Bird's eye view of natural products for the development of new anti-HIV agents: Understanding from a therapeutic viewpoint

Al Amin , Mohamed H. Nafady , Mehrukh Zehravi , Sherouk Hussein Sweilam , Kusuma Praveen Kumar , M. Akiful Haque , Aziz Unnisa , Laliteshwar Pratap Singh , Mohammed Sayeed , Mohammed Ali Alshehri , Irfan Ahmad , Talha Bin Emran , Zia Uddin

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (3) : 441 -457.

PDF
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (3) : 441 -457. DOI: 10.1002/ame2.12563
REVIEW

Bird's eye view of natural products for the development of new anti-HIV agents: Understanding from a therapeutic viewpoint

Author information +
History +
PDF

Abstract

Acquired immune deficiency syndrome (AIDS) is the name used to describe several potentially life-threatening infections and disorders that happen when HIV has severely compromised the immune system. The primary effect of HIV is to decrease host immunity, exposing the host to external pathogens. The development of pharmaceutical drugs that directly cure the infection is crucial because of the current wide-ranging epidemic of HIV. Most therapeutic anti-HIV drugs are nucleosides. However, their high toxicity and potential for drug resistance restrict their use. Many of the most effective clinical drugs used to inhibit HIV, the activation of latent HIV, and AIDS have been obtained from natural sources. This review focuses on potential natural medicinal products for treating and managing HIV and AIDS. Notwithstanding, further clinical research studies are needed to understand the subject and its dynamics.

Keywords

AIDS / anti-HIV agents / HIV / immune system / marine compounds / natural products / phytoconstituents

Cite this article

Download citation ▾
Al Amin, Mohamed H. Nafady, Mehrukh Zehravi, Sherouk Hussein Sweilam, Kusuma Praveen Kumar, M. Akiful Haque, Aziz Unnisa, Laliteshwar Pratap Singh, Mohammed Sayeed, Mohammed Ali Alshehri, Irfan Ahmad, Talha Bin Emran, Zia Uddin. Bird's eye view of natural products for the development of new anti-HIV agents: Understanding from a therapeutic viewpoint. Animal Models and Experimental Medicine, 2025, 8(3): 441-457 DOI:10.1002/ame2.12563

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

(UNAIDS) JUNP on H. Global HIV & AIDS statistics-2020 fact sheet. www.unaids.org/en/resources/fact-sheet. Published online 2020. Accessed September 7, 2023.

[2]

Laila U, Akram M, Ali Shariati M, et al. Role of medicinal plants in HIV/AIDS therapy. Clin Exp Pharmacol Physiol. 2019; 46(12): 1063-1073.

[3]

Rahman M, Islam F, Saidur Rahaman M, Sultana NA, Fahim NF, Ahmed M. Studies on the prevalence of HIV/AIDS in Bangladesh including other developing countries. Adv Tradit Med. 2021; 1-12.

[4]

Fogacci F, Borghi C, Grassi D, Cicero AFG. People living with human immunodeficiency virus: cardiovascular risk screening for an early and effective risk management. Atherosclerosis. 2022; 353: 28-29.

[5]

Ozioma EOJ, Chinwe OAN. Herbal medicines in African traditional medicine. Herb Med. 2019; 10: 191-214.

[6]

Lindegaard B, Hvid T, Mygind HW, et al. Low expression of IL-18 and IL-18 receptor in human skeletal muscle is associated with systemic and intramuscular lipid metabolism—role of HIV lipodystrophy. PLoS One. 2018; 13(1): e0186755.

[7]

Chinsembu KC, Hijarunguru A, Mbangu A. Ethnomedicinal plants used by traditional healers in the management of HIV/AIDS opportunistic diseases in Rundu, Kavango East region, Namibia. S Afr J Bot. 2015; 100: 33-42.

[8]

Mannes ZL, Burrell LE, Ferguson EG, et al. The association of therapeutic versus recreational marijuana use and antiretroviral adherence among adults living with HIV in Florida. Patient Prefer Adherence. 2018; 12: 1363.

[9]

Hodgson TA, Rachanis CC. Oral fungal and bacterial infections in HIV-infected individuals: an overview in Africa. Oral Dis. 2002; 8(Suppl. 2): 80-87.

[10]

Dhalla S, Chan KJ, Montaner JSG, Hogg RS. Complementary and alternative medicine use in British Columbia—a survey of HIV positive people on antiretroviral therapy. Complement Ther Clin Pract. 2006; 12(4): 242-248.

[11]

Kayombo EJ, Uiso FC, Mbwambo ZH, Mahunnah RL, Moshi MJ, Mgonda YH. Experience of initiating collaboration of traditional healers in managing HIV and AIDS in Tanzania. J Ethnobiol Ethnomed. 2007; 3: 3.

[12]

Yang L, Wang Z. Natural products, alone or in combination with FDA-approved drugs, to treat COVID-19 and lung cancer. Biomedicine. 2021; 9(6): 689.

[13]

Klos M, van de Venter M, Milne PJ, Traore HN, Meyer D, Oosthuizen V. In vitro anti-HIV activity of five selected South African medicinal plant extracts. J Ethnopharmacol. 2009; 124(2): 182-188.

[14]

World Health Organization. Report on the Global AIDS Epidemic-Joint United Nations Programme on HIV/AIDS. World Health Organization-Google Books; 2008.

[15]

Cohen J. The many states of HIV in America. Science. 2012; 337(6091): 168-171.

[16]

Azu OO, Naidu ECS. Vitamin E and testicular damage protection in highly active antiretroviral therapy. HIV/AIDS Oxidative Stress Diet Antioxidants. 2018; 219-238.

[17]

Zhou Y, Hemmige V, Dalai SC, Hong DK, Muldrew K, Al MM. Utility of whole-genome next-generation sequencing of plasma in identifying opportunistic infections in HIV/AIDS. Open AIDS J. 2019; 13(1): 7-11.

[18]

Saxena SK, Tiwari S, Nair MPN. A global perspective on HIV/AIDS. Science. 2012; 337(6096): 798.

[19]

Traeger MW, Cornelisse VJ, Asselin J, et al. Association of HIV preexposure prophylaxis with incidence of sexually transmitted infections among individuals at high risk of HIV infection. JAMA. 2019; 321(14): 1380-1390.

[20]

Chinsembu KC, Hedimbi M. Ethnomedicinal plants and other natural products with anti-HIV active compounds and their putative modes of action. Int J Biotechnol Mol Biol Res. 2010; 1(6): 74-91.

[21]

Kurapati KRV, Atluri VS, Samikkannu T, Garcia G, Nair MP. Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): a brief overview. Front Microbiol. 2016; 6: 1444.

[22]

Buchacz K, Armon C, Palella FJ, et al. The HIV outpatient study—25 years of HIV patient care and epidemiologic research. Open Forum Infect Dis. 2020; 7(5): ofaa123.

[23]

Cunningham AL, Li S, Juarez J, Lynch G, Alali M, Naif H. The level of HIV infection of macrophages is determined by interaction of viral and host cell genotypes. J Leukoc Biol. 2000; 68: 311-317.

[24]

Moir S, Chun TW, Fauci AS. Pathogenic mechanisms of HIV disease. Annu Rev Pathol. 2011; 6: 223-248.

[25]

El Atrouni W, Berbari E, Temesgen Z. HIV-associated opportunistic infections. Bacterial infections. J Med Liban. 2006; 54(2): 80-83.

[26]

Chun TW, Fauci AS. HIV reservoirs: pathogenesis and obstacles to viral eradication and cure. AIDS. 2012; 26(10): 1261-1268.

[27]

Orhan DD, Özçelik B, Özgen S, Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol Res. 2010; 165(6): 496-504.

[28]

Ohtake N, Nakai Y, Yamamoto M, et al. Separation and isolation methods for analysis of the active principles of Sho-saiko-to (SST) oriental medicine. J Chromatogr B. 2004; 812(1-2): 135-148.

[29]

Mitra S, Lami MS, Uddin TM, et al. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed Pharmacother. 2022; 150: 112932.

[30]

Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules. 2020; 25(9): 2070.

[31]

Lee J, Lee DG, Rodriguez JP, et al. Determination of flavonoids in Acer okamotoanum and their aldose reductase inhibitory activities. Hortic Environ Biotechnol. 2018; 59(1): 131-137.

[32]

Lin YM, Anderson H, Flavin MT, et al. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod. 1997; 60(9): 884-888.

[33]

Islam F, Khadija JF, Harun-Or-Rashid M, et al. Bioactive compounds and their derivatives: an insight into prospective phytotherapeutic approach against Alzheimer's disease. Oxidative Med Cell Longev. 2022; 2022: 5100904.

[34]

Hu K, Kobayashi H, Dong A, Iwasaki S, Yao X. Antifungal, antimitotic and anti-HIV-1 agents from the roots of Wikstroemia indica. Planta Med. 2000; 66(6): 564-567.

[35]

Wang Q, Ding ZH, Liu JK, Zheng YT. Xanthohumol, a novel anti-HIV-1 agent purified from hops Humulus lupulus. Antivir Res. 2004; 64(3): 189-194.

[36]

Dharmaratne HRW, Tan GT, Marasinghe GPK, Pezzuto JM. Inhibition of HIV-1 reverse transcriptase and HIV-1 replication by Calophyllum coumarins and xanthones. Planta Med. 2002; 68(1): 86-87.

[37]

Vlietinck AJ, De Bruyne T, Apers S, Pieters LA. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med. 1998; 64(2): 97-109.

[38]

Lee TTY, Kashiwada Y, Huang L, Snider J, Cosentino M, Lee KH. Suksdorfin: an anti-HIV principle from Lomatium suksdorfii, its structure-activity correlation with related coumarins, and synergistic effects with anti-AIDS nucleosides. Bioorg Med Chem. 1994; 2(10): 1051-1056.

[39]

Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee K-H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med Res Rev. 2003; 23(3): 322-345.

[40]

Zhou P, Takaishi Y, Duan H, et al. Coumarins and bicoumarin from ferula sumbul: anti-HIV activity and inhibition of cytokine release. Phytochemistry. 2000; 53(6): 689-697.

[41]

Loya S, Rudi A, Kashman Y, Hizi A. Polycitone a, a novel and potent general inhibitor of retroviral reverse transcriptases and cellular DNA polymerases. Biochem J. 1999; 344(1): 85-92.

[42]

Islam F, Bibi S, Meem AFK, et al. Natural bioactive Molecules: an alternative approach to the treatment and control of COVID-19. Int J Mol Sci. 2021; 22(23): 12638.

[43]

McCormick JL, McKee TC, Cardellina JH, Boyd MR. HIV inhibitory natural products. 26.1 Quinoline alkaloids from Euodia roxburghiana. J Nat Prod. 1996; 59(5): 469-471.

[44]

Tan GT, Pezzuto JM, Kinghorn AD, Hughes SH. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. J Nat Prod. 1991; 54(1): 143-154.

[45]

Beutler JA, Cardellina JH, McMahon JB, Boyd MR, Cragg GM. Anti-HIV and cytotoxic alkaloids from Buchenavia capitata. J Nat Prod. 1992; 55(2): 207-213.

[46]

Ishida J, Wang HK, Oyama M, Cosentino ML, Hu CQ, Lee KH. Anti-AIDS agents. 46.1 Anti-HIV activity of harman, an anti-HIV principle from Symplocos setchuensis, and its derivatives. J Nat Prod. 2001; 64(7): 958-960.

[47]

Xu HX, Wan M, Dong H, But PPH, Foo LY. Inhibitory activity of flavonoids and tannins against HIV-1 protease. Biol Pharm Bull. 2000; 23(9): 1072-1076.

[48]

Duan H, Takaishi Y, Imakura Y, et al. Sesquiterpene alkaloids from Tripterygium hypoglaucum and Tripterygium wilfordii: a new class of potent anti-HIV agents. J Nat Prod. 2000; 63(3): 357-361.

[49]

Min BS, Jung HJ, Lee JS, et al. Inhibitory effect of triterpenes from Crataegus pinatifida on HIV-I protease. Planta Med. 1999; 65(4): 374-375.

[50]

Islam F, Fahim NF, Trina TA, Mishu IJ. Evaluation of antioxidant, antimicrobial and thrombolytic activity of Eleocharis dulcis (Cyperaceae) fruits of methanol extract. Evaluation. 2019; 2: 39-49.

[51]

Kashiwada Y, Wang HK, Nagao T, et al. Anti-AIDS agents, 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod. 1998; 61(9): 1090-1095.

[52]

Xu HX, Zeng FQ, Wan M, Sim KY. Anti-HIV triterpene acids from Geum japonicum. J Nat Prod. 1996; 59(7): 643-645.

[53]

Luo D, Xiong S, Li QG, et al. Terpenoids from the stems of Celastrus hindsii and their anti-RSV activities. Fitoterapia. 2018; 130: 118-124.

[54]

Rukachaisirikul V, Pailee P, Hiranrat A, et al. Anti-HIV-1 protostane triterpenes and digeranylbenzophenone from trunk bark and stems of Garcinia speciosa. Planta Med. 2003; 69(12): 1141-1146.

[55]

Li HY, Sun NJ, Kashiwada Y, et al. Anti-aids agents, 9. Suberosol, a new C31 lanostane-type triterpene and anti-HIV principle from Polyalthia suberosa. J Nat Prod. 1993; 56(7): 1130-1133.

[56]

Singh VK, Chaurasia H, Mishra R, Srivastava R, Chaturvedi VK, Singh RK. Role of plant-based anti-HIV agents in HIV-associated neurocognitive disorders (Hand). Phytochemicals and Medicinal Plants in Food Design. Apple Academic Press; 2022: 25-44.

[57]

El-Mekkawy S, Meselhy MR, Nakamura N, Hattori M, Kawahata T, Otake T. Anti-HIV-1 phorbol esters from the seeds of Croton tiglium. Phytochemistry. 2000; 53(4): 457-464.

[58]

Sharma S. Common fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002; 127(3): 345-352.

[59]

Lim YA, Mei MC, Kusumoto IT, et al. HIV-1 reverse transcriptase inhibitory principles from Chamaesyce hyssopifolia. Phototherapy Res. 1997; 11(1): 22-27.

[60]

Zeng Y, Luo Y, Wang L, Zhang K, Peng J, Fan G. Therapeutic effect of curcumin on metabolic diseases: evidence from clinical studies. Int J Mol Sci. 2023; 24(4): 3323.

[61]

Chinsembu KC. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Rev Bras. 2019; 29: 504-528.

[62]

Kashiwada Y, Nishizawa M, Yamagishi T, et al. Anti-aids agents, 18. Sodium and potassium salts of caffeic acid tetramers from Arnebia euchroma as anti-HIV agents. J Nat Prod. 1995; 58(3): 392-400.

[63]

Wang Z, Wang N, Yang L, Song X. Bioactive natural products in COVID-19 therapy. Front Pharmacol. 2022; 13: 13.

[64]

Cui Q, Du R, Liu M, Rong L. Lignans and their derivatives from plants as antivirals. Molecules. 2020; 25: 183.

[65]

Liu J-S, Li L. Schisantherins P and Q, two lignans from Kadsura coccinea. Phytochemistry. 1995; 38(4): 1009-1011.

[66]

Rimando AM, Pezzuto JM, Farnsworth NR, Santisuk T, Reutrakul V, Kawanishi K. New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J Nat Prod. 1994; 57(7): 896-904.

[67]

Chen DF, Zhang SX, Xie L, et al. Anti-aids agents—XXVI. Structure-activity correlations of gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorg Med Chem. 1997; 5(8): 1715-1723.

[68]

Wu L, Bao JK. Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins. Glycoconj J. 2013; 30(3): 269-279.

[69]

Saïdi H, Nasreddine N, Jenabian MA, et al. Differential in vitro inhibitory activity against HIV-1 of alpha-(1-3)- and alpha-(1-6)-D-mannose specific plant lectins: implication for microbicide development. J Transl Med. 2007; 5: 28.

[70]

Boyd MR, Hallock YF, Cardellina JH, et al. Anti-HIV Michellamines from Ancistrocladus korupensis. J Med Chem. 1994; 37(12): 1740-1745.

[71]

Nokta M, Albrecht T, Pollard R. Papaverine hydrochloride: effects on HIV replication and T-lymphocyte cell function. Immunopharmacology. 1993; 26(2): 181-185.

[72]

Sabde S, Bodiwala HS, Karmase A, et al. Anti-HIV activity of Indian medicinal plants. J Nat Med. 2011; 65(3-4): 662-669.

[73]

Kashiwada Y, Nagao T, Hashimoto A, et al. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives. J Nat Prod. 2000; 63(12): 1619-1622.

[74]

Akah P, Njoku O, Nwanguma A, Akunyili D. Effects of aqueous leaf extract of vernonia amygdalina on blood glucose and triglyceride levels of alloxan-induced diabetic rats (Rattus rattus). Anim Res Int. 2004; 1(2): 90-94.

[75]

Bokesch HR, Pannell LK, Cochran PK, Sowder RC, McKee TC, Boyd MR. A novel anti-HIV macrocyclic peptide from Palicourea condensata. J Nat Prod. 2001; 64(2): 249-250.

[76]

Bessong PO, Obi CL, Andréola ML, et al. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J Ethnopharmacol. 2005; 99(1): 83-91.

[77]

Bruno M, Rosselli S, Pibiri I, Kilgore N, Lee KH. Anti-HIV agents derived from the ent-kaurane diterpenoid linearol. J Nat Prod. 2002; 65(11): 1594-1597.

[78]

Wang JN, Hou CY, Liu YL, Lin LZ, Gil RR, Cordell GA. Swertifrancheside, an HIV-reverse transcriptase inhibitor and the first flavone-xanthone dimer, from Swertia franchetiana. J Nat Prod. 1994; 57(2): 211-217.

[79]

Moore PS, Pizza C. Observations on the inhibition of HIV-1 reverse transcriptase by catechins. Biochem J. 1992; 288: 717-719.

[80]

Vermani K, Garg S. Herbal medicines for sexually transmitted diseases and AIDS. J Ethnopharmacol. 2002; 80(1): 49-66.

[81]

Wang H, Ng TB. Isolation and characterization of velutin, a novel low-molecular-weight ribosome-inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies. Life Sci. 2001; 68(18): 2151-2158.

[82]

Shawon J, Akter Z, Hossen MM, et al. Current landscape of natural products against coronaviruses: perspectives in COVID-19 treatment and anti-viral mechanism. Curr Pharm Des. 2020; 26(41): 5241-5260.

[83]

Vignesh M, Arivarasu L, Santhanam A. Effect of antivirals on viruses - a review. Ann Rom Soc Cell Biol. 2021; 25: 1208-1219.

[84]

Atroosh WM, Lau YL, Snounou G, Azzani M, Al-Mekhlafi HM. Plasmodium falciparum histidine rich protein 2 (pfhrp 2): an additional genetic marker suitable for anti-malarial drug efficacy trials. Malar J. 2022; 21(1): 2.

[85]

World Health Organization. International Statistical Classification of Diseases and Related Health Problems. World Health Organization; 2004.

[86]

Rukunga GM, Kofi-Tsekpo MW, Kurokawa M, et al. Evaluation of the HIV-1 reverse transcriptase inhibitory properties of extracts from some medicinal plants in Kenya. Afr J Health Sci. 2004; 9(1): 81-90.

[87]

Harikrishnan R, Balasundaram C. Potential of herbal extracts and bioactive compounds for human healthcare. The Role of Phytoconstitutents in Health Care. Apple Academic Press; 2020: 3-158.

[88]

Rotich W, Sadgrove NJ, Mas-Claret E, Padilla-González GF, Guantai A, Langat MK. HIV-1 reverse transcriptase inhibition by major compounds in a Kenyan multi-herbal composition (care Vid™): in vitro and in silico contrast. Pharmaceuticals. 2021; 14(10): 1009.

[89]

Zhang HJ, Tan GT, Hoang VD, et al. Natural anti-HIV agents. Part IV. Anti-HIV constituents from Vatica cinerea. J Nat Prod. 2003; 66(2): 263-268.

[90]

Priyadarshini K, Kulandhaivel M, Sankareswaran M, Anbalagan S. In-vitro screening of reverse transcriptase activityof selected Indian medicinal plants against human immunodeficiency virus type-1. Eur J Mol Clin Med. 2020; 7(11): 5168-5175.

[91]

Calabrese C, Berman SH, Babish JG, et al. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phyther Res. 2000; 14(5): 333-338.

[92]

Dalwadi DA, Ozuna L, Harvey BH, Viljoen M, Schetz JA. Adverse neuropsychiatric events and recreational use of efavirenz and other HIV-1 antiretroviral drugs. Pharmacol Rev. 2018; 70(3): 684-711.

[93]

Tamura S, Shiomi A, Kimura T, Murakami N. Halogenated analogs of 1′-acetoxychavicol acetate, rev-export inhibitor from Alpinia galanga, designed from mechanism of action. Bioorg Med Chem Lett. 2010; 20(7): 2082-2085.

[94]

Apaza Ticona L, Bermejo P, Guerra JA, et al. Ethanolic extract of Artemisia campestris subsp. glutinosa (Besser) Batt. inhibits HIV-1 replication in vitro through the activity of terpenes and flavonoids on viral entry and NF-κB pathway. J Ethnopharmacol. 2020; 263: 113163.

[95]

Sriraksa N, Kongsui R, Thongrong S, Surapinit S. Neuroprotective effect of Alpinia galanga against neurodegeneration in the rat hippocampus induced by kainic acid. Health Sci Sci Technol Rev. 2020; 13(1): 3-11.

[96]

Kumar A, Garg Y. In-vitro evaluation of antibacterial, antifungal and anti-HIV effects of Calophyllum inophyllum leaf extract. Biomed Pharmacol J. 2020; 13(4): 2003-2014.

[97]

Bodiwala HS, Sabde S, Mitra D, Bhutani KK, Singha IP. Anti-HIV diterpenes from Coleus forskohlii. Nat Prod Commun. 2009; 4(9): 1173-1175.

[98]

Ibegbu MD, Nnaemeka EJ, Ikele IT, Nwachukwu DC. Anti-hyperglycaemic and anti-hyperlipidemic effect of aqueous leaf extract of Vernonia amygdalina in Wistar rats. Afr J Pharm Pharmacol. 2018; 12(19): 231-239.

[99]

Olaru T, Fofana S, Ouédraogo M, et al. Systematic review of potential anticancerous activities of Erythrina senegalensis DC (Fabaceae). Plants. 2021; 11(1): 19.

[100]

Reutrakul V, Anantachoke N, Pohmakotr M, et al. Cytotoxic and anti-HIV-1 caged xanthones from the resin and fruits of Garcinia hanburyi. Planta Med. 2007; 73(1): 33-40.

[101]

Jan M, Upadhyay C, Pertejo JA, Hioe CE, Arora SK. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins. PLoS One. 2018; 13(3): e0194498.

[102]

Zhang HJ, Rumschlag-Booms E, Guan YF, et al. Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa. J Nat Prod. 2017; 80(6): 1798-1807.

[103]

Bajrai LH, El-Kafrawy SA, Hassan AM, et al. In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea. Sci Rep. 2022; 12(1): 21723.

[104]

Esposito F, Carli I, Del Vecchio C, et al. Sennoside a, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine. 2016; 23(12): 1383-1391.

[105]

Momoh MA, Muhamed U, Agboke AA, Akpabio E, Osonwa UE. Immunological effect of aqueous extract of Vernonia amygdalina and a known immune booster called immunace® and their admixtures on HIV/AIDS clients: a comparative study. Asian Pac J Trop Biomed. 2012; 2(3): 181-184.

[106]

Park IW, Han C, Song X, et al. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants. BMC Complement Altern Med. 2009; 9: 29.

[107]

Helfer M, Koppensteiner H, Schneider M, et al. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor. PLoS One. 2014; 9(1): e87487.

[108]

Kalvatchev Z, Walder R, Garzaro D. Anti-HIV activity of extracts from Calendula officinalis flowers. Biomed Pharmacother. 1997; 51(4): 176-180.

[109]

Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012; 2(4): a007161.

[110]

Gustafson KR, Fuller RW, Cardellina JH, et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem. 1992; 35(15): 2735-2743.

[111]

Akar Z, Karakurt A, Okumus F, et al. RP-HPLC-UV analysis of the phenolic compounds, antimicrobial activity against multi-drug resistant bacteria and antioxidant activity of fruit and seed of Diospyros lotus L. ctivity of fruit and seed of Diospyros lotus L. Int J Second Metab. 2020; 7(4): 237-246.

[112]

Gerenčer M, Turecek PL, Kistner O, Mitterer A, Savidis-Dacho H, Barrett NP. In vitro and in vivo anti-retroviral activity of the substance purified from the aqueous extract of Chelidonium majus L. Antivir Res. 2006; 72(2): 153-156.

[113]

Miraj S, Azizi N, Kiani S. A review of chemical components and pharmacological effects of Melissa officinalis L. Der Pharm Lett. 2016; 8(6): 229-237.

[114]

Wang J, Yang FZ, Zhao M, et al. Randomized double-blinded and controlled clinical trial on treatment of HIV/AIDS by Zhongyan-4. Chin J Integr Med. 2006; 12(1): 6-11.

[115]

Jaisi A, Prema , Madla S, Lee YE, Septama A, Morita H. Investigation of HIV-1 viral protein R inhibitory activities of twelve Thai medicinal plants and their commercially available major constituents. Chem Biodivers. 2021; 18(12): e2100540.

[116]

Palshetkar A, Pathare N, Jadhav N, et al. In vitro anti-hiv activity of some indian medicinal plant extracts. BMC Complement Med Ther. 2020; 20(1): 1-11.

[117]

Kumar KK, Chandra LP, Sumanthi J, Reddy SG, Shekar CP, Reddy BV. Biological role of lectins: a review. J Orofac Sci. 2012; 4(1): 20.

[118]

Lu W, Tirumuru N, St Gelais C, et al. N6-Methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J Biol Chem. 2018; 293(34): 12992-13005.

[119]

Sato T, Hori K. Cloning, expression, and characterization of a novel anti-HIV lectin from the cultured cyanobacterium, Oscillatoria agardhii. Fish Sci. 2009; 75(3): 743-753.

[120]

Akkouh O, Ng TB, Singh SS, et al. Lectins with anti-HIV activity: a review. Molecules. 2015; 20(1): 648-668.

[121]

Gogineni V, Schinazi RF, Hamann MT. Role of marine natural products in the genesis of antiviral agents. Chem Rev. 2015; 115(18): 9655-9706.

[122]

Hirayama M, Shibata H, Imamura K, Sakaguchi T, Hori K. High-mannose specific lectin and its recombinants from a Carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp 120. Mar Biotechnol. 2016; 18(1): 144-160.

[123]

Wittine K, Saftić L, Peršurić Ž, Kraljević Pavelić S. Novel antiretroviral structures from marine organisms. Molecules. 2019; 24(19): 3486.

[124]

Targett NM, Arnold TM. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol. 1998; 34(2): 195-205.

[125]

Shibata T, Kawaguchi S, Hama Y, Inagaki M, Yamaguchi K, Nakamura T. Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol. 2004; 16(4): 291-296.

[126]

Ahn GN, Kim KN, Cha SH, et al. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur Food Res Technol. 2007; 226(1-2): 71-79.

[127]

Pal Singh I, Bharate SB. Phloroglucinol compounds of natural origin: synthetic aspects. Nat Prod Rep. 2006; 23(4): 558-591.

[128]

Glombitza KW, Li SM. Hydroxyphlorethols from the brown alga Carpophyllum maschalocarpum. Phytochemistry. 1991; 30(8): 2741-2745.

[129]

La Barre S, Potin P, Leblanc C, Delage L. The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Mar Drugs. 2010; 8: 988-1010.

[130]

Tamayose CI, Torres PB, Roque N, Ferreira MJP. HIV-1 reverse transcriptase inhibitory activity of flavones and chlorogenic acid derivatives from Moquiniastrum floribundum (Asteraceae). S Afr J Bot. 2019; 123: 142-146.

[131]

Akter A, Islam F, Bepary S, et al. CNS depressant activities of Averrhoa carambola leaves extract in thiopental-sodium model of Swiss albino mice: implication for neuro-modulatory properties. Biologia. 2022; 77(5): 1337-1346.

[132]

Petrou A, Eleftheriou P, Geronikaki A, Akrivou MG, Vizirianakis I. Novel thiazolidin-4-ones as potential non-nucleoside inhibitors of HIV-1 reverse transcriptase. Molecules. 2019; 24(21): 3821.

[133]

Ravichandran V, Shalini S, Kumar KS, Rajak H, Agrawal RK. Design, synthesis and evaluation of thiourea derivatives as antimicrobial and antiviral agents. Lett Drug Des Discov. 2019; 16(6): 618-624.

[134]

Subramaniam D, Hanna LE, Maheshkumar K, Ponmurugan K, Al-Dhabi NA, Murugan P. Immune stimulatory and anti-HIV-1 potential of extracts derived from marine brown algae Padina tetrastromatica. J Complement Integr Med. 2020; 17(2): 1-15.

[135]

Artan M, Li Y, Karadeniz F, Lee SH, Kim MM, Kim SK. Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorg Med Chem. 2008; 16(17): 7921-7926.

[136]

Vo TS, Kim SK. Potential anti-HIV agents from marine resources: an overview. Mar Drugs. 2010; 8(12): 2871-2892.

[137]

Ngo DN, Kim MM, Kim SK. Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym. 2008; 74(2): 228-234.

[138]

Shahidi F, Arachchi JKV, Jeon YJ. Food applications of chitin and chitosans. Trends Food Sci Technol. 1999; 10(2): 37-51.

[139]

Kim SK, Ngo DN, Rajapakse N. Therapeutic prospectives of chitin, chitosan and their derivatives. J Chitin Chitosan. 2006; 11(1): 1-10.

[140]

Jayakumar R, Nwe N, Nagagama H, Furuike T, Tamura H. Synthesis, characterization and biospecific degradation behavior of sulfated chitin. Macromol Symp. 2008; 264(1): 163-167.

[141]

Suwan J, Zhang Z, Li B, et al. Sulfonation of papain-treated chitosan and its mechanism for anticoagulant activity. Carbohydr Res. 2009; 344(10): 1190-1196.

[142]

He Q, Ao Q, Wang A, Gong Y, Zhao N, Zhang X. In vitro cytotoxicity and protein drug release properties of chitosan/heparin microspheres. Tsinghua Sci Technol. 2007; 12(4): 361-365.

[143]

Thierry B, Merhi Y, Silver J, Tabrizian M. Biodegradable membrane-covered stent from chitosan-based polymers. J Biomed Mater Res A. 2005; 75(3): 556-566.

[144]

Prabaharan M, Reis RL, Mano JF. Carboxymethyl chitosan-graft-phosphatidylethanolamine: amphiphilic matrices for controlled drug delivery. React Funct Polym. 2007; 67(1): 43-52.

[145]

Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007; 40(3): 175-181.

[146]

Saiki I, Murata J, Nakajima M, Tokura S, Azuma I. Inhibition by sulfated chitin derivatives of invasion through extracellular matrix and enzymatic degradation by metastatic melanoma cells. Cancer Res. 1990; 50(12): 3631-3637.

[147]

Vasyukova NI, Chalenko GI, Gerasimova NG, et al. Chitin and chitosan derivatives as elicitors of potato resistance to late blight. Appl Biochem Microbiol. 2000; 36(4): 372-376.

[148]

Xing R, Liu S, Yu H, Zhang Q, Li Z, Li P. Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro. Carbohydr Res. 2004; 339(15): 2515-2519.

[149]

Sosa MAG, Fazely F, Koch JA, Vercellotti SV, Ruprecht RM. N-carboxymethylchitosan-N, O-sulfate as an anti-HIV-1 agent. Biochem Biophys Res Commun. 1991; 174(2): 489-496.

[150]

Nishimura SI, Kai H, Shinada K, et al. Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydr Res. 1998; 306(3): 427-433.

[151]

Lee DS, Kim YM, Lee MS, Ahn CB, Jung WK, Je JY. Synergistic effects between aminoethyl-chitosans and β-lactams against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Med Chem Lett. 2010; 20(3): 975-978.

[152]

Ariza-Sáenz M, Espina M, Calpena A, et al. Design, characterization, and biopharmaceutical behavior of nanoparticles loaded with an HIV-1 fusion inhibitor peptide. Mol Pharm. 2018; 15(11): 5005-5018.

[153]

Dou J, Tan C, Du Y, Bai X, Wang K, Ma X. Effects of chitooligosaccharides on rabbit neutrophils in vitro. Carbohydr Polym. 2007; 69(2): 209-213.

[154]

Jeon YJ, Kim SK. Continuous production of chitooligosaccharides using a dual reactor system. Process Biochem. 2000; 35(6): 623-632.

[155]

Jeon YJ, Kim SK. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr Polym. 2000; 41(2): 133-141.

[156]

Yang E-J, Kim J-G, Kim J-Y, Kim SC, Lee NH, Hyun C-G. Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Cent Eur J Biol. 2010; 5(1): 95-102.

[157]

Chae SY, Jang MK, Nah JW. Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release. 2005; 102(2): 383-394.

[158]

Hong SP, Kim MH, Oh SW, Han CK, Kim YH. ACE inhibitory and antihypertensive effect of chitosan oligosaccharides in SHR. Korean J Food Sci Technol. 1998; 30(6): 1476-1479.

[159]

Park PJ, Je JY, Kim SK. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J Agric Food Chem. 2003; 51(16): 4624-4627.

[160]

Park PJ, Lee HK, Kim SK. Preparation of hetero-chitooligosaccharides and their antimicrobial activity on Vibrio parahaemolyticus. J Microbiol Biotechnol. 2004; 14(1): 41-47.

[161]

Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol. 2009; 47(8): 1864-1871.

[162]

Jeon YJ, Kim SK. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol. 2002; 12(3): 503-507.

[163]

Jeon YJ, Kim SK. Potential immuno-stimulating effect of antitumoral fraction of chitosan oligosaccharides. J Chitin Chitosan. 2001; 6(4): 163-167.

[164]

Liu B, Liu WS, Han BQ, Sun YY. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol. 2007; 13(5): 725.

[165]

Kim KN, Joo ES, Kim KI, Kim SK, Yang HP, Jeon YJ. Effect of chitosan oligosaccharides on cholesterol level and antioxidant enzyme activities in hypercholesterolemic rat. J Korean Soc Food Sci Nutr. 2005; 34(1): 36-41.

[166]

Miura T, Usami M, Tsuura Y, Ishida H, Seino Y. Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice. Biol Pharm Bull. 1995; 18(11): 1623-1625.

[167]

Yoon NY, Ngo DN, Kim SK. Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydr Polym. 2009; 78(4): 869-872.

[168]

Park PJ, Je JY, Jung WK, Ahn CB, Kim SK. Anticoagulant activity of heterochitosans and their oligosaccharide sulfates. Eur Food Res Technol. 2004; 219(5): 529-533.

[169]

Cho EJ, Rahman MA, Kim SW, et al. Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol Biotechnol. 2008; 18(1): 80-87.

[170]

Artan M, Karadeniz F, Karagozlu MZ, Kim MM, Kim SK. Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr Res. 2010; 345(5): 656-662.

[171]

Karagozlu MZ, Karadeniz F, Kim SK. Anti-HIV activities of novel synthetic peptide conjugated chitosan oligomers. Int J Biol Macromol. 2014; 66: 260-266.

[172]

Chopra H, Bibi S, Islam F, et al. Emerging trends in the delivery of resveratrol by nanostructures: applications of nanotechnology in life sciences. J Nanomater. 2022; 2022: 3083728.

[173]

Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. Evaluation of chitosan nanoformulations as potent anti-HIV therapeutic systems. Biochim Biophys Acta. 2014; 1840(1): 476-484.

[174]

Chopra H, Bibi S, Mishra AK, et al. Nanomaterials: a promising therapeutic approach for cardiovascular diseases. J Nanomater. 2022; 2022: 4155729.

[175]

Frati P, Kyriakou C, Del Rio A, et al. Smart drugs and synthetic androgens for cognitive and physical enhancement: revolving doors of cosmetic neurology. Curr Neuropharmacol. 2015; 13(1): 5-11.

[176]

McKee TC, Covington CD, Fuller RW, et al. Pyranocoumarins from tropical species of the genus Calophyllum:  a chemotaxonomic study of extracts in the National Cancer Institute collection. J Nat Prod. 1998; 61(10): 1252-1256.

[177]

Cary DC, Peterlin BM. Natural products and HIV/AIDS. AIDS Res Hum Retrovir. 2018; 34(1): 31-38.

[178]

Tee KH, Ee GCL, Ismail IS, et al. A new coumarin from stem bark of Calophyllum wallichianum. Nat Prod Res. 2018; 32(21): 2565-2570.

[179]

Serna-Arbeláez MS, Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural products with inhibitory activity against human immunodeficiency virus type 1. Adv Virol. 2021; 2021: 5552088.

[180]

Creagh T, Ruckle JL, Tolbert DT, et al. Safety and pharmacokinetics of single doses of (+)-calanolide a, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects. Antimicrob Agents Chemother. 2001; 45(5): 1379-1386.

[181]

Archin NM, Margolis DM. Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis. 2014; 27(1): 29.

[182]

Deeks SG. HIV: shock and kill. Nature. 2012; 487(7408): 439-440.

[183]

Cary DC, Fujinaga K, Peterlin BM. Molecular mechanisms of HIV latency. J Clin Invest. 2016; 126(2): 448-454.

[184]

Pandeló José D, Bartholomeeusen K, da Cunha RD, et al. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology. 2014; 462-463(1): 328-339.

[185]

Pak V, Eifler TT, Jäger S, Krogan NJ, Fujinaga K, Peterlin BM. CDK11 in TREX/THOC regulates HIV mRNA 3′ end processing. Cell Host Microbe. 2015; 18(5): 560-570.

[186]

Wang Y, Hu J, Li Y, et al. The transcription factor TCF1 preserves the effector function of exhausted CD8 T cells during chronic viral infection. Front Immunol. 2019; 10: 169.

[187]

Sedore SC, Byers SA, Biglione S, Price JP, Maury WJ, Price DH. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by tat and binding of HEXIM1 to TAR. Nucleic Acids Res. 2007; 35(13): 4347-4358.

[188]

He N, Pezda AC, Zhou Q. Modulation of a P-TEFb functional equilibrium for the global control of cell growth and differentiation. Mol Cell Biol. 2006; 26(19): 7068-7076.

[189]

Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med. 2014; 20(4): 425-429.

[190]

Cary DC, Fujinaga K, Peterlin BM. Euphorbia kansui reactivates latent HIV. PLoS One. 2016; 11(12): e0168027.

[191]

Laird GM, Bullen CK, Rosenbloom DI, et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. Am Soc Clin Investig. 2015; 125(5): 1901-1912.

[192]

Gu XD, Zhang Q. Clinical progress in the treatment of severe acute pancreatitis with integrative Chinese and Western medicine. Chin J Integr Med. 2007; 13(3): 235-240.

[193]

Kupchan SM, Uchida I, Branfman AR, Dailey RG, Fei BY. Antileukemic principles isolated from euphorbiaceae plants. Science. 1976; 191(4227): 571-572.

[194]

Xing F, Tan Y, Yan GJ, et al. Effects of Chinese herbal cataplasm Xiaozhang Tie on cirrhotic ascites. J Ethnopharmacol. 2012; 139(2): 343-349.

[195]

Bensky D, Clavey S, Stoger E. Chinese Herbal Medicine: Materia Medica. 3rd ed. Eastland Press; 2004.

[196]

Dutra RC, Claudino RF, Bento AF, et al. Preventive and therapeutic euphol treatment attenuates experimental colitis in mice. PLoS One. 2011; 6(11): e27122.

[197]

De Rosso M, Panighel A, Dalla Vedova A, Gardiman M, Flamini R. Characterization of non-anthocyanic flavonoids in some hybrid red grape extracts potentially interesting for industrial uses. Molecules. 2015; 20: 18095-18106.

[198]

Jiang A, Zhang Y, Zhang X, et al. Morin alleviates LPS-induced mastitis by inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathway and protecting the integrity of blood-milk barrier. Int Immunopharmacol. 2020; 78: 105972.

[199]

Sung NY, Yang MS, Song DS, et al. The procyanidin trimer C1 induces macrophage activation via NF-κB and MAPK pathways, leading to Th1 polarization in murine splenocytes. Eur J Pharmacol. 2013; 714(1-3): 218-228.

[200]

Islam F, Mitra S, Nafady MH, et al. Neuropharmacological and antidiabetic potential of Lannea coromandelica (Houtt.) Merr. Leaves extract: an experimental analysis. Evidence-Based Complement Altern Med. 2022; 2022(1): 6144733.

[201]

Hori T, Barnor J, Nguyen Huu T, et al. Procyanidin trimer C1 derived from Theobroma cacao reactivates latent human immunodeficiency virus type 1 provirus. Biochem Biophys Res Commun. 2015; 459(2): 288-293.

[202]

Khan N, Khymenets O, Urpí-Sardà M, et al. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients. 2014; 6: 844-880.

[203]

Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa polyphenols and gut microbiota interplay: bioavailability, prebiotic effect, and impact on human health. Nutrients. 2020; 12(7): 1908.

[204]

Wang C, Yang S, Lu H, et al. A natural product from Polygonum cuspidatum Sieb. Et Zucc. promotes tat-dependent HIV latency reversal through triggering P-TEFb's release from 7SK snRNP. PLoS One. 2015; 10(11): e0142739.

[205]

Injeyan HS, Connell G, Foster K, Kopansky-Giles D, Sovak G, Tibbles T. The prevalence and characteristics of HIV/AIDS patients presenting at a chiropractic outpatient clinic in Toronto, Ontario. A retrospective, observational study. J Can Chiropr Assoc. 2018; 62(2): 77.

[206]

Rahman MM, Islam MR, Shohag S, et al. The multifunctional role of herbal products in the management of diabetes and obesity: a comprehensive review. Molecules. 2022; 27(5): 1713.

[207]

Yi M, Lin S, Zhang B, Jin H, Ding L. Antiviral potential of natural products from marine microbes. Eur J Med Chem. 2020; 207: 112790.

[208]

Riccio G, Ruocco N, Mutalipassi M, et al. Ten-year research update review: antiviral activities from marine organisms. Biomolecules. 2020; 10(7): 1007.

[209]

Srinivasulu C, Dongwei K, Wang Z, et al. Contemporary medicinal chemistry strategies for the discovery and development of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem. 2022; 65(5): 3729-3757.

[210]

Zhang N, Wang M, Gao L, et al. Anti-HIV activity in traditional Chinese medicine: clinical implications of monomeric herbal remedies and compound decoctions. Front Med. 2024; 11: 1322870.

[211]

Burack JH, Cohen MR, Hahn JA, Abrams DI. Pilot randomized controlled trial of Chinese herbal treatment for HIV-associated symptoms. J Acquir Immune Defic Syndr Hum Retrovirol. 1996; 12(4): 386-393.

[212]

Zhang X, Li J, Hou W, et al. Chinese herbal medicine for drug-induced liver injury in patients with HIV/AIDS: a systematic review of randomized controlled trials. Integr Med Res. 2023; 12(1): 100918.

[213]

Liu J. The use of herbal medicines in early drug development for the treatment of HIV infections and AIDS. Expert Opin Investig Drugs. 2007; 16(9): 1355-1364.

[214]

Kusum M, Klinbuayaem V, Bunjob M, Sangkitporn S. Preliminary efficacy and safety of oral suspension SH, combination of five Chinese medicinal herbs, in people living with HIV/AIDS; the phase I/II study. J Med Assoc Thail. 2004; 87(9): 1065-1070.

[215]

Sangkitporn S, Shide L, Klinbuayaem V, et al. Efficacy and safety of zidovudine and zalcitabine combined with a combination of herbs in the treatment of HIV-infected Thai patients. Southeast Asian J Trop Med Public Health. 2005; 36(3): 704.

[216]

Liu JP, Manheimer E, Yang M. Herbal medicines for treating HIV infection and AIDS. Cochrane Database Syst Rev. 2005; 2005(3): CD003937.

RIGHTS & PERMISSIONS

2025 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/