A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms

Mohammad Yasin Zamanian , Niloofar Taheri , Montather F. Ramadan , Yasser Fakri Mustafa , Safa Alkhayyat , Klunko Nataliya Sergeevna , Hashem O. Alsaab , Ahmed Hjazi , Farnoosh Molavi Vasei , Siamak Daneshvar

Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (5) : 591 -605.

PDF (2866KB)
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (5) : 591 -605. DOI: 10.1002/ame2.12476
REVIEW

A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms

Author information +
History +
PDF (2866KB)

Abstract

Flavonoids, including fisetin, have been linked to a reduced risk of colorectal cancer (CRC) and have potential therapeutic applications for the condition. Fisetin, a natural flavonoid found in various fruits and vegetables, has shown promise in managing CRC due to its diverse biological activities. It has been found to influence key cell signaling pathways related to inflammation, angiogenesis, apoptosis, and transcription factors. The results of this study demonstrate that fisetin induces colon cancer cell apoptosis through multiple mechanisms. It impacts the p53 pathway, leading to increased levels of p53 and decreased levels of murine double minute 2, contributing to apoptosis induction. Fisetin also triggers the release of important components in the apoptotic process, such as second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI and cytochrome c. Furthermore, fisetin inhibits the cyclooxygenase-2 and wingless-related integration site (Wnt)/epidermal growth factor receptor/nuclear factor kappa B signaling pathways, reducing Wnt target gene expression and hindering colony formation. It achieves this by regulating the activities of cyclin-dependent kinase 2 and cyclin-dependent kinase 4, reducing retinoblastoma protein phosphorylation, decreasing cyclin E levels, and increasing p21 levels, ultimately influencing E2 promoter binding factor 1 and cell division cycle 2 (CDC2) protein levels. Additionally, fisetin exhibits various effects on CRC cells, including inhibiting the phosphorylation of Y-box binding protein 1 and ribosomal S6 kinase, promoting the phosphorylation of extracellular signal-regulated kinase 1/2, and disrupting the repair process of DNA double-strand breaks. Moreover, fisetin serves as an adjunct therapy for the prevention and treatment of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA)-mutant CRC, resulting in a reduction in phosphatidylinositol-3 kinase (PI3K) expression, Ak strain transforming phosphorylation, mTOR activity, and downstream target proteins in CRC cells with a PIK3CA mutation. These findings highlight the multifaceted potential of fisetin in managing CRC and position it as a promising candidate for future therapy development.

Keywords

apoptosis / colorectal cancer / fisetin / inflammation / p53 pathway

Cite this article

Download citation ▾
Mohammad Yasin Zamanian, Niloofar Taheri, Montather F. Ramadan, Yasser Fakri Mustafa, Safa Alkhayyat, Klunko Nataliya Sergeevna, Hashem O. Alsaab, Ahmed Hjazi, Farnoosh Molavi Vasei, Siamak Daneshvar. A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms. Animal Models and Experimental Medicine, 2024, 7(5): 591-605 DOI:10.1002/ame2.12476

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sharma I, Kim S, Sridhar S, Basha R. Colorectal cancer: an emphasis on factors influencing racial/ethnic disparities. Crit Rev Oncog. 2020;25(2):151-160.

[2]

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.

[3]

Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10):101174.

[4]

Pita-Fernandez S, Alhayek-Ai M, Gonzalez-Martin RC, Lopez-Calvino B, Seoane-Pillado RT, Pértega-Díaz RS. Intensive follow-up strategies improve outcomes in nonmetastatic colorectal cancer patients after curative surgery: a systematic review and meta-analysis. Ann Oncol. 2015;26(4):644-656.

[5]

Mitchell D, Puckett Y, Nguyen QN. Literature review of current management of colorectal liver metastasis. Cureus. 2019;11(1):39-49.

[6]

Zhu W, Oteiza PI. NADPH oxidase 1: a target in the capacity of dimeric ECG and EGCG procyanidins to inhibit colorectal cancer cell invasion. Redox Biol. 2023;65:102827.

[7]

Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447.

[8]

Lee Y-J, Cho JM, Sai S, et al. 5-fluorouracil as a tumor-treating field-sensitizer in colon cancer therapy. Cancer. 2019;11(12):1999.

[9]

Lee JJ, Beumer JH, Chu E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol. 2016;78:447-464.

[10]

Khorrami S, Zarepour A, Zarrabi A. Green synthesis of silver nanoparticles at low temperature in a fast pace with unique DPPH radical scavenging and selective cytotoxicity against MCF-7 and BT-20 tumor cell lines. Biotech Rep. 2019;24:e00393.

[11]

Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531.

[12]

Swallah MS, Sun H, Affoh R, Fu H, Yu H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. Int J Food Sci. 2020;2020:1-8.

[13]

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.

[14]

Karak P. Biological activities of flavonoids: An overview. Int J Pharm Sci Res. 2019;10(4):1567-1574.

[15]

Mehra A, Chatterjee A, Kumar N. Biochemistry and applications of flavonoids. In: Saini D, Kesharwani RK, Keservani RK, eds. The Flavonoids. Apple Academic Press; 2024:79-98.

[16]

Gervasi T, Calderaro A, Barreca D, et al. Biotechnological applications and health-promoting properties of flavonols: An updated view. Int J Mol Sci. 2022;23(3):1710.

[17]

Kesharwani V, Kabra S, Semwal BC, Saini D. Neuroprotective effects of flavonoids. In: Sharma N, Saini D, Kesharwani RK, Gupta PC, Keservani RK, eds. Advances in Flavonoids for Human Health and Prevention of Diseases. Apple Academic Press; 2024;95-123.

[18]

Chang H, Lei L, Zhou Y, Ye F, Zhao G. Dietary flavonoids and the risk of colorectal cancer: An updated meta-analysis of epidemiological studies. Nutrients. 2018;10(7):950.

[19]

Li Y, Zhang T, Chen GY. Flavonoids and colorectal cancer prevention. Antioxidants. 2018;7(12):187.

[20]

Fernández J, Silván B, Entrialgo-Cadierno R, et al. Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomed Pharmacother. 2021;143:112241.

[21]

Hassani S, Maghsoudi H, Fattahi F, et al. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int J Biol Macromol. 2023;241:124508.

[22]

Pal HC, Pearlman RL, Afaq F. Fisetin and its role in chronic diseases. Anti-Inflamm Nutraceut Chron Dis. 2016;928:213-244.

[23]

Jash SK, Mondal S. Bioactive flavonoid fisetin—a molecule of pharmacological interest. Cardiovasc Dis. 2014;5(6):89-128.

[24]

Kubina R, Iriti M, Kabała-Dzik RA. Anticancer potential of selected flavonols: Fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients. 2021;13(3):845.

[25]

Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA. The potential role of fisetin, a flavonoid in cancer prevention and treatment. Molecules. 2022;27(24):9009.

[26]

Farooqi AA, Naureen H, Zahid R, Youssef L, Attar R, Xu B. Cancer chemopreventive role of fisetin: regulation of cell signaling pathways in different cancers. Pharmacol Res. 2021;172:105784.

[27]

Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol. 2021;910:174492.

[28]

Rengarajan T, Yaacob NS. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol. 2016;789:8-16.

[29]

Wang H. MicroRNAs and apoptosis in colorectal cancer. Int J Mol Sci. 2020;21(15):5353.

[30]

Ismail NI, Othman I, Abas F, H. Lajis N, Naidu R. Mechanism of apoptosis induced by curcumin in colorectal cancer. Int J Mol Sci. 2019;20(10):2454.

[31]

Sundarraj K, Raghunath A, Perumal E. A review on the chemotherapeutic potential of fisetin: in vitro evidences. Biomed Pharmacother. 2018;97:928-940.

[32]

Jeng LB, Kumar Velmurugan B, Chen MC, et al. Fisetin mediated apoptotic cell death in parental and oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J Cell Physiol. 2018;233(9):7134-7142.

[33]

Pandey A, Trigun SK. Fisetin induces apoptosis in colorectal cancer cells by suppressing autophagy and down-regulating nuclear factor erythroid 2-related factor 2 (Nrf2). J Cell Biochem. 2023;124(9):1289-1308.

[34]

Suh Y, Afaq F, Johnson JJ, Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-κB-signaling pathways. Carcinogenesis. 2009;30(2):300-307.

[35]

Ding H, Li Y, Chen S, et al. Fisetin ameliorates cognitive impairment by activating mitophagy and suppressing neuroinflammation in rats with sepsis-associated encephalopathy. CNS Neurosci Ther. 2022;28(2):247-258.

[36]

Markowska A, Antoszczak M, Kacprzak K, Markowska J, Huczyński A. Role of Fisetin in selected malignant neoplasms in women. Nutrients. 2023;15(21):4686.

[37]

Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000;130(9):2243-2250.

[38]

Kimira M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol. 1998;8(3):168-175.

[39]

Prabhu K, Bhute AS. Plant based natural dyes and mordants: a review. J Nat Prod Plant Resour. 2012;2(6):649-664.

[40]

Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci. 2018;194:75-87.

[41]

Hassan SS, Samanta S, Dash R, et al. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: focus on the role of oxidative stress. Front Pharmacol. 2022;13:1015835.

[42]

Tordera M, Ferrándiz ML, Alcaraz MJ. Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils. Zeitschrift für Naturforschung C. 1994;49(3–4):235-240.

[43]

Touil YS, Auzeil N, Boulinguez F, et al. Fisetin disposition and metabolism in mice: identification of geraldol as an active metabolite. Biochem Pharmacol. 2011;82(11):1731-1739.

[44]

Jo JH, Jo JJ, Lee JM, Lee S. Identification of absolute conversion to geraldol from fisetin and pharmacokinetics in mouse. J Chromatogr B. 2016;1038:95-100.

[45]

Huang M-C, Hsueh TY, Cheng YY, Lin LC, Tsai TH. Pharmacokinetics and biliary excretion of fisetin in rats. J Agric Food Chem. 2018;66(25):6300-6307.

[46]

Shia C-S, Tsai SY, Kuo SC, Hou YC, Chao PDL. Metabolism and pharmacokinetics of 3, 3’ 4’ 7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites. J Agric Food Chem. 2009;57(1):83-89.

[47]

Feng C, Yuan X, Chu K, Zhang H, Ji W, Rui M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int J Biol Macromol. 2019;125:700-710.

[48]

Pawar A, Singh S, Rajalakshmi S, Shaikh K, Bothiraja C. Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting. Artif Cells, Nanomed Biotech. 2018;46(sup1):347-361.

[49]

Kumar R, Kumar R, Khurana N, et al. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson‘s disease rat model. Food Chem Toxicol. 2020;144:111590.

[50]

Szymczak J, Cielecka-Piontek J. Fisetin—in search of better bioavailability—from macro to nano modifications: a review. Int J Mol Sci. 2023;24(18):14158.

[51]

Syed DN, Adhami VM, Khan N, Khan MI, Mukhtar H. Exploring the molecular targets of dietary flavonoid fisetin in cancer. In: Vincent T, ed. Seminars in Cancer Biology. Vol 40–41. Elsevier; 2016:130-140.

[52]

Sari EN, Soysal Y. Molecular and therapeutic effects of fisetin flavonoid in diseases. J Basic Clin Health Sci. 2020;4(3):190-196.

[53]

Prasath GS, Subramanian SP. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2011;668(3):492-496.

[54]

Currais A, Prior M, Dargusch R, et al. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in a lzheimer‘s disease transgenic mice. Aging Cell. 2014;13(2):379-390.

[55]

Guo P, Feng Y-Y. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Trop J Pharmaceut Res. 2017;16(8):1819-1826.

[56]

Kumar RM, Kumar H, Bhatt T, et al. Fisetin in cancer: attributes, developmental aspects, and nanotherapeutics. Pharmaceuticals. 2023;16(2):196.

[57]

Park H-H, Lee S, Son HY, et al. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharm Res. 2008;31:1303-1311.

[58]

Kang KA, Piao MJ, Kim KC, et al. Fisetin attenuates hydrogen peroxide-induced cell damage by scavenging reactive oxygen species and activating protective functions of cellular glutathione system. In Vitro Cell Develop Biol-Animal. 2014;50:66-74.

[59]

Naeimi AF, Alizadeh M. Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol. 2017;70:34-44.

[60]

Wu F-H, Wei HZ, Deng HY, Xiao GH, Zhang YC. PARP in colorectal cancer: molecular mechanisms, immunity, clinical trials, and drug combinations. Neoplasma. 2022;70(1):220724N745.

[61]

Rudmik L, Magliocco A. Molecular mechanisms of hepatic metastasis in colorectal cancer. J Surg Oncol. 2005;92(4):347-359.

[62]

Ni Y, Liang Y, Li M, et al. The updates on metastatic mechanism and treatment of colorectal cancer. Pathol-Res Pract. 2023;251:154837.

[63]

Dakowicz D, Zajkowska M, Mroczko B. Relationship between VEGF family members, their receptors and cell death in the neoplastic transformation of colorectal cancer. Int J Mol Sci. 2022;23(6):3375.

[64]

Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci. 2024;115:734-751.

[65]

Yin L, Li J, Ma D, Li D, Sun Y. Angiogenesis in primary colorectal cancer and matched metastatic tissues: biological and clinical implications for anti-angiogenic therapies. Oncol Lett. 2020;19(5):3558-3566.

[66]

Sun W. Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy. J Hematol Oncol. 2012;5:1-9.

[67]

Rasheed S, McDonald PJ, Northover JM, Guenther T. Angiogenesis and hypoxic factors in colorectal cancer. Pathol-Res Pract. 2008;204(7):501-510.

[68]

Bendardaf R, Buhmeida A, Hilska M, et al. VEGF-1 expression in colorectal cancer is associated with disease localization, stage, and long-term disease-specific survival. Anticancer Res. 2008;28(6B):3865-3870.

[69]

Mohamed SY, Mohammed HL, Ibrahim HM, Mohamed EM, Salah M. Role of VEGF, CD105, and CD31 in the prognosis of colorectal cancer cases. J Gastrointest Cancer. 2019;50:23-34.

[70]

Mazeda I, Martins SF, Garcia EA, Rodrigues M, Longatto A. VEGF expression in colorectal cancer metastatic lymph nodes: clinicopathological correlation and prognostic significance. Gastrointest Disorders. 2020;2(3):25-280.

[71]

Jitawatanarat P, Ma WW. Update on antiangiogenic therapy in colorectal cancer: aflibercept and regorafenib. J Gastrointest Oncol. 2013;4(2):231.

[72]

Lopez A, Harada K, Vasilakopoulou M, Shanbhag N, Ajani JA. Targeting angiogenesis in colorectal carcinoma. Drugs. 2019;79:63-74.

[73]

Oguntade AS, al-Amodi F, Alrumayh A, Alobaida M, Bwalya M. Anti-angiogenesis in cancer therapeutics: the magic bullet. J Egypt Natl Canc Inst. 2021;33(1):1-11.

[74]

Hansen TF, Qvortrup C, Pfeiffer P. Angiogenesis inhibitors for colorectal cancer. A review of the clinical data. Cancer. 2021;13(5):1031.

[75]

Saclarides TJ. Angiogenesis in colorectal cancer. Surg Clin North America. 1997;77(1):253-260.

[76]

Baker L, Robinson N, Wilson D, Tabaqchali M, Leaper D. Vascular endothelial growth factor in colorectal cancer pathology, survival and treatment. Ann Oncol. 2019;30:v12.

[77]

Li N, Babaei-Jadidi R, Lorenzi F, et al. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis. 2019;8(3):13.

[78]

Nair VA, Malhab LJB, Abdel-Rahman WM. Characterization of the molecular alterations induced by the prolonged exposure of Normal Colon mucosa and Colon Cancer cells to low-dose Bisphenol a. Int J Mol Sci. 2022;23(19):11620.

[79]

Bardelčíková A, Šoltys J, Mojžiš J. Oxidative stress, inflammation and colorectal cancer: an overview. Antioxidants. 2023;12(4):901.

[80]

Carini F, Mazzola M, Rappa F, et al. Colorectal carcinogenesis: role of oxidative stress and antioxidants. Anticancer Res. 2017;37(9):4759-4766.

[81]

Basak D, Uddin MN, Hancock J. The role of oxidative stress and its counteractive utility in colorectal cancer (CRC). Cancer. 2020;12(11):3336.

[82]

Acevedo-León D, Gómez-Abril , Sanz-García P, Estañ-Capell N, Bañuls C, Sáez G. The role of oxidative stress, tumor and inflammatory markers in colorectal cancer patients: a one-year follow-up study. Redox Biol. 2023;62:102662.

[83]

Zamanian M, Hajizadeh M, Shamsizadeh A, et al. Effects of naringin on physical fatigue and serum MMP-9 concentration in female rats. Pharm Biol. 2017;55(1):423-427.

[84]

Gu H, Li B, Xiang L, et al. Association between oxidative stress exposure and colorectal cancer risk in 98, 395 participants: results from a prospective study. Front Nutr. 2023;10(1):1284066.

[85]

Qadir VA, Abdoulrahman KK. Oxidative stress assessment in colorectal cancer patients. ARO-Sci J KOYA Univ. 2024;12(1):115-123.

[86]

Abdul-Aziz Ahmed K, Jabbar AAJ, Abdulla MA, et al. Mangiferin (mango) attenuates AOM-induced colorectal cancer in rat‘s colon by augmentation of apoptotic proteins and antioxidant mechanisms. Sci Rep. 2024;14(1):813.

[87]

Liu H, Liu X, Zhang C, et al. Redox imbalance in the development of colorectal cancer. J Cancer. 2017;8(9):1586-1597.

[88]

Wu H, Zhong M, Wang Y. The interdependence of inflammation and ROS in cancer: focus on tumor microenvironment. Handb Oxid Stress Cancer: Mech Aspects. 2021;3:1-17.

[89]

Muthusami S, Ramachandran IK, Babu KN, et al. Role of inflammation in the development of colorectal cancer. Endocr Metab Immune Disord-Drug Targ. 2021;21(1):77-90.

[90]

Chen X-W, Zhou S-F. Inflammation, Cytokines, the IL-17/IL-6/STAT3/NF-κB Axis, and Tumorigenesis. Taylor & Francis; 2015:2941-2946.

[91]

Janakiram NB, Rao CV. The role of inflammation in colon cancer. Inflamm Cancer. 2014;816:25-52.

[92]

Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11-19.

[93]

Lee D-Y, Song M-Y. Kim E-H. Role of oxidative stress and Nrf2/KEAP1 signaling in colorectal cancer: mechanisms and therapeutic perspectives with phytochemicals. Antioxidants. 2021;10(5):743.

[94]

Wang D, DuBois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29(6):781-788.

[95]

Sheng J, Sun H, Yu FB, Li B, Zhang Y, Zhu YT. The role of cyclooxygenase-2 in colorectal cancer. Int J Med Sci. 2020;17(8):1095-1101.

[96]

Liu Y, Sun H, Hu M, et al. The role of cyclooxygenase-2 in colorectal carcinogenesis. Clin Colorectal Cancer. 2017;16(3):165-172.

[97]

Orlandi G, Roncucci L, Carnevale G, Sena P. Different roles of apoptosis and autophagy in the development of human colorectal cancer. Int J Mol Sci. 2023;24(12):10201.

[98]

Tanzadehpanah H, Avan A, Ghayour-Mobarhan M, et al. MicroRNAs regulate inhibitor of apoptosis proteins (IAPs) in colorectal cancer. MicroRNA. 2023;12(3):210-220.

[99]

Liu Z-B, Zhang T, Ye X, et al. Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. J Pharm Pharmacol. 2022;74(2):162-178.

[100]

Phang C-W, Karsani SA, Sethi G, Abd Malek SN. Flavokawain C inhibits cell cycle and promotes apoptosis, associated with endoplasmic reticulum stress and regulation of MAPKs and Akt signaling pathways in HCT 116 human colon carcinoma cells. PLoS ONE. 2016;11(2):e0148775.

[101]

Ganash MA. Anticancer potential of ascorbic acid and inorganic selenium on human breast cancer cell line MCF-7 and colon carcinoma HCT-116. J Cancer Res Ther. 2021;17(1):122-129.

[102]

Li X-L, Zhou J, Chen ZR, Chng WJ. P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J Gastroenterol: WJG. 2015;21(1):84-93.

[103]

Marei HE, Althani A, Afifi N, et al. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021;21(1):1-15.

[104]

Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The cross talk between p53 and mTOR pathways in response to physiological and genotoxic stresses. Front Cell Develop Biol. 2021;9:775507.

[105]

Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 2017;8(5):8921-8946.

[106]

Yu S-H, Yang PM, Peng CW, Yu YC, Chiu SJ. Securin depletion sensitizes human colon cancer cells to fisetin-induced apoptosis. Cancer Lett. 2011;300(1):96-104.

[107]

Berthelet J, Dubrez L. Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells. 2013;2(1):163-187.

[108]

Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem. 2011;351:41-58.

[109]

Shi M, Yan SG, Xie ST, Wang HN. Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells. Biochim Biophys Acta Mol Cell Res. 2008;1783(2):263-274.

[110]

Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci. 2004;29(9):486-494.

[111]

Shi D, Gu W. Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer. 2012;3(3–4):240-248.

[112]

Giansanti C, Manzini V, Dickmanns A, et al. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Rep. 2022;39(9):110879.

[113]

Jiang H, Luo J, Lei H. The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: a review. Exp Eye Res. 2022;217:108910.

[114]

Lu X, Yan C, Huang Y, et al. Mouse double minute 2 (MDM2) upregulates snail expression and induces epithelial-to-mesenchymal transition in breast cancer cells in vitro and in vivo. Oncotarget. 2016;7(24):37177-37191.

[115]

Li W, Peng X, Lang J, Xu C. Targeting mouse double minute 2: current concepts in DNA damage repair and therapeutic approaches in cancer. Front Pharmacol. 2020;11:537486.

[116]

Lim DY, Park JHY. Induction of p53 contributes to apoptosis of HCT-116 human colon cancer cells induced by the dietary compound fisetin. Am J Physiol Gastrointest Liver Phys Ther. 2009;296(5):G1060-G1068.

[117]

Chen Y, Wu Q, Song L, et al. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl Mater Interfaces. 2015;7(1):534-542.

[118]

Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules. 2020;10(2):320.

[119]

Hegazy AM, el-Sayed EM, Ibrahim KS, Abdel-Azeem AS. Dietary antioxidant for disease prevention corroborated by the Nrf2 pathway. J Complement Integr Med. 2019;16(3):20180161.

[120]

Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets. 2018;18(6):538-557.

[121]

Panieri E, Saso L. Inhibition of the NRF2/KEAP1 axis: a promising therapeutic strategy to alter redox balance of cancer cells. Antioxid Redox Signal. 2021;34(18):1428-1483.

[122]

Chen T, Sun Y, Ji P, Kopetz S, Zhang W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene. 2015;34(31):4019-4031.

[123]

Leu JD, Wang BS, Chiu SJ, et al. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models. Oncol Lett. 2016;12(6):4975-4982.

[124]

Youns M, Abdel Halim Hegazy W. The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways. PLoS ONE. 2017;12(1):e0169335.

[125]

Roy S, Roy S, Rana A, Akhter Y, Hande MP, Banerjee B. The role of p38 MAPK pathway in p53 compromised state and telomere mediated DNA damage response. Mut Res/Genetic Toxicol Environ Mutagen. 2018;836:89-97.

[126]

Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346.

[127]

Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997-2007.

[128]

Cheng P, Alberts I, Li X. The role of ERK1/2 in the regulation of proliferation and differentiation of astrocytes in developing brain. Int J Dev Neurosci. 2013;31(8):783-789.

[129]

Chen W-S, Lee YJ, Yu YC, et al. Enhancement of p53-mutant human colorectal cancer cells radiosensitivity by flavonoid fisetin. Int J Radiat Oncol Biol Phys Ther. 2010;77(5):1527-1535.

[130]

Lang T, Zhu R, Zhu X, et al. Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy. Nat Commun. 2023;14(1):4746.

[131]

Knudsen A-DM, Modvig MW, Vogsen M, Kodahl AR. Effect of capecitabine as monotherapy for HER2 normal metastatic breast cancer. Med Oncol. 2024;41(5):99.

[132]

Saif MW, Katirtzoglou NA, Syrigos KN. Capecitabine: an overview of the side effects and their management. Anti-Cancer Drugs. 2008;19(5):447-464.

[133]

Zehra K, Banu A, Can E, Hülya C. Fisetin and/or capecitabine causes changes in apoptosis pathways in capecitabine-resistant colorectal cancer cell lines. Naunyn-Schmiedeberg’s Arch Pharmacol. 2024;397:1-14.

[134]

Aoyama T, Yukawa N, Saito A. Clinical impact of nutrition and inflammation assessment tools in colorectal cancer treatment. Anticancer Res. 2024;44(4):1335-1351.

[135]

Borowczak J, Szczerbowski K, Maniewski M, et al. The role of inflammatory cytokines in the pathogenesis of colorectal carcinoma—recent findings and review. Biomedicine. 2022;10(7):1670.

[136]

Smith WL, Urade Y, Jakobsson P-J. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011;111(10):5821-5865.

[137]

Morita I. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat. 2002;68:165-175.

[138]

Negi RR, Rana SV, Gupta V, et al. Over-expression of cyclooxygenase-2 in colorectal cancer patients. Asian Pac J Cancer Prevent. 2019;20(6):1675-1681.

[139]

Karpisheh V, Nikkhoo A, Hojjat-Farsangi M, et al. Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer. Prostaglandins Other Lipid Mediat. 2019;144:106338.

[140]

Wang D, Xia D, DuBois RN. The crosstalk of PTGS2 and EGF signaling pathways in colorectal cancer. Cancer. 2011;3(4):3894-3908.

[141]

Musa A, Mostafa EM, Bukhari SNA, et al. EGFR and COX-2 dual inhibitor: the design, synthesis, and biological evaluation of novel chalcones. Molecules. 2022;27(4):1158.

[142]

Mir MA, Rashid M, Jan N. The interleukin-8 pathway in cancer. In: In: Mir MA, ed. Cytokine and Chemokine Networks in Cancer. Springer; 2023;14(21):165-190.

[143]

Rubie C, Frick VO, Pfeil S, et al. Correlation of IL-8 with induction, progression and metastatic potential of colorectal cancer. World J Gastroenterol: WJG. 2007;13(37):4996-5002.

[144]

Denegri A, Boriani G. High sensitivity C-reactive protein (hsCRP) and its implications in cardiovascular outcomes. Curr Pharm Des. 2021;27(2):263-275.

[145]

Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9(4):2025-2031.

[146]

Kouroshnia A, Zeinali S, Irani S, Sadeghi A. Induction of apoptosis and cell cycle arrest in colorectal cancer cells by novel anticancer metabolites of Streptomyces sp. 801. Cancer Cell Int. 2022;22(1):235.

[147]

Ding L, Cao J, Lin W, et al. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci. 2020;21(6):1960.

[148]

Golsteyn RM. Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Lett. 2005;217(2):129-138.

[149]

Satyanarayana A, Kaldis P. A dual role of Cdk2 in DNA damage response. Cell Div. 2009;4:1-4.

[150]

Burke JR, Hura GL, Rubin SM. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control. Genes Dev. 2012;26:1156-1166.

[151]

Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220-5227.

[152]

Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29(5):946-960.

[153]

Burkhart DL, Morel KL, Sheahan AV, Richards ZA, Ellis L. The role of RB in prostate cancer progression. Prost Cancer: Cell Genet Mech Dis Develop Progr. 2019;12:301-318.

[154]

Lu X, Jung Ji, Cho HJ, et al. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr. 2005;135(12):2884-2890.

[155]

Cannan WJ, Pederson DS. Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol. 2016;231(1):3-14.

[156]

Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21(2):251-259.

[157]

Terabayashi T, Hanada K. Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses. Cell Biol Toxicol. 2018;34:337-350.

[158]

Khan AQ, Kuttikrishnan S, Siveen KS, et al. RAS-mediated oncogenic signaling pathways in human malignancies. In: Vincent T, ed. Seminars in Cancer Biology. Vol 54. Elsevier; 2019:1-13.

[159]

Zhu G, Pei L, Xia H, Tang Q, Bi F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer. 2021;20(1):1-17.

[160]

Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol. 2023;199:1-18.

[161]

Khozooei S, Veerappan S, Bonzheim I, Singer S, Gani C, Toulany M. Fisetin overcomes non-targetability of mutated KRAS induced YB-1 signaling in colorectal cancer cells and improves radiosensitivity by blocking repair of radiation-induced DNA double-strand breaks. Radiother Oncol. 2023;188:109867.

[162]

Kim A, Shim S, Kim YH, Kim MJ, Park S, Myung JK. Inhibition of Y box binding protein 1 suppresses cell growth and motility in colorectal cancer. Mol Cancer Ther. 2020;19(2):479-489.

[163]

Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal. 2021;85:110073.

[164]

Ye Q, Wang X, Jin M, et al. Effect of RSK4 on biological characteristics of colorectal cancer. World J Surg Oncol. 2018;16:1-9.

[165]

Calvo N, Carriere P, Martin MJ, Gentili C. RSK activation via ERK modulates human colon cancer cells response to PTHrP. J Mol Endocrinol. 2017;59(1):13-27.

[166]

Jiang X, du W, Yang C, et al. TBX21 attenuates colorectal cancer progression via an ARHGAP29/RSK/GSK3β dependent manner. Cell Oncol. 2023;46(5):1269-1283.

[167]

Shen W, du W, Li Y, et al. TIFA promotes colorectal cancer cell proliferation in an RSK-and PRAS40-dependent manner. Cancer Sci. 2022;113(9):3018-3031.

[168]

Khan N, Jajeh F, Eberhardt EL, et al. Fisetin and 5-fluorouracil: effective combination for PIK3CA-mutant colorectal cancer. Int J Cancer. 2019;145(11):3022-3032.

[169]

Arafeh R, Samuels Y. PIK3CA in cancer: the past 30 years. In: Vincent T, ed. Seminars in Cancer Biology. Vol 59. Elsevier; 2019:36-49.

[170]

Mei Z, Duan CY, Li CB, Cui L, Ogino S. Prognostic role of tumor PIK3CA mutation in colorectal cancer: a systematic review and meta-analysis. Ann Oncol. 2016;27(10):1836-1848.

[171]

Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164-175.

[172]

Yuan L, Zhang S, Li H, et al. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother. 2018;108:184-193.

[173]

Sethy C, Kundu CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: implication of DNA repair inhibition. Biomed Pharmacother. 2021;137:111285.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (2866KB)

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/