Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome: Focusing on inflammation and molecular mechanisms

Mohammad Yasin Zamanian , Hamidreza Zafari , Maria K. Osminina , Alla A. Skakodub , Raed Fanoukh Aboqader Al-Aouadi , Maryam Golmohammadi , Nikta Nikbakht , Iman Fatemi

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (1) : 5 -19.

PDF (2886KB)
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (1) : 5 -19. DOI: 10.1002/ame2.12518
REVIEW

Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome: Focusing on inflammation and molecular mechanisms

Author information +
History +
PDF (2886KB)

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects approximately 0.46% of the global population. Conventional therapeutics for RA, including disease-modifying antirheumatic drugs (DMARDs), nonsteroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, frequently result in unintended adverse effects. Dexamethasone (DEX) is a potent glucocorticoid used to treat RA due to its anti-inflammatory and immunosuppressive properties. Liposomal delivery of DEX, particularly when liposomes are surface-modified with targeting ligands like peptides or sialic acid, can improve drug efficacy by enhancing its distribution to inflamed joints and minimizing toxicity. This study investigates the potential of liposomal drug delivery systems to enhance the efficacy and targeting of DEX in the treatment of RA. Results from various studies demonstrate that liposomal DEX significantly inhibits arthritis progression in animal models, reduces joint inflammation and damage, and alleviates cartilage destruction compared to free DEX. The liposomal formulation also shows better hemocompatibility, fewer adverse effects on body weight and immune organ index, and a longer circulation time with higher bioavailability. The anti-inflammatory mechanism is associated with the downregulation of pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α) and B-cell–activating factor (BAFF), which are key players in the pathogenesis of RA. Additionally, liposomal DEX can induce the expression of anti-inflammatory cytokines like interleukin-10 (IL-10), which has significant anti-inflammatory and immunoregulatory properties. The findings suggest that liposomal DEX represents a promising candidate for effective and safe RA therapy, with the potential to improve the management of this debilitating disease by providing targeted delivery and sustained release of the drug.

Keywords

dexamethasone / inflammation / liposome / rheumatoid arthritis / TNF-α

Cite this article

Download citation ▾
Mohammad Yasin Zamanian, Hamidreza Zafari, Maria K. Osminina, Alla A. Skakodub, Raed Fanoukh Aboqader Al-Aouadi, Maryam Golmohammadi, Nikta Nikbakht, Iman Fatemi. Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome: Focusing on inflammation and molecular mechanisms. Animal Models and Experimental Medicine, 2025, 8(1): 5-19 DOI:10.1002/ame2.12518

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao G, Yue X, Chi S, Zhang Y. Total alkaloids of Sophora alopecuroides Linn. Attenuates rheumatoid arthritis through regulating follicular helper T cells. J Inflamm Res. 2024;17:3587-3602.

[2]

Peng T, Li B, Bi L, Zhang F. Iguratimod inhibits protein citrullination and inflammation by downregulating NBCe2 in patients with rheumatoid arthritis. Biomed Pharmacother. 2024;174:116551.

[3]

Almutairi K, Nossent J, Preen D, Keen H, Inderjeeth C. The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatol Int. 2021;41(5):863-877.

[4]

Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(5):e1630.

[5]

Ingrasciotta Y, Jin Y, Foti SS, et al. Real-world patient characteristics and use of disease-modifying anti-rheumatic drugs in patients with rheumatoid arthritis: a cross-national study. Clin Rheumatol. 2023;42(4):1047-1059.

[6]

Gadzhanova S, Roughead E. Use of analgesic and anti-inflammatory medicines before and after initiation of biological disease-modifying antirheumatic drugs for rheumatoid arthritis. J Clin Pharm Ther. 2024;2024(1):8040681.

[7]

Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic dendritic cell-based approaches in autoimmunity. Int J Mol Sci. 2021;22(16):8415.

[8]

Ni R, Song G, Fu X, et al. Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-α/BAFF signaling pathway. Biomaterials. 2020;232:119730.

[9]

Yang L, He X, Zhi D, et al. Melittin promotes dexamethasone in the treatment of adjuvant rheumatoid arthritis in rats. Front Pharmacol. 2024;15:1338432.

[10]

Rubanová D, Skoroplyas S, Libánská A, et al. Therapeutic activity and biodistribution of a nano-sized polymer-dexamethasone conjugate intended for the targeted treatment of rheumatoid arthritis. Nanomedicine. 2024;55:102716.

[11]

Kino T, Burd I, Segars JH. Dexamethasone for severe COVID-19:how does it work at cellular and molecular levels? Int J Mol Sci. 2021;22(13):6764.

[12]

Wang Q, He L, Fan D, Liang W, Fang J. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle. J Mater Chem B. 2020;8(9):1841-1851.

[13]

Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artif Cells Nanomed Biotechnol. 2023;51(1):428-440.

[14]

Ferreira-Silva M, Faria-Silva C, Viana Baptista P, Fernandes E, Ramos Fernandes A, Corvo ML. Liposomal Nanosystems in Rheumatoid Arthritis. Pharmaceutics. 2021;13(4):454.

[15]

Meka RR, Venkatesha SH, Acharya B, Moudgil KD. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine. 2019;14(11):1455-1469.

[16]

Benne N, ter Braake D, Porenta D, Lau CYJ, Mastrobattista E, Broere F. Autoantigen-dexamethasone conjugate-loaded liposomes halt arthritis development in mice. Adv Healthc Mater. 2024;13:e2304238.

[17]

Song Y, Ismail M, Shan Q, et al. ROS-mediated liposomal dexamethasone: a new FA-targeted nanoformulation to combat rheumatoid arthritis via inhibiting iRhom2/TNF-α/BAFF pathways. Nanoscale. 2021;13(47):20170-20185.

[18]

Anderson R, Franch A, tell M, et al. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis. Arthritis Res Ther. 2010;12:1-15.

[19]

Rahman M, Beg S, Verma A, Anwar F, Samad A, Kumar V. Liposomal-based therapeutic carriers for vaccine and gene delivery. In: Mishra V, Kesharwani P, Amin MCIM, Iyer A, eds. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Academic Press; 2017:151-166.

[20]

Zhang Y, Cao Y, Luo S, Mukerabigwi JF, Liu M. Nanoparticles as drug delivery systems of combination therapy for cancer. In: Grumezescu AM, ed. Nanobiomaterials in Cancer Therapy. William Andrew Publishing; 2016:253-280.

[21]

Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571.

[22]

Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372-1395.

[23]

Lombardo D, Kiselev MA. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022;14(3):543-565.

[24]

Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev. 2021;176:113851.

[25]

Gregoriadis G, Florence AT. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs. 1993;45(1):15-28.

[26]

Franco MS, Gomes ER, Roque MC, Oliveira MC. Triggered drug release from liposomes: exploiting the outer and inner tumor environment. Front Oncol. 2021;11:623760.

[27]

Wang DY, Yang G, van der Mei HC, Ren Y, Busscher HJ, Shi L. Liposomes with water as a pH-responsive functionality for targeting of acidic tumor and infection sites. Angew Chem Int Ed Engl. 2021;60(32):17714-17719.

[28]

Lindner LH, Hossann M. Factors affecting drug release from liposomes. Curr Opin Drug Discov Devel. 2010;13(1):111-123.

[29]

Gilabert-Oriol R, Ryan GM, Leung AWY, Firmino NS, Bennewith KL, Bally MB. Liposomal formulations to modulate the tumour microenvironment and antitumour immune response. Int J Mol Sci. 2018;19(10):2922-2934.

[30]

Ikeda-Imafuku M, Gao Y, Shaha S, et al. Extracellular matrix degrading enzyme with stroma-targeting peptides enhance the penetration of liposomes into tumors. J Control Release. 2022;352:1093-1103.

[31]

Kong L, Zhang SM, Chu JH, et al. Tumor microenvironmental responsive liposomes simultaneously encapsulating biological and chemotherapeutic drugs for enhancing antitumor efficacy of NSCLC. Int J Nanomedicine. 2020;15:6451-6468.

[32]

Wu IY, Nikolaisen TE, Škalko-Basnet N, di Cagno MP. The hypotonic environmental changes affect liposomal formulations for nose-to-brain targeted drug delivery. J Pharm Sci. 2019;108(8):2570-2579.

[33]

Wang S, Chen Y, Guo J, Huang Q. Liposomes for tumor targeted therapy: a review. Int J Mol Sci. 2023;24(3):2643.

[34]

Fielding RM. Liposomal drug delivery. Advantages and limitations from a clinical pharmacokinetic and therapeutic perspective. Clin Pharmacokinet. 1991;21(3):155-164.

[35]

Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. Semin Oncol. 2004;31(6 Suppl 13):5-15.

[36]

Maurer N, Fenske DB, Cullis PR. Developments in liposomal drug delivery systems. Expert Opin Biol Ther. 2001;1(6):923-947.

[37]

Hashmi MP, Koester TM. Applications of synthetically produced materials in clinical medicine. Reference Module in Materials Science and Materials Engineering. Elsevier; 2018.

[38]

Chen J, Hu S, Sun M, et al. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci. 2024;193:106688.

[39]

Sercombe L, Veerati T, Moheimani F, Wu S, Sood A, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.

[40]

Zahednezhad F, Saadat M, Valizadeh H, Zakeri-Milani P, Baradaran B. Liposome and immune system interplay: challenges and potentials. J Control Release. 2019;305:194-209.

[41]

Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J. 2012;14(2):303-315.

[42]

Moosavian SA, Bianconi V, Pirro M, Sahebkar A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin Cancer Biol. 2021;69:337-348.

[43]

Chopra D, Gulati M, Singh S, Duggal S, Kumar R. Use of liposomal drugs in the treatment of rheumatoid arthritis. Curr Rheumatol Rev. 2008;4(1):63-70.

[44]

van den Hoven JM, van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, Storm G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm. 2011;8(4):1002-1015.

[45]

Kapoor B, Singh SK, Gulati M, Gupta R, Vaidya Y. Application of liposomes in treatment of rheumatoid arthritis: quo vadis. ScientificWorldJournal. 2014;2014:978351.

[46]

Rahman M, Kumar V, Beg S, Sharma G, Katare OP, Anwar F. Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artif Cells Nanomed Biotechnol. 2016;44(7):1597-1608.

[47]

Zhang M, Zhang R, Dong Y, et al. Oxygen supplementation liposomes for rheumatoid arthritis treatment via synergistic phototherapy and repolarization of M1-to-M2 macrophages. Chem Eng J. 2023;459:141484.

[48]

Ulmansky R, Turjeman K, Baru M, et al. Glucocorticoids in nano-liposomes administered intravenously and subcutaneously to adjuvant arthritis rats are superior to the free drugs in suppressing arthritis and inflammatory cytokines. J Control Release. 2012;160(2):299-305.

[49]

Paoletti A, Ly B, Cailleau C, et al. Liposomal AntagomiR-155-5p restores anti-inflammatory macrophages and improves arthritis in preclinical models of rheumatoid arthritis. Arthritis Rheumatol. 2024;76(1):18-31.

[50]

Zimmerman DH, Szekanecz Z, Markovics A, Rosenthal KS, Carambula RE, Mikecz K. Current status of immunological therapies for rheumatoid arthritis with a focus on antigen-specific therapeutic vaccines. Front Immunol. 2024;15:1334281.

[51]

Geng W, Zhao J, Tao B, et al. Regulation of rheumatoid arthritis microenvironment via a self-healing injectable hydrogel for improved inflammation elimination and bone repair. Bioactive Materials. 2024;36:287-300.

[52]

Alturaiki W, Alhamad A, Alturaiqy M, et al. Assessment of IL-1β IL-6, TNF-α IL-8, and CCL 5 levels in newly diagnosed Saudi patients with rheumatoid arthritis. Int J Rheum Dis. 2022;25(9):1013-1019.

[53]

Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6(1):15.

[54]

You S, Koh JH, Leng L, Kim WU, Bucala R. The tumor-like phenotype of rheumatoid synovium: molecular profiling and prospects for precision medicine. Arthritis Rheumatol. 2018;70(5):637-652.

[55]

Kerekes G, Szekanecz Z, Dér H, et al. Endothelial dysfunction and atherosclerosis in rheumatoid arthritis: a multiparametric analysis using imaging techniques and laboratory markers of inflammation and autoimmunity. J Rheumatol. 2008;35(3):398-406.

[56]

Deane KD. Rheumatoid arthritis: prediction of future clinically-apparent disease, and prevention. Curr Opin Rheumatol. 2024;36(3):225-234.

[57]

Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020;11:1912.

[58]

Zhao Y-P, Han JF, Zhang FY, et al. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for rheumatoid arthritis therapy. Drug Deliv. 2022;29(1):2269-2282.

[59]

Sadra V, Khabbazi A, Kolahi S, Hajialiloo M, Ghojazadeh M. Randomized double-blind study of the effect of dexamethasone and methylprednisolone pulse in the control of rheumatoid arthritis flare-up: a preliminary study. Int J Rheum Dis. 2014;17(4):389-393.

[60]

Verhoef CM, van Roon JAG, Vianen ME, Lafeber FPJG, Bijlsma JWJ. The immune suppressive effect of dexamethasone in rheumatoid arthritis is accompanied by upregulation of interleukin 10 and by differential changes in interferon γ and interleukin 4 production. Ann Rheum Dis. 1999;58(1):49-54.

[61]

Kerstens F, Spijkers K, Wolthuis D, Boers M, van Herwaarden N, ten Cate D. Switching from prednisolone to dexamethasone in difficult-to-treat rheumatoid arthritis. Rheumatology. 2024;63(1):e15-e16.

[62]

Warrington TP, Bostwick JM. Psychiatric adverse effects of corticosteroids. Mayo Clinic Proceedings. Vol 81. Elsevier; 2006:1361-1367.

[63]

Li Y, Wei S, Sun Y, Zong S, Sui Y. Nanomedicine-based combination of dexamethasone palmitate and MCL-1 siRNA for synergistic therapeutic efficacy against rheumatoid arthritis. Drug Deliv Transl Res. 2021;11:2520-2529.

[64]

Grasselli M, Alonso SdV. Polymer-based nanoparticles: fabrication to applications—the many faces of DC8, 9PC and albumin. Biophys Rev. 2021;13(6):925-930.

[65]

Goshi M, Pytel N, Elbayoumi T. Partially polymerized phospholipid vesicles for efficient delivery of macromolecules. Methods Mol Biol. 2019;2000:267-277.

[66]

Hu W, Mao A, Wong P, et al. Characterization of 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycerol)-2000] and its complex with doxorubicin using nuclear magnetic resonance spectroscopy and molecular dynamics. Bioconjug Chem. 2017;28(6):1777-1790.

[67]

Hu J, Wang J, Wang G, Yao Z, Dang X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int J Mol Med. 2016;37(3):690-702.

[68]

Hu L, Luo X, Zhou S, et al. Neutrophil-mediated delivery of dexamethasone palmitate-loaded liposomes decorated with a sialic acid conjugate for rheumatoid arthritis treatment. Pharm Res. 2019;36:1-15.

[69]

Jia M, Deng C, Luo J, et al. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats. Int J Pharm. 2018;540(1-2):57-64.

[70]

Chu D, Dong X, Shi X, Zhang C, Wang Z. Neutrophil-based drug delivery systems. Adv Mater. 2018;30(22):e1706245.

[71]

Zhao Y, Zhang H, Zhang Q, Tao H. Research Progress of neutrophil-mediated drug delivery strategies for inflammation-related disease. Pharmaceutics. 2023;15:15.

[72]

Luo X, Hu L, Zheng H, et al. Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(sialic acid)-octadecylamine conjugate for lung cancer treatment. Drug Deliv. 2018;25(1):1200-1212.

[73]

Wang S, Yang S, Lai X, et al. Sialic acid conjugate-modified liposomal dexamethasone palmitate targeting neutrophils for rheumatoid arthritis therapy: influence of particle size. AAPS PharmSciTech. 2021;22:1-18.

[74]

Alanärä T, Karstila K, Moilanen T, Silvennoinen O, Isomäki P. Expression of IL-10 family cytokines in rheumatoid arthritis: elevated levels of IL-19 in the joints. Scand J Rheumatol. 2010;39(2):118-126.

[75]

Keystone E, Wherry J, Grint P. IL-10 as a therapeutic strategy in the treatment of rheumatoid arthritis. Rheum Dis Clin N Am. 1998;24(3):629-639.

[76]

Cush JJ, Splawski JB, Thomas R, et al. Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis Rheum. 1995;38(1):96-104.

[77]

Kawakami A, Eguchi K, Matsuoka N, et al. Inhibitory effects of interleukin-10 on synovial cells of rheumatoid arthritis. Immunology. 1997;91(2):252-259.

[78]

Alshraim MO, Sangi S, Harisa GI, Alomrani AH, Yusuf O, Badran MM. Chitosan-coated flexible liposomes magnify the anticancer activity and bioavailability of docetaxel: impact on composition. Molecules. 2019;24(2):250-268.

[79]

Ogunsola OA, Kraeling ME, Zhong S, Pochan DJ, Bronaugh RL, Raghavan SR. Structural analysis of “flexible” liposome formulations: new insights into the skin-penetrating ability of soft nanostructures. Soft Matter. 2012;8:10226-10232.

[80]

Rauchhaus U, Schwaiger FW, Panzner S. Separating therapeutic efficacy from glucocorticoid side-effects in rodent arthritis using novel, liposomal delivery of dexamethasone phosphate: long-term suppression of arthritis facilitates interval treatment. Arthritis Res Ther. 2009;11:1-9.

[81]

Sheikh A, Alhakamy NA, Md S, Kesharwani P. Recent progress of RGD modified liposomes as multistage rocket against cancer. Front Pharmacol. 2021;12:803304.

[82]

Song Z, Lin Y, Zhang X, et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomedicine. 2017;12:1941-1958.

[83]

Su W, Wang H, Wang S, et al. PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. Int J Pharm. 2012;426(1-2):170-181.

[84]

Koning GA, Schiffelers RM, Wauben MHM, et al. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum. 2006;54(4):1198-1208.

[85]

Patil Kose AH, Mangaonkar K. Application of machine learning in rheumatoid arthritis diseases research: review and future directions. Comb Chem High Throughput Screen. 2023;26(13):2259-2266.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (2886KB)

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/