Refining the adriamycin-induced focal segmental glomerulosclerosis mouse model to improve reproducibility and animal welfare

Haochen Jiang , Salma Althobaiti , Braeden Pinkerton , Xin Fu , Zhenshan Jia , Kirk W. Foster , Geoffrey M. Thiele , Troy J. Plumb , Dong Wang

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (5) : 854 -863.

PDF
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (5) : 854 -863. DOI: 10.1002/ame2.12564
ORIGINAL ARTICLE

Refining the adriamycin-induced focal segmental glomerulosclerosis mouse model to improve reproducibility and animal welfare

Author information +
History +
PDF

Abstract

Background: Reliable animal models are crucial to drug development for focal segmental glomerulosclerosis (FSGS), a rare kidney disease. Variability in success rates in literature and significant ethical concerns with animal welfare necessitate further optimization of adriamycin (ADR)–induced FSGS model developed on BALB/c mice.

Methods: High-performance liquid chromatography (HPLC) was used to assess ADR stability in water and upon light exposure. To identify the optimal ADR level, single intravenous ADR injections with dosing levels from 10 to 17 mg/kg body weight were administered to BALB/c mice to induce FSGS-like pathology. Body weight and proteinuria of FSGS mice were monitored and analyzed for FSGS model–associated morbidity. Animals were euthanized for hematological and kidney histological assessments 8 weeks post induction. To identify the suitable experiment time frame of the ADR-induced FSGS mouse model, a longitudinal study was performed, with an 11-week continuous monitoring of the symptoms.

Results: ADR was found to be unstable in aqueous media and light sensitive. A dosing level of 10.5 mg/kg of ADR was optimal for consistent FSGS mouse model induction on BALB/c strain, characterized by minimal mortality and sustained FSGS-like symptoms. Findings from the longitudinal study suggest that 6 weeks post ADR induction may represent the peak of FSGS pathology severity in this mouse model. This time frame may be used for FSGS drug development projects.

Conclusion: Based on the outcome from this study, we identified the optimal ADR dosing level and model testing duration. A standard operating procedure (SOP) for the ADR-induced FSGS mouse model was established to facilitate FSGS basic research and drug development.

Keywords

adriamycin (ADR) / focal segmental glomerulosclerosis (FSGS) / instability / kidney / standard operating procedure (SOP)

Cite this article

Download citation ▾
Haochen Jiang, Salma Althobaiti, Braeden Pinkerton, Xin Fu, Zhenshan Jia, Kirk W. Foster, Geoffrey M. Thiele, Troy J. Plumb, Dong Wang. Refining the adriamycin-induced focal segmental glomerulosclerosis mouse model to improve reproducibility and animal welfare. Animal Models and Experimental Medicine, 2025, 8(5): 854-863 DOI:10.1002/ame2.12564

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gauckler P, Zitt E, Regele H, et al. Diagnosis and treatment of focal-segmental glomerulosclerosis - 2023. Wien Klin Wochenschr. 2023; 135(Suppl 5): 638-647. Diagnostik und Therapie der Fokal-Segmentalen Glomerulosklerose - 2023.

[2]

Tedesco M, Delbarba E, Izzi C, Scolari F, Alberici F. The complex etiopathogenesis of focal segmental glomerulosclerosis. G Ital Nefrol. 2020; 37(4): 2020-vol4.

[3]

Pofi R, Caratti G, Ray DW, Tomlinson JW. Treating the side effects of exogenous glucocorticoids; can we separate the good from the bad? Endocr Rev. 2023; 44(6): 975-1011.

[4]

Troost JP, Trachtman H, Spino C, et al. Proteinuria reduction and kidney survival in focal segmental glomerulosclerosis. Am J Kidney Dis. 2021; 77(2): 216-225.

[5]

Hodson EM, Sinha A, Cooper TE. Interventions for focal segmental glomerulosclerosis in adults. Cochrane Database Syst Rev. 2022; 2(2): CD003233.

[6]

Hansrivijit P, Cheungpasitporn W, Thongprayoon C, Ghahramani N. Rituximab therapy for focal segmental glomerulosclerosis and minimal change disease in adults: a systematic review and meta-analysis. BMC Nephrol. 2020; 21(1): 134.

[7]

Bertaina A, Grimm PC, Weinberg K. Sequential stem cell-kidney transplantation in Schimke immuno-osseous dysplasia. Reply. N Engl J Med. 2022; 387(9): 860.

[8]

Morris AD, Floyd L, Woywodt A, Dhaygude A. Rituximab in the treatment of primary FSGS: time for its use in routine clinical practice? Clin Kidney J. 2023; 16(8): 1199-1205.

[9]

Yang JW, Dettmar AK, Kronbichler A, et al. Recent advances of animal model of focal segmental glomerulosclerosis. Clin Exp Nephrol. 2018; 22(4): 752-763.

[10]

Deen WM, Maddox DA, Robertson CR, Brenner BM. Dynamics of glomerular ultrafiltration in the rat. VII. Response to reduced renal mass. Am J Phys. 1974; 227(3): 556-562.

[11]

Chen A, Feng Y, Lai H, et al. Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J Clin Invest. 2020; 130(10): 5523-5535.

[12]

Chen B, Alam Z, Ge Y, Dworkin L, Gong R. Pharmacological melanocortin 5 receptor activation attenuates glomerular injury and proteinuria in rats with puromycin aminonucleoside nephrosis. Front Physiol. 2022; 13: 887641.

[13]

Hayes K, Warner E, Bollinger C, Wright D, Fitch RM. Repository corticotropin injection versus corticosteroids for protection against renal damage in a focal segmental glomerulosclerosis rodent model. BMC Nephrol. 2020; 21(1): 226.

[14]

Mohebbati R, Paseban M, Soukhtanloo M, et al. Effects of standardized Zataria multiflora extract and its major ingredient, carvacrol, on adriamycin-induced hepatotoxicity in rat. Biom J. 2018; 41(6): 340-347.

[15]

Mohebbati R, Jalili-Nik M, Saghi H, Sadatfaraji H, Soukhtanloo M. Zataria multiflora and its main ingredient, carvacrol, affect on the renal function, histopathological, biochemical and antioxidant parameters in adriamycin-induced nephrotic rats. Arch Physiol Biochem. 2021; 127(5): 453-461.

[16]

Ebefors K, Wiener RJ, Yu L, et al. Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int. 2019; 96(4): 957-970.

[17]

Vielhauer V, Berning E, Eis V, et al. CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int. 2004; 66(6): 2264-2278.

[18]

Chen A, Sheu LF, Ho YS, et al. Experimental focal segmental glomerulosclerosis in mice. Nephron. 1998; 78(4): 440-452.

[19]

Wang Y, Wang YP, Tay YC, Harris DC. Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events. Kidney Int. 2000; 58(4): 1797-1804.

[20]

Chen A, Wei CH, Sheu LF, Ding SL, Lee WH. Induction of proteinuria by adriamycin or bovine serum albumin in the mouse. Nephron. 1995; 69(3): 293-300.

[21]

Li L, Zhang T, Diao W, et al. Role of myeloid-derived suppressor cells in glucocorticoid-mediated amelioration of FSGS. J Am Soc Nephrol. 2015; 26(9): 2183-2197.

[22]

Liu G, Shi Y, Peng X, Liu H, Peng Y, He L. Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology. 2015; 95(3-4): 193-200.

[23]

Lui SL, Tsang R, Chan KW, et al. Rapamycin attenuates the severity of murine adriamycin nephropathy. Am J Nephrol. 2009; 29(4): 342-352.

[24]

Wang YM, Wang Y, Harris DCH, Alexander SI, Lee VWS. Adriamycin nephropathy in BALB/c mice. Curr Protoc Immunol. 2015; 108: 15.28.1-15.28.6.

[25]

Shabaka A, Tato Ribera A, Fernandez-Juarez G. Focal segmental glomerulosclerosis: state-of-the-art and clinical perspective. Nephron. 2020; 144(9): 413-427.

[26]

Zhang J, Pippin JW, Krofft RD, Naito S, Liu ZH, Shankland SJ. Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Renal Physiol. 2013; 304(11): F1375-F1389.

[27]

Zhuang Q, Li F, Liu J, et al. Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in adriamycin-induced focal segmental glomerulosclerosis. Lab Investig. 2021; 101(2): 258-270.

[28]

Yao H-C, Xu E-J, Zeng W-Y, Zeng X-Y, Zhang M, Chen J. Determination of doxorubicin in pharmaceutical preparation and rat plasma with luminol-K3Fe(CN)6 chemiluminescence system. J Food Drug Anal. 2013; 21(3): 279-285.

[29]

Harahap Y, Ardiningsih P, Corintias Winarti A, Purwanto DJ. Analysis of the doxorubicin and doxorubicinol in the plasma of breast cancer patients for monitoring the toxicity of doxorubicin. Drug Des Devel Ther. 2020; 14: 3469-3475.

[30]

Kant S, Kronbichler A, Sharma P, Geetha D. Advances in understanding of pathogenesis and treatment of immune-mediated kidney disease: a review. Am J Kidney Dis. 2022; 79(4): 582-600.

[31]

Zhong J, Whitman JB, Yang HC, Fogo AB. Mechanisms of scarring in focal segmental glomerulosclerosis. J Histochem Cytochem. 2019; 67(9): 623-632.

[32]

Barutta F, Bellini S, Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond). 2022; 136(7): 493-520.

[33]

Burke GW, Mitrofanova A, Fontanella A, et al. The podocyte: glomerular sentinel at the crossroads of innate and adaptive immunity. Front Immunol. 2023; 14: 1201619.

[34]

Deegens JK, Dijkman HB, Borm GF, et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 2008; 74(12): 1568-1576.

[35]

Shaldoum F, El-Kott AF, Ouda MMA, Abd-Ella EM. Immunomodulatory effects of bee pollen on doxorubicin-induced bone marrow/spleen immunosuppression in rat. J Food Biochem. 2021; 45(6): e13747.

[36]

Gades NM, Murray N. Use of a body condition score technique to assess health status in a rat model of polycystic kidney disease. J Am Assoc Lab Anim Sci. 2010; 49(3): 269.

[37]

Kaushik D, Bansal G. Four new degradation products of doxorubicin: an application of forced degradation study and hyphenated chromatographic techniques. J Pharm Anal. 2015; 5(5): 285-295.

[38]

Ramu A, Mehta MM, Leaseburg T, Aleksic A. The enhancement of riboflavin-mediated photo-oxidation of doxorubicin by histidine and urocanic acid. Cancer Chemother Pharmacol. 2001; 47(4): 338-346.

[39]

Law SL, Chiang CH, Lin FM, Teh GW. Effect of stabilization temperature on the degradation of adriamycin in albumin microspheres. Biomater Artif Cell Immobil Biotechnol. 1991; 19(3): 613-629.

[40]

Yamada Y. Dimerization of doxorubicin causes its precipitation. ACS Omega. 2020; 5(51): 33235-33241.

[41]

Zhu Y, Liu M, Xun W, Li K, Niu X. P2X7R antagonist protects against renal injury in mice with adriamycin nephropathy. Exp Ther Med. 2022; 23(2): 161.

[42]

Qi H, Fu J, Luan J, et al. miR-150 inhibitor ameliorates adriamycin-induced focal segmental glomerulosclerosis. Biochem Biophys Res Commun. 2020; 522(3): 618-625.

[43]

Sun YB, Qu X, Zhang X, Caruana G, Bertram JF, Li J. Glomerular endothelial cell injury and damage precedes that of podocytes in adriamycin-induced nephropathy. PLoS One. 2013; 8(1): e55027.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/