Exploring the neuroprotective benefits of phytochemicals extracted from indigenous edible fruits in Bangladesh

Sumon Roy , Sajib Chandra Roy , Mehrukh Zehravi , Sherouk Hussein Sweilam , Rajib Das , Mylsamy Palanisamy , Venkata Lakshamana Sagar Dantinapalli , Selvaraja Elumalai , Jeetendra Kumar Gupta , Mohammed Ali Alshehri , Mohammed Asiri , Irfan Ahmad , Mohamed H. Nafady , Talha Bin Emran

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (2) : 239 -265.

PDF (6724KB)
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (2) : 239 -265. DOI: 10.1002/ame2.12522
REVIEW

Exploring the neuroprotective benefits of phytochemicals extracted from indigenous edible fruits in Bangladesh

Author information +
History +
PDF (6724KB)

Abstract

The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders. This study provides an in-depth overview of the different types of edible fruit trees in Bangladesh and their phytochemicals, including flavonoids, terpenoids, and phenolic acids. This work examines the scientific data supporting the neuroprotective properties of bioactive chemicals from plants. It further explores the mechanisms by which these compounds work to counteract oxidative stress, decrease inflammation, and stimulate neurogenesis. Moreover, the study investigates toxicological characteristics and bioactive components of some fruits, emphasizing the importance of further investigation to measure their safety profile comprehensively. This thorough study highlights the potential benefits of Bangladesh’s edible fruit trees as a rich source of neuroprotective chemicals. It also shows that additional research might lead to novel approaches for improving brain functioning and preventing NDs.

Keywords

Bangladesh / edible fruit plants / neuroprotection / phytochemicals / traditional medicine

Cite this article

Download citation ▾
Sumon Roy, Sajib Chandra Roy, Mehrukh Zehravi, Sherouk Hussein Sweilam, Rajib Das, Mylsamy Palanisamy, Venkata Lakshamana Sagar Dantinapalli, Selvaraja Elumalai, Jeetendra Kumar Gupta, Mohammed Ali Alshehri, Mohammed Asiri, Irfan Ahmad, Mohamed H. Nafady, Talha Bin Emran. Exploring the neuroprotective benefits of phytochemicals extracted from indigenous edible fruits in Bangladesh. Animal Models and Experimental Medicine, 2025, 8(2): 239-265 DOI:10.1002/ame2.12522

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SaxenaS. Role of medicinal plants in neurodegenerative diseases. J Int Med Sci Acad. 2015;28(4):218-221. doi:10.1007/s40898-017-0004-7

[2]

KumarGP, Anilakumar KR, NaveenS. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharm J. 2015;7(1):1-17. doi:10.5530/pj.2015.7.1

[3]

FeiginVL, VosT, NicholsE, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19(3):255-265.

[4]

FeiginVL, Nichols E, AlamT, et al. Global, regional, and national burden of neurological disorders, 1990–2016:a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(5):459-480. doi:10.1016/S1474-4422(18)30499-X

[5]

StandridgeJB. Pharmacotherapeutic approaches to the treatment of Alzheimer’s disease. Clin Ther. 2004;26(5):615-630.

[6]

RubinszteinDC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006;443(7113):780-786.

[7]

BealMF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 2005;58(4):495-505.

[8]

MosconiL, BrysM, SwitalskiR, et al. Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc Natl Acad Sci USA. 2007;104(48):19067-19072.

[9]

SayeskiKL. Challenges and opportunities. Teach Except Child. 2016;48(3):126-127.

[10]

RehmanMU, WaliAF, AhmadA, et al. Neuroprotective strategies for neurological disorders by natural products: an update. Curr Neuropharmacol. 2018;17(3):247-267.

[11]

AmaoI. Health benefits of fruits and vegetables: review from sub-Saharan Africa. In: Asaduzzaman Md, and Asao T, eds. Vegetables—Importance of Quality Vegetables to Human Health. IntechOpen; 2018:33-53. doi:10.5772/intechopen.74472

[12]

KhooHE, AzlanA, KongKW, Ismail A. Phytochemicals and medicinal properties of indigenous tropical fruits with potential for commercial development. Evid Based Complement Alternat Med. 2016;2016:7591951.

[13]

GuoS, YanJ, YangT, Yang X, BezardE, ZhaoB. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol Psychiatry. 2007;62(12):1353-1362.

[14]

SutherlandBA, RahmanRMA, AppletonI. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem. 2006;17(5):291-306.

[15]

KumarGP, KhanumF. Neuroprotective potential of phytochemicals. Pharmacogn Rev. 2012;6(12):81-90.

[16]

PearsonVE. Galantamine: a new Alzheimer drug with a past life. Ann Pharmacother. 2001;35(11):1406-1413.

[17]

IslamAR, DasS, AlamM, Rahman A. Documentation of wild edible minor fruits used by the local people of Barishal, Bangladesh with emphasis on traditional medicinal values. J Bio Sci. 2019;27:69-81.

[18]

FerdoushiA, MahmudS, RanaM, Islam M, SalauddinA, HossainM. A survey on medicinal plant usage by folk medicinal practitioners in different villages at Nalitabari Upazilla, Sherpur District, Bangladesh. Eur J Med Plants. 2016;11(3):1-22.

[19]

AhmedMN, Kabidul Azam MN. Traditional knowledge and formulations of medicinal plants used by the traditional medical practitioners of Bangladesh to treat schizophrenia like psychosis. Schizophr Res Treat. 2014;2014:1-10.

[20]

SahaTK, AlamKMK. The use of plants in traditional health care practice: an ethnomedicinal survey at Mymensingh Sadar and Shambhuganj area in Mymensingh district of Bangladesh. Int J Innov Sci Res Technol. 2023;8:1.

[21]

RahmatullahM, NomanA, HossanS, Rahman T, ChowdhuryMH, JahanR. A survey of medicinal plants in two areas of Dinajpur district, Bangladesh including plants which can be used as functional foods. Am J Sustain Agric. 2009;3(4):862-876.

[22]

KabirMH, HasanN, RahmanMM, et al. A survey of medicinal plants used by the deb barma clan of the Tripura tribe of Moulvibazar district, Bangladesh. J Ethnobiol Ethnomed. 2014;10(78):19.

[23]

KhatunA, KhanMAA, RahmanMA, et al. Ethnomedicinal usage of plants and animals by folk medicinal practitioners of three villages in Chuadanga and Jhenaidah districts, Bangladesh. Am J Sustain Agric. 2013;7(5):319-339.

[24]

TesfayeT, Ravichadran YD. Traditional uses, pharmacological action and phytochemical analysis of Carissa carandas Linn.: a review. Nat Prod Chem Res. 2018;6(5):1-20. doi:10.4172/2329-6836.1000334

[25]

KhanMA, IslamMK, SirajMA, et al. Ethnomedicinal survey of various communities residing in Garo Hills of Durgapur, Bangladesh. J Ethnobiol Ethnomed. 2015;11(1):44.

[26]

Salah UddinM, LeeSW. MPB 31:a useful medicinal plants database of Bangladesh. J Advance Med Life Sci. 2020;8(1):18-21. doi:10.1093/database/bav075.H

[27]

DarA, Khatoon S. Behavioral and biochemical studies of dichloromethane fraction from the Areca catechu nut. Pharmacol Biochem Behav. 2000;65(1):1-6.

[28]

RahmatullahM, MollikMAH, IslamMK, et al. A survey of medicinal and functional food plants used by the folk medicinal practitioners of three villages in Sreepur Upazilla, Magura district, Bangladesh. Am J Sustain Agric. 2010;4(3):363-373.

[29]

DullaO, JahanFI. Ethnopharmacological survey on traditional medicinal plants at Kalaroa Upazila, Satkhira District, Khulna division, Bangladesh. J Intercult Ethnopharmacol. 2017;6(3):316-325.

[30]

ChandarakesanA, Muruhan S, SayanamRRA. Morin inhibiting Photocarcinogenesis by targeting ultraviolet-B-induced oxidative stress and inflammatory cytokines expression in swiss albino mice. Int J Nutr Pharmacol Neurol Dis. 2018;8:41-46. doi:10.4103/ijnpnd.ijnpnd

[31]

BhowmikD, Gopinath H, KumarBP, DuraivelS, Aravind G, KumarKPS. Medicinal uses of Punica granatum and its health benefits. J Pharmacogn Phytochem. 2013;1(5):28-35.

[32]

ZohrameenaS, Mujahid M, KhalidM, NoorulH, NesarA, SabaP. Medicinal uses & pharmacological activity of Tamarindus indica. World J Pharm Sci. 2017;5(2):121-133.

[33]

AtC, HighS, HighS, Masrie A, SyahdanP. American-Eurasian Journal of sustainable agriculture. Am J Sustain Agric. 2014;8(2):67-70.

[34]

SehgalN, GuptaA, ValliRK, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA. 2012;109(9):3510-3515.

[35]

MollikMAH, HossanMSH, PaulAK, Taufiq-Ur-Rahman M, JahanR, RahmatullahM. A comparative analysis of medicinal plants used by folk medicinal healers in three districts of Bangladesh and inquiry as to mode of selection of medicinal plants. Ethnobot Res Appl. 2010;8:195-218.

[36]

JangMH, PiaoXL, KimJM, Kwon SW, ParkJH. Inhibition of cholinesterase and amyloid-&bgr; aggregation by resveratrol oligomers from Vitis amurensis. Phyther Res. 2008;22(4):544-549.

[37]

KhatunMR, RahmanAHMM. Ethnomedicinal uses of plants by santal tribal peoples at Nawabganj upazila of Dinajpur district, Bangladesh. Bangladesh J Plant Taxon. 2019;26(1):117-126.

[38]

MddS, MdhK. Ethnomedicinal studies of Lalmohan Thana in Bhola District, Bangladesh. Altern Integr Med. 2016;5(1):2. doi:10.4172/2327-5162.1000210

[39]

RahmanAHMM. Traditional medicinal plants used in the treatment of important human diseases of Joypurhat District, Bangladesh study area Ethno-botanical survey. J Biol Pharm Chem Res. 2015;2(1):21-29.

[40]

ChakrabortyP. Averrhoa Carambola: an updated review. Int J Pharma Res Rev. 2013;2(7):54-63.

[41]

MollikaS, IslamN, ParvinN, et al. Evaluation of analgesic, anti-inflammatory and CNS activities of the methanolic extract of Syzygium samarangense leave. Glob J Pharmacol. 2014;8(1):39-46. doi:10.5829/idosi.gjp.2014.8.1.81223

[42]

JadhavVM, KambleSS, KadamVJ. Herbal medicine: Syzygium cumini: A review. J Pharm Res. 2009;2(8):1212-1219.

[43]

BasuA, NguyenA, BettsNM, Lyons TJ. Strawberry as a functional food: an evidence-based review. Crit Rev Food Sci Nutr. 2014;54(6):790-806.

[44]

AgamaA. Efficacy of unripe Musa Sapientum entire fruit on neuromuscular power and olfactory muscle Creatine kinase. AJAMS. 2022;1(1):13-17.

[45]

SamadN, MuneerA, UllahN, Zaman A, AyazMM, AhmadI. Banana fruit pulp and peel involved in antianxiety and antidepressant effects while invigorate memory performance in male mice: possible role of potential antioxidants. Pak J Pharm Sci. 2017;30(3):989-995.

[46]

KushwahaP, YadavSS, SinghV, Dwivedi LK. Gc-Ms analysis of bio-active compounds in methanolic extract of. Int J Pharm Sci Res. 2018;10:2911-2916. doi:10.13040/IJPSR.0975-8232.10(6).2911-16

[47]

LimaEBC, SousaCNS, MenesesLN, et al. Cocos nucifera (L.) (arecaceae):a phytochemical and pharmacological review. Braz J Med Biol Res. 2015;48(11):953-964.

[48]

SharmaK, ParleM. Methanol extract of Artocarpus heterophyllus attenuates pentylenetetrazole induced anxiety like behaviours in mice. J Med Plants Stud. 2017;5(1):181-186.

[49]

AkinmoladunAC, Adelabu AA, SaliuIO, AdetuyiAR, Olaleye MT. Protective properties of Spondias mombin Linn leaves on redox status, cholinergic dysfunction and electrolyte disturbance in cyanide-intoxicated rats. Sci Prog. 2021;104(2):1-17.

[50]

NafiuAB, Alli-Oluwafuyi AM, HaleematA, OlalekanIS, RahmanMT. Papaya (Carica papaya L., Pawpaw). Vol 1616. Elsevier Inc; 2018. doi:10.1016/B978-0-12-812491-8.00048-5

[51]

MohanapriyaM, Ramaswamy L, RajendranR. Health and medicinal properties of lemon (citrus Limonum). Int J Ayurvedic Herb Med. 2013;1(3):1095-1100.

[52]

KhanA, IkramM, HahmJR, Kim MO. Antioxidant and anti-inflammatory effects of citrus flavonoid hesperetin: special focus on neurological disorders. Antioxidants. 2020;9(7):1-15.

[53]

UthpalaTGG, Marapana RAUJ, LakminiKPC, WettimunyDC. Nutritional bioactive compounds and health benefits of fresh and processed cucumber (Cucumis sativus L.) value-added products from cassava view project antibiotic susceptibility testing view project nutritional bioactive compounds and health benefits of F. Sumerianz J Biotechnol. 2020;3(9):2617-3123.

[54]

Nassiri-AslM, Hosseinzadeh H. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive constituents: an update. Phyther Res. 2016;30:1392-1403.

[55]

GuptaV, BansalP. Pharmacological potentials of Citrus paradisi-an overview. Medicine. 2017;1:8-17.

[56]

JosimuddinSK, KumarM, RastogiH. Review on nutritional and medicinal value of malus Domestica with various activity. Int J Health Sci (Qassim). 2022;6:7251-7265.

[57]

WaliaV, Chaudhary SK, Kumar SethiyaN. Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders. Neurochem Int. 2020;2021(143):104939.

[58]

OmarSH. Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm J. 2010;18(3):111-121.

[59]

SharminT, Sultana R, HossainF, ShakilSK, HossenF, RashidMMO. Neuropharmacological and antibacterial effects of the ethyl acetate extract of Diospyros malabarica (Ebenaceae) seeds. Clin Phytoscience. 2018;4(1):1-8.

[60]

AsifHM, AkhtarN, SultanaS, Rehman SU, AkramM, RehmanJU. Medicinal properties of Cucumis melo Linn. J Pharm Pharm Sci. 2014;2(1):58-62.

[61]

LumPT, SekarM, GanSH, Bonam SR, ShaikhMF. Protective effect of natural products against Huntington’s disease: an overview of scientific evidence and understanding their mechanism of action. ACS Chem Neurosci. 2021;12(3):391-418.

[62]

BravoL. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56(11):317-333.

[63]

Arias-SánchezRA, Torner L, Fenton NavarroB. Polyphenols and neurodegenerative diseases: potential effects and mechanisms of neuroprotection. Molecules. 2023;28(14):5415.

[64]

SzwajgierD, Borowiec K, PustelniakK. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients. 2017;9(5):1-21.

[65]

CarusoG, GodosJ, PriviteraA, et al. Phenolic acids and prevention of cognitive decline: polyphenols with a neuroprotective role in cognitive disorders and Alzheimer’s disease. Nutrients. 2022;14(4):819.

[66]

Al JitanS, Alkhoori SA, YousefLF. Phenolic Acids from Plants: Extraction and Application to Human Health. Vol 58. 1st ed. Elsevier B.V; 2018. doi:10.1016/B978-0-444-64056-7.00013-1

[67]

RobbinsRJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 2003;51(10):2866-2887.

[68]

AbotalebM, Liskova A, KubatkaP, BüsselbergD. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomol Ther. 2020;10(2):1-23.

[69]

CarregosaD, MotaS, FerreiraS, et al. Overview of beneficial effects of (poly)phenol metabolites in the context of neurodegenerative diseases on model organisms. Nutrients. 2021;13(9):2940.

[70]

PrabhuS, MolathA, ChoksiH, Kumar S, MehraR. Classifications of polyphenols and their potential application in human health and diseases. Int J Physiol Nutr Phys Educ. 2021;6(1):293-301.

[71]

TruzziF, Tibaldi C, ZhangY, DinelliG, D’Amen E. An overview on dietary polyphenols and their biopharmaceutical classification system (Bcs). Int J Mol Sci. 2021;22(11):5514.

[72]

RamassamyC. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol. 2006;545(1):51-64.

[73]

GuptaM, MishraA. Bioactive Flavonoids: A comparative overview of the biogenetic and chemical synthesis approach. Mini Reviews in Medicinal Chemistry. 2023;23(18):1818-1837.

[74]

AlzandKI, Mohamed MA. Flavonoids: chemistry, biochemistry and antioxidant activity. J Pharm Res. 2012;5(8):4013-4020.

[75]

DeviS, KumarV, SinghSK, Dubey AK, KimJJ. Flavonoids: potential candidates for the treatment of neurodegenerative disorders. Biomedicine. 2021;9(2):1-22.

[76]

JonesQRD, Warford J, RupasingheHPV, RobertsonGS. Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol Sci. 2012;33(11):602-610.

[77]

YadavE, YadavP, KhanMM, Singh H, VermaA. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Frontiers in Pharmacology. 2022;13:922232.

[78]

HassanpourS, Maheri-Sis N, EshratkhahB, MehmandarFB. Plants and secondary metabolites (tannins):a review. Int J for Soil Eros. 2011;1(1):47-53.

[79]

HussainG, HuangJ, RasulA, et al. Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: an updated review. Molecules. 2019;24(12):2213.

[80]

RuszkowskiP, Bobkiewicz-Kozlowska T. Natural triterpenoids and their derivatives with pharmacological activity against neurodegenerative disorders. Mini Rev Org Chem. 2014;11(3):307-315.

[81]

YooKY, ParkSY. Terpenoids as potential anti-alzheimer’s disease therapeutics. Molecules. 2012;17(3):3524-3538.

[82]

BribiN. Pharmacological activity of alkaloids: a review. Asian J Bot. 2018;1:1-6. doi:10.63019/ajb.v1i2.467

[83]

RoyA. A review on the alkaloids an important therapeutic compound from plants. Int J Plant Biotechnol. 2017;3(2):1-9.

[84]

KongYR, TayKC, SuYX, KhawKY, WongCK, Tan WN. Potential of naturally derived alkaloids as multi-targeted therapeutic agents for neurodegenerative diseases. Molecules. 2021;26(3):1-19.

[85]

Al-MamooriF, QasemAMA. Alkaloids as new leads for neurodegenerative diseases. IntechOpen. 2023;11:1-14.

[86]

RenT, ZuoZ. Role of piperine in CNS diseases: pharmacodynamics, pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol. 2019;15(10):849-867.

[87]

SinghAP, SinghL, SinghP, Bhatti R. Biological evaluation of Aegle marmelos fruit extract and isolated Aegeline in alleviating pain-depression dyad: in silico analysis of Aegeline on MAO-A and iNOS. ACS Omega. 2021;6(3):2034-2044.

[88]

MaryA, EysertF, CheclerF, Chami M. Mitophagy in Alzheimer’s disease: molecular defects and therapeutic approaches. Mol Psychiatry. 2023;28(1):202-216.

[89]

Andrade-GuerreroJ, Santiago-Balmaseda A, Jeronimo-AguilarP, et al. Alzheimer’s disease: an updated overview of its genetics. Int J Mol Sci. 2023;24(4):1-23.

[90]

RoyN, HassanAM, AlomR, Rajib MHR, Al-MamunKA. The situation of Alzheimer’s disease in Bangladesh: facilities, expertise, and awareness among general people. J Neurol Disord. 2020;8(7):1-7.

[91]

SanchetiS, Sancheti S, UmBH, SeoSY. 1, 2, 3, 4, 6-penta-O-galloyl-β-d-glucose: a cholinesterase inhibitor from Terminalia chebula. South African J Bot. 2010;76(2):285-288.

[92]

AfshariAR, Sadeghnia HR, MollazadehH. A Review on Potential Mechanisms of Terminalia chebula in Alzheimer’s Disease. Adv Pharmacol Sci. 2016;2016:8964849.

[93]

JangH, Srichayet P, ParkWJ, et al. Phyllanthus emblica L. (Indian gooseberry) extracts protect against retinal degeneration in a mouse model of amyloid beta-induced Alzheimer’s disease. J Funct Foods. 2017;37:330-338.

[94]

AbiramiA, Nagarani G, SiddhurajuP. In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci Human Wellness. 2014;3(1):16-25.

[95]

InthachatW, Temviriyanukul P, On-NomN, et al. Optimization of phytochemical-rich Citrus maxima albedo extract using response surface methodology. Molecules. 2023;28:1-17.

[96]

AjayiAM, JohnKA, EmmanuelIB, Chidebe EO, AdedapoADA. High-fat diet-induced memory impairment and anxiety-like behavior in rats attenuated by peel extract of Ananas comosus fruit via atheroprotective, antioxidant and anti-inflammatory actions. Metab Open. 2021;9:100077.

[97]

Momtazi-BorojeniA, Sadeghi-Aliabadi H, RabbaniM, GhannadiA, Abdollahi E. Cognitive enhancing of pineapple extract and juice in scopolamine-induced amnesia in mice. Res Pharm Sci. 2017;12(3):257-264.

[98]

GulM, LiuZW, RabailR, et al. Functional and nutraceutical significance of Amla (Phyllanthus emblica L.):a review. Antioxidants. 2022;11:1-15.

[99]

SainiR, SharmaN, OladejiOS, et al. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: a comprehensive review. J Ethnopharmacol. 2022;282:114570.

[100]

KoulB, FarooqU, YadavD, Song M. Phytochemicals: a promising alternative for the prevention of Alzheimer’s disease. Lifestyles. 2023;13(4):999.

[101]

AhmedS, KhanST, ZargahamMK, et al. Potential therapeutic natural products against Alzheimer’s disease with reference of acetylcholinesterase. Biomed Pharmacother. 2021;139:111609.

[102]

EssaMM, Vijayan RK, Castellano-GonzalezG, MemonMA, Braidy N, GuilleminGJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res. 2012;37(9):1829-1842.

[103]

DindaB, DindaM, KulsiG, Chakraborty A, DindaS. Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: a review. Eur J Med Chem. 2019;169:185-199.

[104]

ZangCX, BaoXQ, LiL, et al. The protective effects of Gardenia jasminoides (fructus gardenia) on amyloid-β-induced mouse cognitive impairment and neurotoxicity. Am J Chin Med. 2018;46(2):389-405.

[105]

AdaramoyeOA, AzeezFA. Evaluation of antioxidant and Acteylcholinesterase-inhibitory properties of methanol extracts of Nauclealatifolia, Cymbopogon citratus and Cocos nucifera: an in vitro study. Br J Med Med Res. 2014;4(11):2156-2170.

[106]

SethiyaNK, MishraSH. Investigation of Mangiferin, as a promising natural polyphenol xanthone on multiple targets of Alzheimer’s disease. J Biol Act Prod Nat. 2014;4(2):111-119.

[107]

CaselliA, CirriP, SantiA, Paoli P. Morin: a promising natural drug. Curr Med Chem. 2016;23(8):774-791.

[108]

MarinoA, Battaglini M, MolesN, CiofaniG. Natural antioxidant compounds as potential pharmaceutical tools against neurodegenerative diseases. ACS Omega. 2022;7(30):25974-25990.

[109]

KottaS, Mubarak Aldawsari H, Badr-EldinSM, AlhakamyNA, MdS. Coconut oil-based resveratrol nanoemulsion: optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem. 2020;2021(357):129721.

[110]

SahinerM, YilmazAS, GungorB, Sahiner N. A review on Phyto-therapeutic approaches in Alzheimer’s disease. J Funct Biomater. 2023;14(1):50.

[111]

SapkotaB, Devkota HP, PoudelP. Citrus maxima (Brum.) Merr. (Rutaceae):bioactive chemical constituents and pharmacological activities. Evid Based Complement Altern Med. 2022;2022:1-16.

[112]

PohlF, LinPKT. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules. 2018;23(12):3283.

[113]

KoppulaS, ChoiDK. Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: a noninvasive biochemical approach. Pharm Biol. 2011;49(7):702-708.

[114]

LiR, WangX, QinT, QuR, MaS. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res. 2016;296:318-325.

[115]

RiazA, KhanRA, AlgahtaniHA. Memory boosting effect of Citrus limon, pomegranate and their combinations. Pak J Pharm Sci. 2014;27(6):1837-1840.

[116]

XuQ, Kanthasamy AG, ReddyMB. Phytic acid protects against 6-hydroxydopamine-induced dopaminergic neuron apoptosis in normal and iron excess conditions in a cell culture model. Parkinsons Dis. 2011;2011:1-6.

[117]

BlootAPM, Kalschne DL, AmaralJAS, BaraldiIJ, CananC. A review of phytic acid sources, obtention, and applications. Food Rev Int. 2021;39(1):73-92.

[118]

XuQ, Kanthasamy AG, ReddyMB. Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson’s disease. Toxicology. 2008;245(1–2):101-108.

[119]

ZhangZT, CaoXB, XiongN, et al. Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacol Sin. 2010;31(8):900-906.

[120]

YangJY, LeeHS. Evaluation of antioxidant and antibacterial activities of morin isolated from mulberry fruits (Morus alba L.). J Korean Soc Appl Biol Chem. 2012;55(4):485-489.

[121]

AnekondaTS, Wadsworth TL, SabinR, et al. Phytic acid as a potential treatment for Alzheimer’s pathology: evidence from animal and in vitro models. J Alzheimers Dis. 2011;23(1):21-35.

[122]

KimHJ, KimJ, KangKS, Lee KT, YangHO. Neuroprotective effect of chebulagic acid via autophagy induction in SH-SY5Y cells. Biomol Ther. 2014;22(4):275-281.

[123]

KujawskaM, Jourdes M, KurpikM, et al. Neuroprotective effects of pomegranate juice against parkinson’s disease and presence of ellagitannins-derived metabolite—urolithin A—in the brain. Int J Mol Sci. 2020;21(1):202.

[124]

SubashS, BraidyN, EssaMM, et al. Long-term (15mo) dietary supplementation with pomegranates from Oman attenuates cognitive and behavioral deficits in a transgenic mice model of Alzheimer’s disease. Nutrition. 2015;31(1):223-229.

[125]

DaSilvaNA, NaharPP, MaH, et al. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr Neurosci. 2019;22(3):185-195.

[126]

KimYE, HwangCJ, LeeHP, et al. Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation, oxidative stress and memory impairment via inhibition of nuclear factor-kappaB. Neuropharmacology. 2017;117:21-32.

[127]

BraidyN, BehzadS, HabtemariamS, et al. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and Tangeretin in Alzheimer’s and Parkinson’s disease. CNS Neurol Disord Drug Targets. 2017;16(4):387-397.

[128]

CiftciO, OzcanC, KamisliO, Cetin A, BasakN, AytacB. Hesperidin, a citrus flavonoid, has the ameliorative effects against experimental autoimmune encephalomyelitis (EAE) in a C57BL/J6 mouse model. Neurochem Res. 2015;40(6):1111-1120.

[129]

YiLT, LiCF, ZhanX, et al. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1223-1228.

[130]

NabaviSF, BraidyN, GortziO, et al. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull. 2015;119:1-11.

[131]

KempurajD, TagenM, IliopoulouBP, et al. Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell-dependent stimulation of Jurkat T cells. Br J Pharmacol. 2008;155(7):1076-1084.

[132]

ReddyKS, Likithasree P, PeramanR, et al. Spatial long-term memory retention by Banana and papaya Peel extract: in silico and in vivo evaluation. Int J Pharm Investig. 2020;10(2):202-207.

[133]

Calderón-OliverM, Ponce-AlquiciraE. Fruits: A Source of Polyphenols and Health Benefits. Elsevier Inc.; 2018. doi:10.1016/B978-0-12-811518-3/00007-7

[134]

HagenackerT, Hillebrand I, WissmannA, BüsselbergD, Schäfers M. Anti-allodynic effect of the flavonoid myricetin in a rat model of neuropathic pain: involvement of p38 and protein kinase C mediated modulation of Ca2+ channels. Eur J Pain. 2010;14(10):992-998.

[135]

AswarM, KuteP, MahajanS, Mahajan U, NerurkarG, AswarU. Protective effect of hesperetin in rat model of partial sciatic nerve ligation induced painful neuropathic pain: an evidence of anti-inflammatory and anti-oxidative activity. Pharmacol Biochem Behav. 2014;124:101-107.

[136]

MutoN, Matsuoka Y, ArakawaK, et al. Quercetin attenuates neuropathic pain in rats with spared nerve injury. Acta Med Okayama. 2018;72(5):457-465. doi:10.18926/AMO/56243

[137]

JiC, XuY, HanF, et al. Quercetin alleviates thermal and cold hyperalgesia in a rat neuropathic pain model by inhibiting toll-like receptor signaling. Biomed Pharmacother. 2017;94:652-658.

[138]

ShrikantaA, KumarA, GovindaswamyV. Resveratrol content and antioxidant properties of underutilized fruits. J Food Sci Technol. 2015;52(1):383-390.

[139]

SinghNP, HegdeVL, HofsethLJ, Nagarkatti M, NagarkattiPS. Resveratrol (trans-3, 5, 4′-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol Pharmacol. 2007;72(6):1508-1521.

[140]

ChtourouY, BenSA, GdouraR, Fetoui H. Naringenin mitigates iron-induced anxiety-like behavioral impairment, mitochondrial dysfunctions, Ectonucleotidases and acetylcholinesterase alteration activities in rat hippocampus. Neurochem Res. 2015;40(8):1563-1575.

[141]

ChtourouY, FetouiH, GdouraR. Protective effects of naringenin on iron-overload-induced cerebral cortex neurotoxicity correlated with oxidative stress. Biol Trace Elem Res. 2014;158(3):376-383.

[142]

LuanF, PengL, LeiZ, et al. Traditional uses, phytochemical constituents and pharmacological properties of Averrhoa carambola L.: a review. Front Pharmacol. 2021;12:1-27.

[143]

Al-SabahiBN, FatopeMO, EssaMM, et al. Pomegranate seed oil: effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition. Nutr Neurosci. 2017;20(1):40-48.

[144]

RipaFA, AlamF, RiyaFH, et al. Deciphering in vitro and in vivo pharmacological properties of seed and fruit extracts of Flacourtia jangomas (Lour.) Raeusch. Adv Pharmacol Pharm Sci. 2024;2024:4035987.

[145]

KocotJ, Luchowska-Kocot D, KiełczykowskaM, MusikI, Kurzepa J. Does vitamin c influence neurodegenerative diseases and psychiatric disorders? Nutrients. 2017;9(7):659.

[146]

BrownHE, Roffman JL. Vitamin supplementation in the treatment of schizophrenia. CNS Drugs. 2014;28(7):611-622.

[147]

BentsenH, OsnesK, RefsumH, Solberg DK, BøhmerT. A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E+C in schizophrenia. Transl Psychiatry. 2013;3:e335-e335.

[148]

Ben-AzuB, Aderibigbe AO, AjayiAM, et al. Morin decreases cortical pyramidal neuron degeneration via inhibition of neuroinflammation in mouse model of schizophrenia. Int Immunopharmacol. 2019;70:338-353.

[149]

RajputSA, WangXQ, YanHC. Morin hydrate: a comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother. 2021;138:111511.

[150]

HayesMT. Parkinson’s disease and parkinsonism. Am J Med. 2019;132(7):802-807.

[151]

BloemBR, OkunMS, KleinC. Parkinson’s disease. Lancet. 2021;397(10291):2284-2303.

[152]

TravaglioM, Michopoulos F, YuY, et al. Increased cysteine metabolism in PINK1 models of Parkinson’s disease. Dis Model Mech. 2023;16(1):1-12.

[153]

SinglaRK, Agarwal T, HeX, ShenB. Herbal resources to combat a progressive & degenerative nervous system disorder-Parkinson’s disease. Curr Drug Targets. 2020;22(6):609-630.

[154]

RaiSN, ZahraW, SenSS, et al. Anti-inflammatory activity of Ursolic acid in MPTP-induced parkinsonian mouse model. Neurotox Res. 2019;36(3):452-462.

[155]

PeshattiwarV, MukeS, KaikiniA, Bagle S, DigheV, SathayeS. Mechanistic evaluation of Ursolic acid against rotenone induced Parkinson’s disease–emphasizing the role of mitochondrial biogenesis. Brain Res Bull. 2019;2020(160):150-161.

[156]

MsibiZNP, Mabandla MV. Oleanolic acid mitigates 6-hydroxydopamine neurotoxicity by attenuating intracellular ROS in PC12 cells and striatal microglial activation in rat brains. Front Physiol. 2019;10:1-10.

[157]

JavedH, MeeranMFN, AzimullahS, Adem A, SadekB, OjhaSK. Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson’s disease models. Front Pharmacol. 2019;9:1-27.

[158]

DevinskyO, Vezzani A, O’BrienTJ, et al. Epilepsy. Nat Rev Dis Prim. 2018;4:18024.

[159]

ChenY, NagibMM, YasmenN, et al. Neuroinflammatory mediators in acquired epilepsy: an update. Inflamm Res. 2023;72:683-701.

[160]

MatiasM, SantosAO, SilvestreS, Alves G. Fighting epilepsy with nanomedicines—is this the right weapon? Pharmaceutics. 2023;15(2):306.

[161]

SarkarT, Salauddin M, ChakrabortyR. In-depth pharmacological and nutritional properties of bael (Aegle marmelos):a critical review. J Agric Food Res. 2020;2:100081.

[162]

LimSM, RahimNS, RamasamyK. Coconut Oil and Antioxidative Neuroprotection. Elsevier Inc; 2020. doi:10.1016/B978-0-12-817780-8.00016-5

[163]

Al-SnafiPDAE. Medicinal plants with central nervous effects (part 2):plant based review. IOSR J Pharm. 2016;6(8):52-75.

[164]

GoldenbergMM. Multiple sclerosis review. J Clin Pharm Ther. 2012;37(3):175-184.

[165]

HauserSL, CreeBAC. Treatment of multiple sclerosis: a review. Am J Med. 2020;133:1380-1390.e2.

[166]

ChoudharyN, TewariD, NabaviSF, et al. Plant based food bioactives: a boon or bane for neurological disorders. Crit Rev Food Sci Nutr. 2022;64:3279-3325.

[167]

HonarvarF, HojatiV, BakhtiariN, Vaezi G, JavanM. Myelin protection by ursolic acid in cuprizone-induced demyelination in mice. Iran J Pharm Res. 2019;18(4):1978-1988. doi:10.22037/ijpr.2019.112181.13582

[168]

ZhangY, LiX, CiricB, et al. A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proc Natl Acad Sci USA. 2020;117(16):9082-9093.

[169]

HauptM, GernerST, BährM, Doeppner TR. Neuroprotective strategies for ischemic stroke—future perspectives. Int J Mol Sci. 2023;24(5):4334.

[170]

ChughC. Acute ischemic stroke: management approach. Indian J Crit Care Med. 2019;23:S140-S146.

[171]

CataneseL, TarsiaJ, FisherM. Acute ischemic stroke therapy overview. Circ Res. 2017;120(3):541-558.

[172]

ZhaoCN, MengX, LiY, et al. Fruits for prevention and treatment of cardiovascular diseases. Nutrients. 2017;9(6):1-29.

[173]

WangZM, ZhaoD, NieZL, et al. Flavonol intake and stroke risk: a meta-analysis of cohort studies. Nutrition. 2014;30(5):518-523.

[174]

WanD, ZhouY, WangK, Hou Y, HouR, YeX. Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull. 2016;121:255-262.

[175]

WangK, ChenZ, HuangJ, et al. Naringenin prevents ischemic stroke damage via anti-apoptotic and anti-oxidant effects. Clin Exp Pharmacol Physiol. 2017;44:862-871.

[176]

YahiaEM, García-Solís P, MaldonadoCelisME. Contribution of fruits and vegetables to human nutrition and health. Postharvest Physiol Biochem Fruits Veg. 2018;2018:19-45.

[177]

LiJ, ZhaoT, QiaoH, et al. Research progress of natural products for the treatment of ischemic stroke. J Integr Neurosci. 2022;21(1):14.

[178]

ChoudhuryA, Chakraborty I, BanerjeeTS, VanaDR, AdapaD. Efficacy of morin as a potential therapeutic phytocomponent: insights into the mechanism of action. Int J Med Res Heal Sci. 2017;6(11):175-194.

[179]

GuptaYK, BriyalS, GulatiA. Therapeutic potential of herbal drugs in cerebral ischemia. Indian J Physiol Pharmacol. 2010;54(2):99-122.

[180]

ZhouY, ZhangS, FanX. Role of polyphenols as antioxidant supplementation in ischemic stroke. Oxidative Med Cell Longev. 2021;2021:5471347.

[181]

CraskeMG, RauchSL, UrsanoR, Prenoveau J, PineDS, ZinbargRE. What is an anxiety disorder? Depress Anxiety. 2009;26(12):1066-1085.

[182]

ThibautF. Anxiety disorders: a review of current literature. Dialogues Clin Neurosci. 2017;19(2):87-88.

[183]

KhanRA, RiazA. Behavioral effects of citrus limon in rats. Metab Brain Dis. 2015;30(2):589-596.

[184]

N P D, Kondengadan MS, SweilamSH, et al. Neuroprotective role of coconut oil for the prevention and treatment of Parkinson’s disease: potential mechanisms of action. Biotechnol Genet Eng Rev. 2022;40(4):1-33.

[185]

SalehiB, Venditti A, Sharifi-RadM, et al. The therapeutic potential of apigenin. Int J Mol Sci. 2019;20(6):1305.

[186]

CuiR. A systematic review of depression depression. Curr Neuropharmacol. 2015;13(4):480.

[187]

HirschfeldRMA. The epidemiology of depression and the evolution of treatment. J Clin Psychiatry. 2012;73(SUPPL. 1):5-9.

[188]

NewmanMS. Review of studies of mental health in Bangladesh, with a focus on depression. Int J Forensic Ment Health. 2013;42(4):48-77.

[189]

SidhuJS, ZafarTA. Bioactive compounds in banana fruits and their health benefits. Food Qual Saf. 2018;2(4):183-188.

[190]

LimaEBC, de Sousa CNS, VasconcelosGS, et al. Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice. J Nat Med. 2016;70(3):510-521.

[191]

WatsonH, Cockbain AJ, SpencerJ, et al. Author’s accepted manuscript Author’s accepted manuscript. Prostaglandins Leukot Essent Fat Acids. 2016;115:60-66. doi:10.1097/JU.0000000000002945

[192]

DeshmukhCD, JainA, TambeMS. Phytochemical and pharmacological profile of Citrullus lanatus (THUNB). Biol Theory. 2015;3(2):483-488.

[193]

ShakyaA, Chaudhary SK, BhatHR, GhoshSK. Acute and sub-chronic toxicity studies of Benincasa hispida (Thunb.) cogniaux fruit extract in rodents. Regul Toxicol Pharmacol. 2020;118:104785.

[194]

VidalA, Fallarero A, PeñaBR, et al. Studies on the toxicity of Punica granatum L. (Punicaceae) whole fruit extracts. J Ethnopharmacol. 2003;89(2–3):295-300.

[195]

DhodiJB, Thanekar DR, MestrySN, JuvekarAR. Carissa carandas Linn. Fruit extract ameliorates gentamicin–induced nephrotoxicity in rats via attenuation of oxidative stress. J Acute Dis. 2015;4(2):135-140.

[196]

JayeshK, HelenLR, VysakhA, Binil E, LathaMS. In vivo toxicity evaluation of aqueous acetone extract of Terminalia bellirica (Gaertn.) Roxb. Fruit. Regul Toxicol Pharmacol. 2017;86:349-355.

[197]

JoshiPV, PatilRH, MaheshwariVL. In vitro antidiarrhoeal activity and toxicity profile of Aegle marmelos Correa ex Roxb. Dried fruit pulp. Nat Prod Radiance. 2009;8(5):498-502.

[198]

JaijoyK, Soonthornchareonnon N, LertprasertsukeN, PanthongA, Sireeratawong S. Acute and chronic oral toxicity of standardized water extract from the fruit of Phyllanthus emblica Linn. Int J Appl Res Nat Prod. 2010;3(1):48-58.

[199]

GarridoG, Rodeiro I, HernndezI, et al. In vivo acute toxicological studies of an antioxidant extract from Mangifera indica L. (Vimang). Drug Chem Toxicol. 2009;32(1):53-58.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (6724KB)

260

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/