Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals

Lujain Bader Eddin , Mohamed Fizur Nagoor Meeran , Niraj Kumar Jha , Samer N. Goyal , Shreesh Ojha

Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (1) : 67 -91.

PDF (3220KB)
Animal Models and Experimental Medicine ›› 2025, Vol. 8 ›› Issue (1) : 67 -91. DOI: 10.1002/ame2.12496
REVIEW

Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals

Author information +
History +
PDF (3220KB)

Abstract

Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fibrosis, which appears to be a leading cause of cardiovascular diseases. Cardiac fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly collagen in the cardiac interstitium. Many experimental studies have demonstrated that fibrotic injury in the heart is reversible; therefore, it is vital to understand different molecular mechanisms that are involved in the initiation, progression, and resolution of cardiac fibrosis to enable the development of antifibrotic agents. Of the many experimental models, one of the recent models that has gained renewed interest is isoproterenol (ISP)–induced cardiac fibrosis. ISP is a synthetic catecholamine, sympathomimetic, and nonselective β-adrenergic receptor agonist. The overstimulated and sustained activation of β-adrenergic receptors has been reported to induce biochemical and physiological alterations and ultimately result in cardiac remodeling. ISP has been used for decades to induce acute myocardial infarction. However, the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis; this practice has increased in recent years. Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy. The induced oxidative stress with subsequent perturbations in cellular signaling cades through triggering the release of free radicals is considered the initiating mechanism of myocardial fibrosis. ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals. In recent years, numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis. The present review exclusively provides a comprehensive summary of the pathological biochemical, histological, and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy. It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as synthetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.

Keywords

cardiac fibrosis / catecholamines / experimental models / isoproterenol / myocardial fibrosis / phytochemicals / β-adrenergic receptors

Cite this article

Download citation ▾
Lujain Bader Eddin, Mohamed Fizur Nagoor Meeran, Niraj Kumar Jha, Samer N. Goyal, Shreesh Ojha. Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals. Animal Models and Experimental Medicine, 2025, 8(1): 67-91 DOI:10.1002/ame2.12496

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hinderer S, Schenke-Layland K. Cardiac fibrosis—a short review of causes and therapeutic strategies. Adv Drug Deliv Rev. 2019;146:77-82.

[2]

Kurose H. Cardiac fibrosis and fibroblasts. Cells. 2021;10(7).

[3]

de Jong S, van Veen TA, van Rijen HV, de Bakker JM. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol. 2011;57(6):630-638.

[4]

Soejima K, Stevenson WG, Maisel WH, Sapp JL, Epstein LM. Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus. Circulation. 2002;106(13):1678-1683.

[5]

McMahon AW, Levenson MS, McEvoy BW, Mosholder AD, Murphy D. Age and risks of FDA-approved long-acting β2-adrenergic receptor agonists. Pediatrics. 2011;128(5):e1147-e1154.

[6]

Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: plant-based approaches for intervention. Phytother Res. 2018;32(10):1908-1932.

[7]

Vergaro G, Prud’homme M, Fazal L, et al. Inhibition of galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. Hypertension. 2016;67(3):606-612.

[8]

Brooks WW, Conrad CH. Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: structural and functional correlates. Comp Med. 2009;59(4):339-343.

[9]

Matkovich SJ, Wang W, Tu Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 2010;106(1):166-175.

[10]

Ocaranza MP, Díaz-Araya G, Chiong M, et al. Isoproterenol and angiotensin I-converting enzyme in lung, left ventricle, and plasma during myocardial hypertrophy and fibrosis. J Cardiovasc Pharmacol. 2002;40(2):246-254.

[11]

Xie Y, Zhang L, Zhang B, Fang L. Roles of heat shock factor 1 in isoproterenol-induced myocardial fibrosis in mice. Mol Med Rep. 2015;12(4):5872-5878.

[12]

Tian M, Jiang X, Li X, Yang J, Zhang C, Zhang W. LKB1IP promotes pathological cardiac hypertrophy by targeting PTEN/Akt signalling pathway. J Cell Mol Med. 2021;25(5):2517-2529.

[13]

Zhang GX, Ohmori K, Nagai Y, et al. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice. J Mol Cell Cardiol. 2007;42(4):804-811.

[14]

Shih YC, Chen CL, Zhang Y, et al. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ Res. 2018;122(8):1052-1068.

[15]

Zhang YG, Li YG, Liu BG, et al. Urotensin II accelerates cardiac fibrosis and hypertrophy of rats induced by isoproterenol. Acta Pharmacol Sin. 2007;28(1):36-43.

[16]

Ji S, Guo R, Wang J, et al. Microsomal prostaglandin E(2) synthase-1 deletion attenuates isoproterenol-induced myocardial fibrosis in mice. J Pharmacol Exp Ther. 2020;375(1):40-48.

[17]

Ma S, Ma J, Tu Q, Zheng C, Chen Q, Lv W. Isoproterenol increases left atrial fibrosis and susceptibility to atrial fibrillation by inducing atrial ischemic infarction in rats. Front Pharmacol. 2020;11:493.

[18]

Wu Y, Liu Y, Pan Y, et al. MicroRNA-135a inhibits cardiac fibrosis induced by isoproterenol via TRPM7 channel. Biomed Pharmacother. 2018;104:252-260.

[19]

Zhang N, Zhang Y, Qian H, Wu S, Cao L, Sun Y. Selective targeting of ubiquitination and degradation of PARP1 by E3 ubiquitin ligase WWP2 regulates isoproterenol-induced cardiac remodeling. Cell Death Differ. 2020;27(9):2605-2619.

[20]

Xiao H, Li H, Wang JJ, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur Heart J. 2018;39(1):60-69.

[21]

Koga M, Karim MR, Kuramochi M, Izawa T, Kuwamura M, Yamate J. Appearance of heterogeneous macrophages during development of isoproterenol-induced rat myocardial fibrosis. Toxicol Pathol. 2021;49(5):1048-1061.

[22]

Jiang X, Zhang K, Gao C, et al. Activation of FMS-like tyrosine kinase 3 protects against isoprenaline-induced cardiac hypertrophy by improving autophagy and mitochondrial dynamics. FASEB J. 2022;36(12):e22672.

[23]

Zhang W, Zhu B, Ding S, et al. Disruption of STAT6 signal promotes cardiac fibrosis through the mobilization and transformation of CD11b(+) immature myeloid cells. Front Physiol. 2020;11:579712.

[24]

Sun JM, Wang CM, Guo Z, et al. Reduction of isoproterenol-induced cardiac hypertrophy and modulation of myocardial connexin43 by a KATP channel agonist. Mol Med Rep. 2015;11(3):1845-1850.

[25]

Ren S, Chang S, Tran A, Mandelli A, Wang Y, Wang JJ. Implantation of an isoproterenol mini-pump to induce heart failure in mice. J Vis Exp. 2019;(152).

[26]

Chang S, Ren S, Rau C, Wang J. Isoproterenol-induced heart failure mouse model using osmotic pump implantation. Methods Mol Biol. 2018;1816:207-220.

[27]

Fernández-Ruiz I. Cardiac fibroblasts contribute to sexually dimorphic responses to cardiac injury. Nat Rev Cardiol. 2021;18(8):542.

[28]

Yusifov A, Chhatre VE, Zumo JM, et al. Cardiac response to adrenergic stress differs by sex and across the lifespan. Geroscience. 2021;43(4):1799-1813.

[29]

Peter AK, Walker CJ, Ceccato T, et al. Cardiac fibroblasts mediate a sexually dimorphic fibrotic response to β-adrenergic stimulation. J Am Heart Assoc. 2021;10(11):e018876.

[30]

Grant MKO, Abdelgawad IY, Lewis CA, Seelig D, Zordoky BN. Lack of sexual dimorphism in a mouse model of isoproterenol-induced cardiac dysfunction. PLoS ONE. 2020;15(7):e0232507.

[31]

Shang L, Pin L, Zhu S, et al. Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/GSK-3β signaling pathway. Chem Biol Interact. 2019;307:21-28.

[32]

Sun TL, Li WQ, Tong XL, Liu XY, Zhou WH. Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway. Eur J Pharmacol. 2021;891:173690.

[33]

Liu ZH, Zhang Y, Wang X, et al. SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed Pharmacother. 2019;118:109227.

[34]

Ma ZG, Yuan YP, Zhang X, Xu SC, Wang SS, Tang QZ. Piperine attenuates pathological cardiac fibrosis via PPAR-γ/AKT pathways. EBioMedicine. 2017;18:179-187.

[35]

Adzika GK, Hou H, Adekunle AO, et al. Amlexanox and Forskolin prevents isoproterenol-induced cardiomyopathy by subduing Cardiomyocyte hypertrophy and maladaptive inflammatory responses. Front Cell Dev Biol. 2021;9:719351.

[36]

Adzika GK, Hou H, Adekunle AO, et al. Isoproterenol-induced cardiomyopathy recovery intervention: Amlexanox and Forskolin enhances the resolution of catecholamine stress-induced maladaptive myocardial remodeling. Front Cardiovasc Med. 2021;8:719805.

[37]

Li L, Fang P, Chen J, Zhang C, Tao H. Protective effect of sinomenine on isoproterenol-induced cardiac hypertrophy in mice. J Appl Biomed. 2021;19(3):142-148.

[38]

Ding YY, Li JM, Guo FJ, et al. Triptolide upregulates myocardial Forkhead helix transcription factor p3 expression and attenuates cardiac hypertrophy. Front Pharmacol. 2016;7:471.

[39]

Ryu Y, Jin L, Kee HJ, et al. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Sci Rep. 2016;6(1):34790.

[40]

Yun W, Qian L, Yuan R, Xu H. Periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation in mice. Biomed Pharmacother. 2021;139:111562.

[41]

Wang J, Shen W, Zhang JY, Jia CH, Xie ML. Stevioside attenuates isoproterenol-induced mouse myocardial fibrosis through inhibition of the myocardial NF-κB/TGF-β1/Smad signaling pathway. Food Funct. 2019;10(2):1179-1190.

[42]

Ma D, Zhang J, Zhang Y, et al. Inhibition of myocardial hypertrophy by magnesium isoglycyrrhizinate through the TLR4/NF-κB signaling pathway in mice. Int Immunopharmacol. 2018;55:237-244.

[43]

Ma S, Yang D, Wang K, Tang B, Li D, Yang Y. Cryptotanshinone attenuates isoprenaline-induced cardiac fibrosis in mice associated with upregulation and activation of matrix metalloproteinase-2. Mol Med Rep. 2012;6(1):145-150.

[44]

Liu BY, Li L, Liu GL, et al. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin. 2021;42(5):701-714.

[45]

Yang J, Wang Z, Chen DL. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress. Biomed Pharmacother. 2017;93:1343-1357.

[46]

Xiao J, Zhu T, Yin YZ, Sun B. Notoginsenoside R1, a unique constituent of Panax notoginseng, blinds proinflammatory monocytes to protect against cardiac hypertrophy in ApoE(–/–) mice. Eur J Pharmacol. 2018;833:441-450.

[47]

Jin W, Zhang Y, Xue Y, et al. Crocin attenuates isoprenaline-induced myocardial fibrosis by targeting TLR4/NF-κB signaling: connecting oxidative stress, inflammation, and apoptosis. Naunyn Schmiedeberg’s Arch Pharmacol. 2020;393(1):13-23.

[48]

Ning BB, Zhang Y, Wu DD, et al. Luteolin-7-diglucuronide attenuates isoproterenol-induced myocardial injury and fibrosis in mice. Acta Pharmacol Sin. 2017;38(3):331-341.

[49]

Challa AA, Vukmirovic M, Blackmon J, Stefanovic B. Withaferin-A reduces type I collagen expression in vitro and inhibits development of myocardial fibrosis in vivo. PLoS ONE. 2012;7(8):e42989.

[50]

Gan M, Zheng T, Shen L, et al. Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2. Biomed Pharmacother. 2019;112:108618.

[51]

Liu L, Cui J, Yang Q, et al. Apocynin attenuates isoproterenol-induced myocardial injury and fibrogenesis. Biochem Biophys Res Commun. 2014;449(1):55-61.

[52]

Jiang XH, Wu QQ, Xiao Y, et al. Evodiamine prevents isoproterenol-induced cardiac fibrosis by regulating endothelial-to-mesenchymal transition. Planta Med. 2017;83(9):761-769.

[53]

Wan Y, Xu L, Wang Y, Tuerdi N, Ye M, Qi R. Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur J Pharmacol. 2018;833:545-554.

[54]

Zhang J, Huang M, Shen S, et al. Qiliqiangxin attenuates isoproterenol-induced cardiac remodeling in mice. Am J Transl Res. 2017;9(12):5585-5593.

[55]

Fang Z, Liu Z, Tao B, Jiang X. Engeletin mediates antiarrhythmic effects in mice with isoproterenol-induced cardiac remodeling. Biomed Pharmacother. 2023;161:114439.

[56]

Cong P, Huang G, Zhao Y, Lan Y. Hydroxysafflor yellow A mitigates myocardial fibrosis induced by isoproterenol and angiotensin II. Am J Transl Res. 2022;14(12):8588-8598.

[57]

Yanan S, Bohan L, Shuaifeng S, Wendan T, Ma Z, Wei L. Inhibition of Mogroside IIIE on isoproterenol-induced myocardial fibrosis through the TLR4/MyD88/NF-κB signaling pathway. Iran J Basic Med Sci. 2023;26(1):114-120.

[58]

Li M, Tan H, Gao T, et al. Gypensapogenin I ameliorates isoproterenol (ISO)-induced myocardial damage through regulating the TLR4/NF-κB/NLRP3 pathway. Molecules. 2022;27(16):5298.

[59]

Han X, Bai L, Kee HJ, Jeong MH. Syringic acid mitigates isoproterenol-induced cardiac hypertrophy and fibrosis by downregulating Ereg. J Cell Mol Med. 2022;26(14):4076-4086.

[60]

Xue Y, Zhang M, Liu M, et al. 8-Gingerol ameliorates myocardial fibrosis by attenuating reactive oxygen species, apoptosis, and autophagy via the PI3K/Akt/mTOR signaling pathway. Front Pharmacol. 2021;12:711701.

[61]

Li L, Fang H, Yu YH, Liu SX, Yang ZQ. Liquiritigenin attenuates isoprenaline-induced myocardial fibrosis in mice through the TGF-β1/Smad2 and AKT/ERK signaling pathways. Mol Med Rep. 2021;24(4):686.

[62]

Sun J, Zhu J, Chen L, et al. Forsythiaside B inhibits myocardial fibrosis via down regulating TGF-β1/Smad signaling pathway. Eur J Pharmacol. 2021;908:174354.

[63]

Liu R, Zhang HB, Yang J, Wang JR, Liu JX, Li CL. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur Rev Med Pharmacol Sci. 2018;22(21):7500-7508.

[64]

Wei Y, Wu Y, Feng K, et al. Astragaloside IV inhibits cardiac fibrosis via miR-135a-TRPM7-TGF-β/Smads pathway. J Ethnopharmacol. 2020;249:112404.

[65]

Souza DS, Barreto TO, Menezes-Filho JER, et al. Myocardial hypertrophy is prevented by farnesol through oxidative stress and ERK1/2 signaling pathways. Eur J Pharmacol. 2020;887:173583.

[66]

Ni Y, Deng J, Liu X, Li Q, Zhang J, Bai H. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J Cell Mol Med. 2021;25(1):203-216.

[67]

Li JS, Zhu XY, Lu ML, Gao JH, Wang HX, Yu XC. Effect of combined intervention of electroacupuncture and astragaloside IV on myocardial hypertrophy and TGF-β 1/Smad signaling in rats with myocardial fibrosis. Zhen Ci Yan Jiu. 2017;42(6):477-481.

[68]

Thangaiyan R, Arjunan S, Govindasamy K, Khan HA, Alhomida AS, Prasad NR. Galangin attenuates isoproterenol-induced inflammation and fibrosis in the cardiac tissue of albino Wistar rats. Front Pharmacol. 2020;11:1940.

[69]

Che Y, Shen D-F. Wang Z-P, et al. Protective role of berberine in isoprenaline-induced cardiac fibrosis in rats. BMC Cardiovasc Disord. 2019;19(1):219.

[70]

Li M, Jiang Y, Jing W, Sun B, Miao C, Ren L. Quercetin provides greater cardioprotective effect than its glycoside derivative rutin on isoproterenol-induced cardiac fibrosis in the rat. Can J Physiol Pharmacol. 2013;91(11):951-959.

[71]

Wang QW, Yu XF, Xu HL, Zhao XZ, Sui DY. Ginsenoside Re improves isoproterenol-induced myocardial fibrosis and heart failure in rats. Evid Based Complement Alternat Med. 2019;2019:3714508.

[72]

Alam MN, Hossain MM, Rahman MM, et al. Astaxanthin prevented oxidative stress in heart and kidneys of isoproterenol-administered aged rats. J Diet Suppl. 2018;15(1):42-54.

[73]

Krestinina O, Baburina Y, Krestinin R, Odinokova I, Fadeeva I, Sotnikova L. Astaxanthin prevents mitochondrial impairment induced by isoproterenol in isolated rat heart mitochondria. Antioxidants (Basel). 2020;9(3):262.

[74]

Krestinin R, Baburina Y, Odinokova I, et al. Isoproterenol-induced permeability transition pore-related dysfunction of heart mitochondria is attenuated by astaxanthin. Biomedicine. 2020;8(10):437.

[75]

Zhou H, Chen X, Chen L, et al. Anti-fibrosis effect of scutellarin via inhibition of endothelial-mesenchymal transition on isoprenaline-induced myocardial fibrosis in rats. Molecules. 2014;19(10):15611-15623.

[76]

Song YH, Cai H, Gu N, Qian CF, Cao SP, Zhao ZM. Icariin attenuates cardiac remodelling through down-regulating myocardial apoptosis and matrix metalloproteinase activity in rats with congestive heart failure. J Pharm Pharmacol. 2011;63(4):541-549.

[77]

Zhao L, Wu D, Sang M, Xu Y, Liu Z, Wu Q. Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-κB and JAK/STAT signaling pathways in rats. Int Immunopharmacol. 2017;48:102-109.

[78]

Zuo YM, Wang XH, Gao S, Zhang Y. Oligomerized grape seed proanthocyanidins ameliorates isoproterenol-induced cardiac remodeling in rats: role of oxidative stress. Phytother Res. 2011;25(5):732-739.

[79]

Li Z, Chen K, Zhu YZ. Leonurine inhibits cardiomyocyte pyroptosis to attenuate cardiac fibrosis via the TGF-β/Smad2 signalling pathway. PLoS ONE. 2022;17(11):e0275258.

[80]

Ming S, Kan M, Liu L, et al. Protective effect of Shengmaiyin in myocardial hypertrophy-induced rats: a genomic analysis by 16S rDNA. Evid Based Complement Alternat Med. 2022;2022:3188292.

[81]

Syed AM, Kundu S, Ram C, et al. Aloin alleviates pathological cardiac hypertrophy via modulation of the oxidative and fibrotic response. Life Sci. 2022;288:120159.

[82]

Liu F, Su H, Liu B, et al. STVNa attenuates isoproterenol-induced cardiac hypertrophy response through the HDAC4 and Prdx2/ROS/Trx1 pathways. Int J Mol Sci. 2020;21(2):682.

[83]

Althurwi HN, Abdel-Kader MS, Alharthy KM, Salkini MA, Albaqami FF. Cymbopogon proximus essential oil protects rats against isoproterenol-induced cardiac hypertrophy and fibrosis. Molecules. 2020;25(8):1786.

[84]

Zhao Y, Jiang Y, Chen Y, et al. Dissection of mechanisms of Chinese medicinal formula Si-Miao-Yong-an decoction protects against cardiac hypertrophy and fibrosis in isoprenaline-induced heart failure. J Ethnopharmacol. 2020;248:112050.

[85]

Kumar S, Enjamoori R, Jaiswal A, Ray R, Seth S, Maulik SK. Catecholamine-induced myocardial fibrosis and oxidative stress is attenuated by Terminalia arjuna (Roxb.). J Pharm Pharmacol. 2009;61(11):1529-1536.

[86]

Cao YY, Li K, Li Y, et al. Dendrobium candidum aqueous extract attenuates isoproterenol-induced cardiac hypertrophy through the ERK signalling pathway. Pharm Biol. 2020;58(1):176-183.

[87]

Liu L, Ning B, Cui J, Zhang T, Chen Y. miR-29c is implicated in the cardioprotective activity of Panax notoginseng saponins against isoproterenol-induced myocardial fibrogenesis. J Ethnopharmacol. 2017;198:1-4.

[88]

Yin Q, Lu H, Bai Y, et al. A metabolite of Danshen formulae attenuates cardiac fibrosis induced by isoprenaline, via a NOX2/ROS/p38 pathway. Br J Pharmacol. 2015;172(23):5573-5585.

[89]

Yang HX, Xu GR, Zhang C, et al. The aqueous extract of Gentianella acuta improves isoproterenol-induced myocardial fibrosis via inhibition of the TGF-β1/Smads signaling pathway. Int J Mol Med. 2020;45(1):223-233.

[90]

Li AY, Wang JJ, Yang SC, et al. Protective role of Gentianella acuta on isoprenaline induced myocardial fibrosis in rats via inhibition of NF-κB pathway. Biomed Pharmacother. 2019;110:733-741.

[91]

Eladwy RA, Mantawy EM, El-Bakly WM, Fares M, Ramadan LA, Azab SS. Mechanistic insights to the cardioprotective effect of blueberry nutraceutical extract in isoprenaline-induced cardiac hypertrophy. Phytomedicine. 2018;51:84-93.

[92]

Xu GR, Zhang C, Yang HX, et al. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother. 2020;126:110071.

[93]

Wang L, Yuan D, Zheng J, et al. Chikusetsu saponin IVa attenuates isoprenaline-induced myocardial fibrosis in mice through activation autophagy mediated by AMPK/mTOR/ULK1 signaling. Phytomedicine. 2019;58:152764.

[94]

Zhong Y, Chen L, Li M, et al. Dangshen Erling decoction ameliorates myocardial hypertrophy via inhibiting myocardial inflammation. Front Pharmacol. 2021;12:725186.

[95]

Peng M, Yang M, Lu Y, et al. Huoxin pill inhibits isoproterenol-induced transdifferentiation and collagen synthesis in cardiac fibroblasts through the TGF-β/Smads pathway. J Ethnopharmacol. 2021;275:114061.

[96]

Szeiffova Bacova B, Viczenczova C, Andelova K, et al. Antiarrhythmic effects of melatonin and Omega-3 are linked with protection of myocardial Cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants (Basel). 2020;9(6):546.

[97]

Miyoshi T, Nakamura K, Miura D, et al. Effect of LCZ696, a dual angiotensin receptor neprilysin inhibitor, on isoproterenol-induce. ardiac hypertrophy, fibrosis, and hemodynamic change in rats. Cardiol J. 2019;26(5):575-583.

[98]

Jaiswal A, Kumar S, Seth S, Dinda AK, Maulik SK. Effect of U50, 488H, a κ-opioid receptor agonist on myocardial α-and β-myosin heavy chain expression and oxidative stress associated with isoproterenol-induced cardiac hypertrophy in rat. Mol Cell Biochem. 2010;345(1-2):231-240.

[99]

Yin W, Zhang P, Huang JH, et al. Stimulation of kappa-opioid receptor reduces isoprenaline-induced cardiac hypertrophy and fibrosis. Eur J Pharmacol. 2009;607(1-3):135-142.

[100]

Savergnini SQ, Ianzer D, Carvalho MB, et al. The novel mas agonist, CGEN-856S, attenuates isoproterenol-induce. cardiac remodeling and myocardial infarction injury in rats. PLoS ONE. 2013;8(3):e57757.

[101]

Song LF, Jiang W, Qing Y, et al. The antagonistic effect of PI3K-gamma inhibitor AS605240 on cardiac hypertrophy and cardiac fibrosis induced by isoproterenol in rats. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011;42(4):471-474.

[102]

Li L, Zhang LK, Pang YZ, et al. Cardioprotective effects of ghrelin and des-octanoyl ghrelin on myocardial injury induced by isoproterenol in rats. Acta Pharmacol Sin. 2006;27(5):527-535.

[103]

Dai H, Chen L, Gao D, Fei A. Phosphocreatine attenuates isoproterenol-induced cardiac fibrosis and Cardiomyocyte apoptosis. Biomed Res Int. 2019;2019:5408289.

[104]

Sun J, Hao W, Fillmore N, et al. hRelaxin-2 fusion protein treatment prevents isoproterenol-induced hypertrophy and fibrosis. J Mol Cell Cardiol. 2018;124:94.

[105]

Liu J, Jin Y, Wang B, Zhang J, Zuo S. C188-9 reduces TGF-β1-induced fibroblast activation and alleviates ISO-induced cardiac fibrosis in mice. FEBS Open Bio. 2021;11(7):2033-2040.

[106]

Wang X, Huang T, Xie H. CTRP12 alleviates isoproterenol induced cardiac fibrosis via inhibiting the activation of P38 pathway. Chem Pharm Bull (Tokyo). 2021;69(2):178-184.

[107]

Tang K, Jiao LM, Qi YR, et al. Discovery of novel Pyrazole-based KDM5B inhibitor TK-129 and its protective effects on myocardial remodeling and fibrosis. J Med Chem. 2022;65(19):12979-13000.

[108]

Chen X, Xia X, Dong T, Lin Z, Du L, Zhou H. Trimetazidine reduces cardiac fibrosis in rats by inhibiting NOX2-mediated endothelial-to-mesenchymal transition. Drug Des Devel Ther. 2022;16:2517-2527.

[109]

Chen Z, Zhou H, Huang X, et al. Pirfenidone attenuates cardiac hypertrophy against isoproterenol by inhibiting activation of the janus tyrosine kinase-2/signal transducer and activator of transcription 3 (JAK-2/STAT3) signaling pathway. Bioengineered. 2022;13(5):12772-12782.

[110]

Takahara S, Ferdaoussi M, Srnic N, et al. Inhibition of ATGL in adipose tissue ameliorates isoproterenol-induced cardiac remodeling by reducing adipose tissue inflammation. Am J Physiol Heart Circ Physiol. 2021;320(1):H432-h446.

[111]

Rai V, Sharma P, Agrawal S, Agrawal DK. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol Cell Biochem. 2017;424(1–2):123-145.

[112]

Nichtova Z, Novotova M, Kralova E, Stankovicova T. Morphological and functional characteristics of models of experimental myocardial injury induced by isoproterenol. Gen Physiol Biophys. 2012;31(2):141-151.

[113]

Sturgess J, Reid L. The effect of isoprenaline and pilocarpine on (a) bronchial mucus-secreting tissue and (b) pancreas, salivary glands, heart, thymus, liver and spleen. Br J Exp Pathol. 1973;54(4):388-403.

[114]

McKleroy W, Lee T-H. Atabai K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol. 2013;304(11):L709-L721.

[115]

Tanner MA, Thomas TP, Maitz CA, Grisanti LA. β2-adrenergic receptors increase cardiac fibroblast proliferation through the Gαs/ERK1/2-dependent secretion of interleukin-6. Int J Mol Sci. 2020;21(22):8507.

[116]

Lv T, Du Y, Cao N, et al. Proliferation in cardiac fibroblasts induced by β1-adrenoceptor autoantibody and the underlying mechanisms. Sci Rep. 2016;6(1):32430.

[117]

Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012;5(1):15.

[118]

Sun M, Yu H, Zhang Y, Li Z, Gao W. MicroRNA-214 mediates isoproterenol-induced proliferation and collagen synthesis in cardiac fibroblasts. Sci Rep. 2015;5(1):18351.

[119]

Purnomo Y, Piccart Y, Coenen T, Prihadi JS, Lijnen PJ. Oxidative stress and transforming growth factor-β1-induced cardiac fibrosis. Cardiovasc Hematol Disord Drug Targets. 2013;13(2):165-172.

[120]

Elibol B, Kilic U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front Endocrinol. 2018;9:614.

[121]

Bugyei-Twum A, Ford C, Civitarese R, et al. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc Res. 2018;114(12):1629-1641.

[122]

Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett. 2019;24(1):36.

[123]

Hori YS, Kuno A, Hosoda R, Horio Y. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS ONE. 2013;8(9):e73875.

[124]

Xiaoyuan S, Xinzhong H. Effect of resveratrol on aniogtensin II induced cardiomyocytes hypertrophy and FoxO1/MnSOD signaling pathway. Zhonghua Xin Xue Guan Bing Za Zhi. 2015;43(8):718-723.

[125]

Kis A, Murdoch C, Zhang M, et al. Defective peroxisomal proliferators activated receptor gamma activity due to dominant-negative mutation synergizes with hypertension to accelerate cardiac fibrosis in mice. Eur J Heart Failure. 2009;11(6):533-541.

[126]

Gong K, Chen Y-F. Li P, et al. Transforming growth factor-β inhibits myocardial PPARγ expression in pressure overload-induced cardiac fibrosis and remodeling in mice. J Hypertens. 2011;29(9):1810-1819.

[127]

Suthahar N, Meijers WC, Silljé HHW, de Boer RA. From inflammation to fibrosis-molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14(4):235-250.

[128]

Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T cell and Forkhead box protein 3 as modulators of immune homeostasis [review]. Front Immunol. 2017;8:605.

[129]

Matsumoto K, Ogawa M, Suzuki J-i. Hirata Y, Nagai R, Isobe M. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int Heart J. 2011;52(6):382-387.

[130]

Amin HZ, Amin LZ, Wijaya IP. Galectin-3:a novel biomarker for the prognosis of heart failure. Clujul Med. 2017;90(2):129-132.

[131]

Czimmerer Z, Daniel B, Horvath A, et al. The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity. 2018;48(1):75-90.e76.

[132]

Kwong JQ. The mitochondrial calcium uniporter in the heart: energetics and beyond. J Physiol. 2017;595(12):3743-3751.

[133]

Hu H, Jiang M, Cao Y, et al. HuR regulates phospholamban expression in isoproterenol-induced cardiac remodelling. Cardiovasc Res. 2020;116(5):944-955.

[134]

Kranias EG, Hajjar RJ. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res. 2012;110(12):1646-1660.

[135]

Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009;89(4):1341-1378.

[136]

Iwanaga Y, Hoshijima M, Gu Y, et al. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest. 2004;113(5):727-736.

[137]

Zhang Y, Su SA, Li W, et al. Piezo1-mediated Mechanotransduction promotes cardiac hypertrophy by impairing calcium homeostasis to activate Calpain/Calcineurin signaling. Hypertension. 2021;78(3):647-660.

[138]

Luo X, Yu W, Liu Z, et al. Ageing increases cardiac electrical Remodelling in rats and mice via NOX4/ROS/CaMKII-mediated calcium Signalling. Oxidative Med Cell Longev. 2022;2022:8538296.

[139]

Liu R, Zhang HB, Yang J, Wang JR, Liu JX, Li CL. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur Rev Med Pharmacol Sci. 2018;22(21):7500-7508.

[140]

Li L, Xu J, He L, et al. The role of autophagy in cardiac hypertrophy. Acta Biochim Biophys Sin. 2016;48(6):491-500.

[141]

Liu C-Y, Heckbert SR, Lai S, et al. Association of Elevated NT-proBNP with myocardial fibrosis in the multi-ethnic study of atherosclerosis (MESA). J Am Coll Cardiol. 2017;70(25):3102-3109.

[142]

Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. Mol Ther Nucl Acids. 2020;23:101-118.

[143]

Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol. 2015;768:71-76.

[144]

Jansen JA, van Veen TAB, de Jong S, et al. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity. Circ Arrhythm Electrophysiol. 2012;5(2):380-390.

[145]

Garvin AM, De Both MD, Talboom JS, Lindsey ML, Huentelman MJ, Hale TM. Transient ACE (angiotensin-converting enzyme) inhibition suppresses future fibrogenic capacity and heterogeneity of cardiac fibroblast subpopulations. Hypertension. 2021;77(3):904-918.

[146]

Bagchi RA, Weeks KL. Histone deacetylases in cardiovascular and metabolic diseases. J Mol Cell Cardiol. 2019;130:151-159.

[147]

Tao H, Shi KH, Yang JJ, Huang C, Zhan HY, Li J. Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell Signal. 2014;26(3):521-527.

[148]

Kook H, Lepore JJ, Gitler AD, et al. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein hop. J Clin Invest. 2003;112(6):863-871.

[149]

Ai S, Peng Y, Li C, et al. EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. elife. 2017;6:e24570.

[150]

Trivedi CM, Luo Y, Yin Z, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nat Med. 2007;13(3):324-331.

[151]

Pearson JT. Set7 methyltransferase roles in myocardial protection from chronic stressors. Clin Sci (Lond). 2023;137(1):105-108.

[152]

Harhous Z, Booz GW, Ovize M, Bidaux G, Kurdi M. An update on the multifaceted roles of STAT3 in the heart [review]. Front Cardiovasc Med. 2019;6:150.

[153]

Haghikia A, Ricke-Hoch M, Stapel B, Gorst I, Hilfiker-Kleiner D. STAT3, a key regulator of cell-to-cell communication in the heart. Cardiovasc Res. 2014;102(2):281-289.

[154]

Medzikovic L, de Vries CJM, de Waard V. NR4A nuclear receptors in cardiac remodeling and neurohormonal regulation. Trends Cardiovasc Med. 2019;29(8):429-437.

[155]

Hilgendorf I, Gerhardt LMS, Tan TC, et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res. 2014;114(10):1611-1622.

[156]

Chen J, Jia J, Ma L, et al. Nur77 deficiency exacerbates cardiac fibrosis after myocardial infarction by promoting endothelial-to-mesenchymal transition. J Cell Physiol. 2021;236(1):495-506.

[157]

Medzikovic L, Heese H, van Loenen PB, et al. Nuclear receptor Nur77 controls cardiac fibrosis through distinct actions on fibroblasts and Cardiomyocytes. Int J Mol Sci. 2021;22(4):1600.

[158]

Li T, Yu C, Zhuang S. Histone Methyltransferase EZH2:a potential therapeutic target for kidney diseases [review]. Front Physiol. 2021;12:640700.

[159]

Aziz S, Yalan L, Raza MA, Lemin J, Akram HMB, Zhao W. GSK126 an inhibitor of epigenetic regulator EZH2 suppresses cardiac fibrosis by regulating the EZH2-PAX6-CXCL10 pathway. Biochem Cell Biol. 2023;101(1):87-100.

[160]

Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev. 2007;25(3):235-260.

[161]

Wang H, Yang X, Yang Q, Gong L, Xu H, Wu Z. PARP-1 inhibition attenuates cardiac fibrosis induced by myocardial infarction through regulating autophagy. Biochem Biophys Res Commun. 2018;503(3):1625-1632.

[162]

Zhang X, Zhang X, Huang W, Ge X. The role of heat shock proteins in the regulation of fibrotic diseases. Biomed Pharmacother. 2021;135:111067.

[163]

Chatenet D, Nguyen TTM, Letourneau M, Fournier A. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design [review]. Front Endocrinol. 2013;3:174.

[164]

tel H, Desrues L, Joubert J-E. et al. The G protein-coupled receptor UT of the neuropeptide urotensin II displays structural and functional chemokine features [review]. Front Endocrinol. 2017;8:76.

[165]

Tzanidis A, Hannan RD, Thomas WG, et al. Direct actions of urotensin II on the heart: implications for cardiac fibrosis and hypertrophy. Circ Res. 2003;93(3):246-253.

[166]

Liang Y, Xu Y, Ding L, Chen X, Li H. Urotensin II induces cardiac fibrosis through the TGF-β/Smad signaling pathway during the development of cardiac hypertrophy. Int Heart J. 2021;62(5):1135-1144.

[167]

Chawsheen HA, Ying Q, Jiang H, Wei Q. A critical role of the thioredoxin domain containing protein 5 (TXNDC5) in redox homeostasis and cancer development. Genes Dis. 2018;5(4):312-322.

[168]

Horna-Terrón E, Pradilla-Dieste A, Sánchez-de-Diego C, Osada J. TXNDC5, a newly discovered disulfide isomerase with a key role in cell physiology and pathology. Int J Mol Sci. 2014;15(12):23501-23518.

[169]

Wu PC, Lin BC, Yeh YH, Chen WJ, Yang KC. P2556TXNDC5 is a novel therapeutic target of atrial fibrosis and fibrillation. Eur Heart J. 2019;40(supplement_1):ehz748.0884.

[170]

Mahmoud AH, Taha NM, Zakhary M, Tadros MS. PTEN gene & TNF-alpha in acute myocardial infarction. Int J Cardiol Heart Vasc. 2019;23:100366.

[171]

Wu Y, Qin YH, Liu Y, et al. Cardiac troponin I autoantibody induces myocardial dysfunction by PTEN signaling activation. EBioMedicine. 2019;47:329-340.

[172]

Feng Q, Li X, Qin X, Yu C, Jin Y, Qian X. PTEN inhibitor improves vascular remodeling and cardiac function after myocardial infarction through PI3k/Akt/VEGF signaling pathway. Mol Med. 2020;26(1):111.

[173]

Davis J, Salomonis N, Ghearing N, et al. MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nat Commun. 2015;6(1):10084.

[174]

Bugg D, Bailey LRJ, Bretherton RC, et al. MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing. Cell Stem Cell. 2022;29(3):419-433.e410.

[175]

Davis J, Sargent M, Shi J, Wei L, Swanson MS, Molkentin JD. Abstract 12192:MBNL1 directly regulates the alternative splicing of mRNAs that promote myofibroblast differentiation. Circulation. 2014;130(suppl_2):A12192.

[176]

Xu Y, Liang C, Luo Y, Zhang T. MBNL1 regulates isoproterenol-induced myocardial remodelling in vitro and in vivo. J Cell Mol Med. 2021;25(2):1100-1115.

[177]

Ren C, Liu K, Zhao X, et al. Research progress of traditional Chinese medicine in treatment of myocardial fibrosis [review]. Front Pharmacol. 2022;13:853289.

[178]

Yu X. Promising therapeutic treatments for cardiac fibrosis: herbal plants and their extracts. Cardiol Ther. 2023;12:415-443.

[179]

Nguyen DT, Ding C, Wilson E, Marcus GM, Olgin JE. Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm. 2010;7(10):1438-1445.

[180]

Moreno MU, Eiros R, Gavira JJ, et al. The hypertensive myocardium: from microscopic lesions to clinical complications and outcomes. Med Clin North Am. 2017;101(1):43-52.

[181]

Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol. 2022;179(5):882-899.

[182]

Rockman HA, Ross RS, Harris AN, et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci. 1991;88(18):8277-8281.

[183]

Ding Y, Wang Y, Jia Q, et al. Morphological and functional characteristics of animal models of myocardial fibrosis induced by pressure overload. Int J Hypertens. 2020;2020(1):3014693.

[184]

Turcani M, Rupp H. Heart failure development in rats with ascending aortic constriction and angiotensin-converting enzyme inhibition. Br J Pharmacol. 2000;130(7):1671-1677.

[185]

Bacmeister L, Schwarzl M, Warnke S, et al. Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol. 2019;114(3):19.

[186]

Lin CF, Su CJ, Liu JH, Chen ST, Huang HL, Pan SL. Potential effects of CXCL9 and CCL20 on cardiac fibrosis in patients with myocardial infarction and isoproterenol-treated rats. J Clin Med. 2019;8(5):659.

[187]

Samuel CS, Bodaragama H, Chew JY, Widdop RE, Royce SG, Hewitson TD. Serelaxin is a more efficacious antifibrotic than enalapril in an experimental model of heart disease. Hypertension. 2014;64(2):315-322.

[188]

Rona G, Kahn DS, Chappel CI. Study on the healing of cardiac necrosis in the rat. Am J Pathol. 1961;39(4):473-489.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (3220KB)

388

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/