzatko RB, Fromm HJ. Dual mechanisms for glucose 6-phosphate inhibition of human brain hexokinase. J Biol Chem. 1999; 274(44): 31155-31159.
|
| [172] |
Lorentzen E, Hensel R, Knura T, Ahmed H, Pohl E. Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Thermoproteus tenax. J Mol Biol. 2004; 341(3): 815-828.
|
| [173] |
Li L, Li Y, Zhang L, et al. Sucrose induces rapid activation of CfSAPK, a mitogen-activated protein kinase, in Cephalostachyum fuchsianum gamble cells. Plant Cell Environ. 2012; 35(8): 1428-1439.
|
| [174] |
Zhang B, Liu X, Lambert E, et al. Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis. Nat Struct Mol Biol. 2020; 27(6): 561-569.
|
| [175] |
Suzuki K, Ito S, Shimizu-Ibuka A, Sakai H. Crystal structure of pyruvate kinase from Geobacillus stearothermophilus. J Biochem. 2008; 144(3): 305-312.
|
| [176] |
Snášel J, Pichová I. Allosteric regulation of pyruvate kinase from mycobacterium tuberculosis by metabolites. Biochim Biophys Acta, Proteins Proteomics. 2019; 1867(2): 125-139.
|
| [177] |
Yu P, Pettigrew DW. Linkage between fructose 1,6-bisphosphate binding and the dimer-tetramer equilibrium of Escherichia coli glycerol kinase: critical behavior arising from change of ligand stoichiometry. Biochemistry. 2003; 42(14): 4243-4252.
|
| [178] |
Minowa T, Iwata S, Sakai H, Masaki H, Ohta T. Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Gene. 1989; 85(1): 161-168.
|
| [179] |
Anderson MJ, DeLabarre B, Raghunathan A, Palsson BO, Brunger AT, Quake SR. Crystal structure of a hyperactive Escherichia coli glycerol kinase mutant Gly230 asp obtained using microfluidic crystallization devices. Biochemistry. 2007; 46(19): 5722-5731.
|
| [180] |
Ormö M, Bystrom CE, Remington SJ. Crystal structure of a complex of Escherichia coli glycerol kinase and an allosteric effector fructose 1,6-bisphosphate. Biochemistry. 1998; 37(47): 16565-16572.
|
| [181] |
Ohta T, Yokota K, Minowa T, Iwata S. Mechanism of allosteric transition of bacterial L-lactate dehydrogenase. Faraday Discuss. 1992; 93: 153-162.
|
| [182] |
Kent LB, Robertson HM. Evolution of the sugar receptors in insects. BMC Evol Biol. 2009; 9: 41.
|
| [183] |
Shi P, Zhang J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol. 2006; 23(2): 292-300.
|
| [184] |
Temussi P. The history of sweet taste: not exactly a piece of cake. J Mol Recognit. 2006; 19(3): 188-199.
|
| [185] |
Hazelbauer GL, Harayama S. Mutants in transmission of chemotactic signals from two independent receptors of E. Coli. Cell. 1979; 16(3): 617-625.
|
| [186] |
Kondoh H, Ball CB, Adler J. Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc Natl Acad Sci USA. 1979; 76(1): 260-264.
|
| [187] |
Chyb S, Dahanukar A, Wickens A, Carlson JR. Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natl Acad Sci USA. 2003; 100(2): 14526-14530.
|
| [188] |
Dahanukar A, Lei YT, Kwon JY, Carlson JR. Two gr genes underlie sugar reception in drosophila. Neuron. 2007; 56(3): 503-516.
|
| [189] |
Jiao Y, Moon SJ, Wang X, Ren Q, Montell C. Gr64f is required in combination with other gustatory receptors for sugar detection in drosophila. Curr Biol. 2008; 18(22): 1797-1801.
|
| [190] |
Mishra D, Thorne N, Miyamoto C, Jagge C, Amrein H. The taste of ribonucleosides: novel macronutrients essential for larval growth are sensed by drosophila gustatory receptor proteins. PLoS Biol. 2018; 16(8): e2005570.
|
| [191] |
Fujii S, Ahn JE, Jagge C, et al. RNA taste is conserved in dipteran insects. J Nutr. 2023; 153(5): 1636-1645.
|
| [192] |
Sato K, Tanaka K, Touhara K. Sugar-regulated cation channel formed by an insect gustatory receptor. Proc Natl Acad Sci USA. 2011; 108(28): 11680-11685.
|
| [193] |
Miyamoto T, Slone J, Song X, Amrein H. A fructose receptor functions as a nutrient sensor in the drosophila brain. Cell. 2012; 151(5): 1113-1125.
|
| [194] |
Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell. 1999; 96(4): 541-551.
|
| [195] |
Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet taste receptors. Cell. 2001; 106(3): 381-390.
|
| [196] |
Pautsch A, Stadler N, Löhle A, et al. Crystal structure of glucokinase regulatory protein. Biochemistry. 2013; 52(20): 3523-3531.
|
| [197] |
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci. 2023; 48(2): 119-141.
|
| [198] |
Anbalagan S. Temperature-sensing riboceptors. RNA Biol. 2024; 21(1): 1-6.
|
| [199] |
Klein DJ, Ferré-D'Amaré AR. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science. 2006; 313(5794): 1752-1756.
|
| [200] |
Chen, A. G. Y., Sudarsan, N., & Breaker, R. R. (2011). Mechanism for gene control by a natural allosteric group I ribozyme. RNA. 2008; 17(11): 1967-1972.
|
| [201] |
McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA. Ligand requirements for glmS ribozyme self-cleavage. Chem Biol. 2005; 12(11): 1221-1226.
|
| [202] |
Koehbach J, Stockner T, Bergmayr C, Muttenthaler M, Gruber CW. Insights into the molecular evolution of oxytocin receptor ligand binding. Biochem Soc Trans. 2013; 41(1): 197-204.
|
| [203] |
Koehbach J, O'Brien M, Muttenthaler M, et al. Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proc Natl Acad Sci USA. 2013; 110(52): 21183-21188.
|
| [204] |
Wu L, Liu Z, Liu Y. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch. RNA Biol. 2021; 18(11): 2007-2015.
|
| [205] |
Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996; 383(6602): 728-731.
|
| [206] |
Lehmann JM, Kliewer SA, Moore LB, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 1997; 272(6): 3137-3140.
|
| [207] |
Long W, Johnson J, Kalyaanamoorthy S, Light P. TRPV1 channels as a newly identified target for vitamin D. Channels (Austin). 2021; 15(1): 360-374.
|
| [208] |
Shen WL, Kwon Y, Adegbola AA, Luo J, Chess A, Montell C. Function of rhodopsin in temperature discrimination in drosophila. Science. 2011; 331(6022): 1333-1336.
|
| [209] |
Cheng YR, Jiang BY, Chen CC. Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci. 2018; 25(1): 46.
|
| [210] |
Lacey RF, Binder BM. Ethylene regulates the physiology of the cyanobacterium Synechocystis sp. PCC 6803 via an ethylene Receptor1[OPEN]. Plant Physiol. 2016; 171(4): 2798-2809.
|
| [211] |
Ramon M, Rolland F, Sheen J. Sugar sensing and signaling. Arabidopsis Book. 2008; 6: e0117.
|
| [212] |
Hay DL, Pioszak AA. RAMPs (receptor-activity modifying proteins): new insights and roles. Annu Rev Pharmacol Toxicol. 2016; 56: 469-487.
|
| [213] |
Berg JM, Stryer L, Tymoczko JL, Gatto GJ. Biochemistry. Macmillan Learning; 2015.
|
| [214] |
Anbalagan S. Heme-based aquareceptors. Postepy Biochem. 2024; 70(3): 420-423.
|
| [215] |
Ritson DJ. A cyanosulfidic origin of the Krebs cycle. Sci Adv. 2021; 7(33): eabh3981.
|
| [216] |
Arnold PK, Finley LWS. Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem. 2023; 299(2): 102838.
|
| [217] |
Barilan YM, Brusa M, Ciechanover A. Can Precision Medicine Be Personal; Can Personalized Medicine Be Precise? Oxford University Press; 2022.
|
| [218] |
Stein-Thoeringer CK, Nichols KB, Lazrak A, et al. Lactose drives enterococcus expansion to promote graft-versus-host disease. Science. 2019; 366(6469): 1143-1149.
|
| [219] |
Chen Y, Miller AJ, Qiu B, et al. The role of sugar transporters in the battle for carbon between plants and pathogens. Plant Biotechnol J. 2024; 22(10): 2844-2858.
|
| [220] |
He X, Zhao L, Tian Y, et al. Highly accurate carbohydrate-binding site prediction with DeepGlycanSite. Nat Commun. 2024; 15(1): 5163.
|
| [221] |
Gattani S, Mishra A, Hoque MT. StackCBPred: a stacking based prediction of protein-carbohydrate binding sites from sequence. Carbohydr Res. 2019; 486: 107857.
|
| [222] |
Nassif H, Al-Ali H, Khuri S, Keirouz W. Prediction of protein-glucose binding sites using support vector machines. Proteins. 2009; 77(1): 121-132.
|
| [223] |
Richter JP, Goroncy AK, Ronimus RS, Sutherland-Smith AJ. The structural and functional characterization of mammalian ADP-dependent glucokinase. J Biol Chem. 2016; 291(8): 3694-3704.
|
| [224] |
Zelent B, Odili S, Buettger C, et al. Sugar binding to recombinant wild-type and mutant glucokinase monitored by kinetic measurement and tryptophan fluorescence. Biochem J. 2008; 413(2): 269-280.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.