PDF
Abstract
Glaucoma, a visual thief, is characterized by elevated intraocular pressure (IOP) and the loss of retinal ganglion cells (RGCs). Selecting suitable animals for preclinical models is of great significance in research on the prevention, early screening, and effective treatments of glaucoma. Rabbit eyeballs possess similar vascularity and aqueous humor outflow pathways to those of humans. Thus, they are among the earliest in vivo models used in glaucoma research. Over the years, rabbit models have made substantial contributions to understanding glaucomatous pathophysiology, surgical adaptations, biomedical device development, and drug development for reducing IOP, protecting RGCs, and inhibiting fibrosis. Compared to other animals, rabbits fit better with surgical operations and cost less. This review summarizes the merits and demerits of different ways to produce glaucomatous rabbit models, such as intracameral injection, vortex vein obstruction, Trendelenburg position, laser photo-coagulation, glucocorticoid induction, limbal buckling induction, retinal ischemia–reperfusion models, and spontaneous models. We analyzed their mechanisms in the hope of providing more references for experimental design and promoting the understanding of glaucoma treatment strategies.
Keywords
aqueous humor outflow
/
glaucoma
/
intraocular pressure
/
rabbit eye anatomy
/
retinal ischemia–reperfusion
Cite this article
Download citation ▾
Rong Hu, Kai Wu, Jian Shi, Juan Yu, Xiao-lei Yao.
Glaucoma animal models in rabbits: State of the art and perspectives—A review.
Animal Models and Experimental Medicine, 2025, 8(3): 429-440 DOI:10.1002/ame2.12565
| [1] |
Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: Now and beyond. Lancet. 2023; 402: 1788-1801.
|
| [2] |
Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017; 390: 2183-2193.
|
| [3] |
Shuo SONG, Yongz MENG, Hua LI. Application of glaucoma animal model in glaucoma study. Nat Sci. 2021; 41(12): 1850-1855.
|
| [4] |
Zhang L, Cui Q-q, Zhang Y-k, et al. Three-dimensional reconstruction of rabbit eye vessels based on X-ray phase contrast. Biomed Eng Online. 2014; 29(1): 30.
|
| [5] |
Weir AB, Collins M. Assessing ocular toxicology in laboratory animals || comparative ocular anatomy in commonly used laboratory animals. Mol Integr Toxicol. 2013; 1: 1-21.
|
| [6] |
Asrory VDO, Sitompul R, Artini W, Estuningsih S, Noviana D, Morgan WH. The inflammatory and foreign body reaction of polymethyl methacrylate glaucoma drainage device in the rabbit eye. Transl Vis Sci Technol. 2020; 9(3): 20.
|
| [7] |
Lewczuk K, Jabłońska J, Konopińska J, Mariak Z, Rękas M. Schlemm's canal: the outflow ‘vessel’. Acta Ophthalmol. 2022; 100(4): e881-e890.
|
| [8] |
Costagliola C, dell'Omo R, Agnifili L, et al. How many aqueous humor outflow pathways are there? Surv Ophthalmol. 2020; 65(2): 144-170.
|
| [9] |
Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci. 1980; 19(2): 126-136.
|
| [10] |
Lu DW, Chen YH, Chang CJ, Chiang CH, Yao HY. Nitric oxide levels in the aqueous humor vary in different ocular hypertension experimental models. Kaohsiung J Med Sci. 2014; 30(12): 593-598.
|
| [11] |
Wei H-l, Liu S-r, Liu S-r. Establishment of chronic glaucoma rabbit model by injecting tunicamycin to anterior chamber. Yan Ke Xin Jin Zhan. 2015; 35(7): 629-633.
|
| [12] |
Yan X, Chen Z-j, Song J-z. A study of experimental carbomer glaucoma and other experimental glaucoma in rabbits. Zhong Hua Yan Ke Za Zhi. 2002; 3: 172-175.
|
| [13] |
Lanzi C, Lucarini L, Durante M, et al. Role of histamine H3 receptor antagonists on intraocular pressure reduction in rabbit models of transient ocular hypertension and glaucoma. Int J Mol Sci. 2019; 20(4): 981.
|
| [14] |
Zhang Y-y, Li-na D, Jin Y-g. Application of environmentally sensitive hydrogels in drug delivery. Yao Xue Xue Bao. 2021; 5: 1314-1331.
|
| [15] |
Wang Y-y, Wang W-h. Experimental study ofcarbomer glaucoma model in rabbits by injecting different location in anterior chamber. Zhong Guo Shi Yong Yan Ke Za Zhi. 2009; 05: 542-545.
|
| [16] |
Zhu MD, Cai FY. Development of experimental chronic intraocular hypertension in the rabbit. Aust N Z J Ophthalmol. 1992; 20(3): 225-234.
|
| [17] |
Melena J, Santafé J, Segarra-Doménech J, et al. Aqueous humor dynamics in alpha-chymotrypsin-induced ocular hypertensive rabbits. J Ocul Pharmacol Ther. 1999; 15(1): 19-27.
|
| [18] |
Kalvin NH, Hamasaki DI, Gass JD. Experimental glaucoma in monkeys. I. Relationship between intraocular pressure and cupping of the optic disc and cavernous atrophy of the optic nerve. Arch Ophthalmol. 1966; 76(1): 82-93.
|
| [19] |
Stagni E, Privitera MG, Bucolo C, Leggio GM, Motterlini R, Drago F. A water-soluble carbon monoxide- releasing molecule (CORM-3) lowers intraocular pressure in rabbits. Brit J Ophthalmol. 2009; 93(2): 254-257.
|
| [20] |
Angel Aillegas N, Tártara LI, Caballero G, Campana V, Allemandi DA, Palma SD. Antioxidant status in rabbit aqueous humor after instillation of ascorbyl laurate-based nanostructures. Pharmacol Rep. 2019; 71(5): 794-797.
|
| [21] |
Lee C, Li Y, Huang C, Lai J. Poly (ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale. 2017; 9(32): 11754-11764.
|
| [22] |
Bill A. The aqueous humor drainage mechanism in the cynomolgus monkey (Macaca irus) with evidence for unconventional routes. Invest Ophthalmol. 1965; 4: 911-919.
|
| [23] |
Pederson JE, Gaasterland DE, MacLellan HM et al. Uveoscleral aqueous outflow in the rhesus monkey: importance of uveal reabsorption. Invest Ophthalmol Vis Sci. 1977; 16: 1008-1017.
|
| [24] |
McMaster PRB, Macri FJ. Secondary aqueous humor outflow pathways in the rabbit, cat, and monkey. Archiv Ophthamol. 1968; 79: 297-303.
|
| [25] |
Jonas JB, Jonas RA, Jonas SB, Panda-Jonas S. Ciliary body size in chronic angle-closure glaucoma. Sci Rep-UK. 2023; 13(1): 16914.
|
| [26] |
Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: a review. Exp Eye Res. 2017; 158: 94-111.
|
| [27] |
Arciniegas A, Ramirez F. Aqueous-vortex derivation: a preliminary study on rabbits. J Glaucoma. 2016; 25(9): 802-806.
|
| [28] |
Xie Z-g, Guan H-j, Sun J-q, et al. Acute ocular hypertension of rabbits induced by cauterizing vortex veins. Yan Ke Xin Jin Zhan. 2006; 26(4): 276-279.
|
| [29] |
Zhang Y, Peng W, Yin W-d, et al. Effects of neu-P11 on intraocular pressure in acute high intraocular pressure rabbits. Zhong nan Yi Xue Ke Xue Za Zhi. 2017; 45(5): 471-473.
|
| [30] |
Shi J-f, Zhang Y, Zhang X-h, et al. Neu-P11 reduces IOP through inhibiting oxidative stress level of acute high IOP rats. Zhong Guo Yao Li Xue Tong Bao. 2017; 5: 637-641.
|
| [31] |
Aihara M, Lindsey JD, Weinreb RN. Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res. 2003; 27(6): 355-362.
|
| [32] |
Zamora DO, Kiel JW. Topical proparacaine and episcleral venous pressure in the rabbit. Invest Ophthalmol Vis Sci. 2009; 50(6): 2949-2952.
|
| [33] |
Ripa M, Schipa C, Kopsacheilis N, et al. The impact of steep Trendelenburg position on intraocular pressure. J Clin Med. 2022; 11(10): 2844.
|
| [34] |
Friberg TR, Sanborn G, Weinreb RN. Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol. 1987; 103(4): 523-526.
|
| [35] |
March WF, Gherezghiher T, Nordquist R, Koss M. Ultrastructural and pharmacologic studies on laser-induced glaucoma in primates and rabbits. Lasers Surg Med. 1984; 4(4): 329-335.
|
| [36] |
Gherezghiher T, March WF, Nordquist RE, Koss MC. Laser-induced glaucoma in rabbits. Exp Eye Res. 1986; 43(6): 885-894.
|
| [37] |
Kim Y, Yang J, Kim JY, Lee JM, Son WC, Moon B. HL3501, a novel selective A3 adenosine receptor antagonist, lowers intraocular pressure (IOP) in animal glaucoma models. Transl Vis Sci Technol. 2022; 11(2): 30.
|
| [38] |
Donia M, Osman R, Awad G, et al. Polypeptide and glycosaminoglycan polysaccharide as stabilizing polymers in nanocrystals for a safe ocular hypotensive effect. Int J Biol Macromol. 2020; 162: 1699-1710.
|
| [39] |
Lorenzetti OJ. Effects of corticosteroids on ocular dynamics in rabbits. J Pharmacol Exp Ther. 1970; 175(3): 763-772.
|
| [40] |
Qin Y, Lam S, Yam GHF, et al. A rabbit model of age-dependant ocular hypertensive response to topical corticosteroids. Acta Ophthalmol. 2012; 90(6): 559-563.
|
| [41] |
ElGohary AA, Elshazly LH. Photopic negative response in diagnosis of glaucoma: an experimental study in glaucomatous rabbit model. Int J Ophthalmol. 2015; 8(3): 459-464.
|
| [42] |
Zhao J, Zhang Q. Ultrastructural changes of the trabecular meshwork in glucocorticoid induced glaucoma. Yan Ke Xue Bao. 2010; 25(2): 119-124.
|
| [43] |
Ticho U, Lahav M, Berkowitz S, Yoffe P. Ocular changes in rabbits with corticosteroid-induced ocular hypertension. Brit J Ophthalmol. 1979; 63(9): 646-650.
|
| [44] |
Zhang H, Zhao G-h, Zhang Q, et al. Relationship between glucocorticoid receptors in the peripheral blood lymphocytes and trabecular meshwork and glucocorticoid induced glaucoma. Zhong Hua Yan Ke Za Zhi. 2006; 5: 431-435.
|
| [45] |
Patel PD, Kodati B, Clark AF. Role of glucocorticoids and glucocorticoid receptors in glaucoma pathogenesis. Cells-Basel. 2023; 12(20): 2452.
|
| [46] |
Nakagawa H, Koike N, Ehara T, et al. Corticosteroid eye drop instillation aggravates the development of acanthamoeba keratitis in rabbit corneas inoculated with acanthamoeba and bacteria. Sci Rep-UK. 2019; 9(1): 1210.
|
| [47] |
Ding M, Guo D, Wu J, et al. Effects of glucocorticoid on the eye development in Guinea pigs. Steroids. 2018; 139: 1-9.
|
| [48] |
Carnahan MC, Goldstein DA. Ocular complications of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol. 2000; 11(6): 478-483.
|
| [49] |
Wang Q, Wang J, Lin X, et al. Chronic ocular hypertension in rabbits induced by limbal buckling. Brit J Ophthalmol. 2019; 103(1): 144-151.
|
| [50] |
Wang Q, Lin X, Wang J. An optimized method for retrograde labelling and quantification of rabbit retinal ganglion cells. Exp Eye Res. 2023; 229: 109432.
|
| [51] |
Minhas G, Sharma J, Khan N. Cellular stress response and immune signaling in retinal ischemia-reperfusion injury. Front Immunol. 2016; 7: 7.
|
| [52] |
Zhang Y-l, Liang W-f, Zhang T-h. Fluoographic changes in rabbit retinal vessels after ocular hypertension. Yi Xue Dong Wu Fang Zhi. 2012; 1: 45-49.
|
| [53] |
Song G, Yang X-g, Liao J. The variation of four amino acids release of the retina in acute ocular hypertension in rabbits. Zhong Hua Yan Di Bing Za Zhi. 2002; 18(2): 2210.
|
| [54] |
Zhang K-y, Zhang X-q, Liu Z-c. Time for establishing an animal model of acute high intraocular pressure. Zhong Guo Zu Zhi Gong Cheng Yan Jiu. 2013; 46: 8043-8048.
|
| [55] |
Shibata M, Sugiyama T, Kurimoto T, et al. Involvement of glial cells in the autoregulation of optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci. 2012; 53(7): 3726-3732.
|
| [56] |
Okuno T, Oku H, Sugiyama T, Ikeda T. Glutamate level in optic nerve head is increased by artificial elevation of intraocular pressure in rabbits. Exp Eye Res. 2006; 82(3): 465-470.
|
| [57] |
Vallée A, Lecarpentier Y, Vallée J. Cannabidiol and the canonical WNT/β-catenin pathway in glaucoma. Int J Mol Sci. 2021; 22(7): 3798.
|
| [58] |
Dong C, Guo Y, Agey P, et al. α2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest Ophthalmol Vis Sci. 2008; 49(10): 4515.
|
| [59] |
Staubli U, Rangel-Diaz N, Alcantara M, et al. Restoration of visual performance by d -serine in models of inner and outer retinal dysfunction assessed using sweep VEP measurements in the conscious rat and rabbit. Vision Res. 2016; 127: 35-48.
|
| [60] |
Kageyama T, Ishikawa A, Tamai M. Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion. Jpn J Ophthalmol. 2000; 44(2): 110-114.
|
| [61] |
Kim JM, Kim YJ, Kim DM. Increased expression of oxyproteins in the optic nerve head of an in vivo model of optic nerve ischemia. BMC Ophthalmol. 2012; 12(1): 63.
|
| [62] |
Sgambellone S, Marri S, Villano S, et al. NCX 470 exerts retinal cell protection and enhances ophthalmic artery blood flow after ischemia/reperfusion injury of optic nerve head and retina. Transl Vis Sci Technol. 2023; 12(9): 22.
|
| [63] |
Oku H, Sugiyama T, Kojima S, Watanabe T, Azuma I. Experimental optic cup enlargement caused by endothelin-1-induced chronic optic nerve head ischemia. Surv Ophthalmol. 1999; 44(Suppl 1): S74-S84.
|
| [64] |
Bunt-Milam AH, Dennis MB, Bensinger RE. Optic nerve head axonal transport in rabbits with hereditary glaucoma. Exp Eye Res. 1987; 44(4): 537-551.
|
| [65] |
Solomon AS. Congenital glaucoma in rabbits. Invest Ophthalmol Vis Sci. 1995; 36: 968.
|
| [66] |
Ueno A, Tawara A, Kubota T, et al. Histopathological changes in iridocorneal angle of inherited glaucoma in rabbits. Graefes Arch Clin Exp Ophthalmol. 1999; 237(8): 654-660.
|
| [67] |
Knepper PA, McLone DG, Goossens W, vanden Hoek T, Higbee RG. Ultrastructural alterations in the aqueous outflow pathway of adult buphthalmic rabbits. Exp Eye Res. 1991; 52(5): 525-533.
|
| [68] |
Sun W, Shen JH, Shetlar DJ, Joos KM. Endoscopic goniotomy with the free electron laser in congenital glaucoma rabbits. J Glaucoma. 2000; 9(4): 325-333.
|
| [69] |
Bastia E, Toris CB, Brambilla S, et al. NCX 667, a novel nitric oxide donor, lowers intraocular pressure in rabbits, dogs, and non-human primates and enhances TGFβ2- induced outflow in HTM/HSC constructs. Invest Ophthalmol Vis Sci. 2021; 62(3): 17.
|
| [70] |
Schmitt HM, Grosser JA, Schlamp CL, Nickells RW. Targeting HDAC3 in the DBA/2J spontaneous mouse model of glaucoma. Exp Eye Res. 2020; 200: 108244.
|
| [71] |
Stanescu-Segall D, Birke K, Wenzel A, et al. PAX6 expression and retinal cell death in a transgenic mouse model for acute angle-closure glaucoma. J Glaucoma. 2015; 24(6): 426-432.
|
| [72] |
Nakamura-Yanagidaira T, Takahashi Y, Sano K, Murata T, Hayashi T. Development of spontaneous neuropathy in NF-κBp50-deficient mice by calcineurin-signal involving impaired NF-κB activation. Mol Vis. 2011; 17: 2157-2170.
|
| [73] |
Bejjani BA, Lewis RA, Tomey KF, et al. Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am J Hum Genet. 1998; 62(2): 325-333.
|
| [74] |
Nishida S, Uchida H, Takeuchi M, Sui GQ, Mizutani S, Iwaki M. Scanning electron microscope study of the rabbit anterior chamber angle. Med Mol Morphol. 2005; 38(1): 54-62.
|
| [75] |
Pang Y. Morphology study on uveoscleral pathway post-trabeculectomy with sclera concave Pool in rabbit. MA Dissertation. University of Nan Chang. 2011.
|
| [76] |
Zhao J, Zhu T, Chen W, et al. Optic neuropathy and increased retinal glial fibrillary acidic protein due to microbead-induced ocular hypertension in the rabbit. Int J Ophthalmol-Chi. 2016; 9(12): 1732-1739.
|
| [77] |
Nakamura Shibasaki M, Ko JA, Takenaka J, et al. Matrix metalloproteinase and cytokine expression in tenon fibroblasts during scar formation after glaucoma filtration or implant surgery in rats. Cell Biochem Funct. 2013; 31(6): 482-488.
|
| [78] |
Wong NK, Yip SP, Huang C. Establishing functional retina in a dish: Progress and promises of induced pluripotent stem cell-based retinal neuron differentiation. Int J Mol Sci. 2023; 24(17): 13652.
|
| [79] |
Artero-Castro A, Rodriguez-Jimenez FJ, Jendelova P, VanderWall KB, Meyer JS, Erceg S. Glaucoma as a neurodegenerative disease caused by intrinsic vulnerability factors. Prog Neurobiol. 2020; 193: 101817.
|
| [80] |
Clevers H. Modeling development and disease with organoids. Cell. 2016; 165(7): 1586-1597.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.