Applications and advancements in animal models for antiviral research on mosquito-borne arboviruses

Megan Caifeng Tang , Ka Heng Wong , Adzzie Shazleen Azman , Rafidah Lani

Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (5) : 673 -684.

PDF (1562KB)
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (5) : 673 -684. DOI: 10.1002/ame2.12471
REVIEW

Applications and advancements in animal models for antiviral research on mosquito-borne arboviruses

Author information +
History +
PDF (1562KB)

Abstract

Vector-borne diseases caused by arthropod-borne viruses (arboviruses) are a considerable challenge to public health globally. Mosquito-borne arboviruses, such as Chikungunya, Dengue, and Zika viruses, cause a range of human illnesses and may be fatal. Currently, efforts to control these diseases still face challenges due to growing vector resistance towards insecticides, urbanization, and limited effective antiviral treatments and vaccines. Animal models are crucial in antiviral research on mosquito-borne arboviruses, playing a role in understanding disease mechanisms, vaccine development, and toxicity testing, but the application of animal models still faces the challenges of ethical considerations and animal-to-human translational success. Genetically engineered mouse models, hamster models and non-human primate (NHP) are currently used in arbovirus research, but new models such as tree shrews and novel humanized mice are emerging. In the context of Malaysian research, the use of long-tailed macaques as potential NHP models for arbovirus research is possible; however, it faces the ethical dilemma of using an endangered species for scientific purposes. Overall, animal models play a crucial role in advancing infectious disease research, but a balance between medical research and species conservation must be upheld.

Keywords

animal models / arbovirus / biomedical research / ethics / infectious diseases

Cite this article

Download citation ▾
Megan Caifeng Tang, Ka Heng Wong, Adzzie Shazleen Azman, Rafidah Lani. Applications and advancements in animal models for antiviral research on mosquito-borne arboviruses. Animal Models and Experimental Medicine, 2024, 7(5): 673-684 DOI:10.1002/ame2.12471

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. Vector-Borne Diseases. WHO; 2020.

[2]

Laiton-Donato K, Guzmán-Cardozo C, Peláez-Carvajal D, et al. Evolution and emergence of mosquito-borne viruses of medical importance: towards a routine metagenomic surveillance approach. J Trop Ecol. 2023;39:e13.

[3]

Yu X, Zhu Y, Xiao X, Wang P, Cheng G. Progress towards understanding the mosquito-borne virus life cycle. Trends Parasitol. 2019;35(12):1009-1017.

[4]

Kuno G, Chang G-JJ. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev. 2005;18(4):608-637.

[5]

Wu P, Yu X, Wang P, Cheng G. Arbovirus lifecycle in mosquito: acquisition, propagation and transmission. Expert Rev Mol Med. 2019;21:e1.

[6]

Md Iderus NH, Singh S, Mohd Ghazali S, et al. The effects of the COVID-19 pandemic on dengue cases in Malaysia. Front Public Health. 2023;11:1213514.

[7]

de Lima Cavalcanti TYV, Pereira MR, de Paula SO, Franca RFO. A review on chikungunya virus epidemiology, pathogenesis and current vaccine development. Viruses. 2022;14(5):969.

[8]

Bartholomeeusen K, Daniel M, LaBeaud DA, et al. Chikungunya fever. Nat Rev Dis Prim. 2023;9(1):17.

[9]

Patil P, Agrawal M, Almelkar S, et al. In vitro and in vivo studies reveal α-Mangostin, a xanthonoid from Garcinia mangostana, as a promising natural antiviral compound against chikungunya virus. Virol J. 2021;18(1):47.

[10]

Murugesan A, Manoharan M. Dengue virus. Emerging and Reemerging Viral Pathogens. Vol 1. Academic Press; 2020:281-359.

[11]

World Health Organization. Dengue and Severe Dengue. WHO; 2023.

[12]

Goethals O, Kaptein SJF, Kesteleyn B, et al. Blocking NS3–NS4B interaction inhibits dengue virus in non-human primates. Nature. 2023;615(7953):678-686.

[13]

Vue D, Tang Q. Zika virus overview: transmission, origin, pathogenesis, animal model and diagnosis. Zoonoses. 2021;1(1).

[14]

World Health Organization. Zika Virus. WHO; 2022.

[15]

Lee JL, Loe MWC, Lee RCH, Chu JJH. Antiviral activity of pinocembrin against Zika virus replication. Antivir Res. 2019;167:13-24.

[16]

Caicedo EY, Charniga K, Rueda A, et al. The epidemiology of Mayaro virus in the Americas: a systematic review and key parameter estimates for outbreak modelling. PLoS Negl Trop Dis. 2021;15(6):e0009418.

[17]

Ribeiro MCM, Salles TS, Moreira MF, Barbarino E, do Valle AF, Couto MAPG. Antiviral activity of microalgae extracts against Mayaro virus. Algal Res. 2022;61:102577.

[18]

Gao X, Liu H, Li X, et al. Changing geographic distribution of Japanese encephalitis virus genotypes, 1935–2017. Vector-Borne and Zoonotic Diseases. 2019;19(1):35-44.

[19]

World Health Organization. Japanese Encephalitis. WHO; 2019.

[20]

Fan W, Qian S, Qian P, Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res. 2016;220:112-116.

[21]

Malik S, Pandey I, Kishore S, et al. Yellow fever virus, a mosquito-borne flavivirus posing high public health concerns and imminent threats to travellers - an update. Int J Surg. 2023;109(2):134-137.

[22]

Moreira Salles AP, de Seixas Santos Nastri AC, Ho YL, et al. Updating the Phylodynamics of yellow fever virus 2016–2019 Brazilian outbreak with new 2018 and 2019 São Paulo genomes. Front Microbiol. 2022;13:13.

[23]

Stock NK, Laraway H, Faye O, Diallo M, Niedrig M, Sall AA. Biological and phylogenetic characteristics of yellow fever virus lineages from West Africa. J Virol. 2013;87(5):2895-2907.

[24]

Julander JG, Bunyan E, Jordan R, Porter DP. Remdesivir efficacy against yellow fever in a hamster model. Antivir Res. 2022;203:105331.

[25]

Habarugira G, Suen WW, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H. West Nile virus: an update on pathobiology, epidemiology, diagnostics, control and “one health” implications. Pathogens. 2020;9(7):589.

[26]

Tang H, Liu Y, Ren R, et al. Identification of clinical candidates against West Nile virus by activity screening in vitro and effect evaluation in vivo. J Med Virol. 2022;94(10):4918-4925.

[27]

Saleem MA, Lobanova I. Chapter 5—Mosquito-borne diseases. In: Qureshi AI, Saeed O, eds. Dengue Virus Disease. Academic Press; 2020:57-83.

[28]

Ojha D, Winkler CW, Leung JM, et al. Rottlerin inhibits La Crosse virus-induced encephalitis in mice and blocks release of replicating virus from the Golgi body in neurons. Nature. Microbiology. 2021;6(11):1398-1409.

[29]

Diaz A, Coffey LL, Burkett-Cadena N, Day JF. Reemergence of St. Louis encephalitis virus in the Americas. Emerg Infect Dis. 2018;24(12):2150-2157.

[30]

Konigheim BS, Beranek M, Comini LR, et al. In vitro antiviral activity of Heterophyllaea pustulata extracts. Nat Prod Commun. 2012;7(8):1025-1028.

[31]

Beckham JD, Tyler KL. Arbovirus infections. Continuum (Minneap Minn). 2015;21:1599-1611.

[32]

Schneider CA, Calvo E, Peterson KE. Arboviruses: how saliva impacts the journey from vector to host. Int J Mol Sci. 2021;22(17):9173.

[33]

Fontana F, Figueiredo P, Martins JP, Santos HA. Requirements for animal experiments: problems and challenges. Small. 2020;17(15):2004182.

[34]

Kiani AK, Pheby D, Henehan G, et al. Ethical considerations regarding animal experimentation. J Prev Med Hyg. 2022;63(2 Suppl 3):E255-E266. doi:10.15167/2421-4248/jpmh2022.63.2S3.2768

[35]

Meyerholz DK, Beck AP, Singh B. Innovative use of animal models to advance scientific research. Cell Tissue Res. 2020;380(2):205-206.

[36]

Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials. JACC Basic Transl Sci. 2019;4(7):845-854.

[37]

Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: part 2: potential alternatives to the use of animals in preclinical trials. JACC Basic Transl Sci. 2020;5(4):387-397.

[38]

Shim J, Kim J. Considerations for experimental animal ethics in the research planning and evaluation process. Kosin Med J. 2022;37(4):271-277.

[39]

Baldon LVR, de Mendonça SF, Ferreira FV, et al. AG129 mice as a comprehensive model for the experimental assessment of mosquito vector competence for arboviruses. Pathogens. 2022;11(8):879.

[40]

Dinnon KH, Leist SR, Schäfer A, et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 2020;586(7830):560-566.

[41]

Rosa RB, de Castro EF, de Oliveira SD, da Silva MV, Pena LJ. Mouse models of Mayaro virus. Viruses. 2023;15:9.

[42]

Cook DP, Galpin KJC, Rodriguez GM, et al. Comparative analysis of syngeneic mouse models of high-grade serous ovarian cancer. Commun Biol. 2023;6(1):1152.

[43]

Sanchez VE, Lynes JP, Walbridge S, et al. GL261 luciferase-expressing cells elicit an anti-tumor immune response: an evaluation of murine glioma models. Sci Rep. 2020;10(1):11003.

[44]

Abdul Ahmad SA, Palanisamy UD, Khoo JJ, Dhanoa A, Syed HS. Efficacy of geraniin on dengue virus type-2 infected BALB/c mice. Virol J. 2019;16(1):26.

[45]

da Costa Rasinhas A, Cunha Jácome F, Cardoso Caldas G, et al. Morphological aspects and viremia analysis of BALB/c murine model experimentally infected with dengue virus serotype 4. Viruses. 2021;13(10):1954.

[46]

Nethmini NAN, Kim MS, Chathuranga K, Ma JY, Kim H, Lee J-S. Melia azedarach extract exhibits a broad spectrum of antiviral effect in vitro and in vivo. J Biomed Transl Res. 2020;21(3):125-136.

[47]

Ferraz AC, Almeida LT, da Silva Caetano CC, et al. Hepatoprotective, antioxidant, anti-inflammatory, and antiviral activities of silymarin against mayaro virus infection. Antivir Res. 2021;194:105168.

[48]

Bengue M, Pintong AR, Liegeois F, et al. Favipiravir inhibits Mayaro virus infection in mice. Viruses. 2021;13(11):2213.

[49]

Ding C, Tang W, Xia B, et al. High-throughput screening of FDA-approved drug library reveals Ixazomib is a broad-spectrum antiviral agent against arboviruses. Viruses. 2022;14(7):1381.

[50]

Pádua MS, Guil-Guerrero JL, Prates JAM, Lopes PA. Insights on the use of transgenic mice models in Alzheimer’s disease research. Int J Mol Sci. 2024;25(5):2805.

[51]

Zengel J, Wang YX, Seo JW, et al. Hardwiring tissue-specific AAV transduction in mice through engineered receptor expression. Nat Methods. 2023;20(7):1070-1081.

[52]

Aliota MT, Caine EA, Walker EC, Larkin KE, Camacho E, Osorio JE. Characterization of lethal Zika virus infection in AG129 mice. PLoS Negl Trop Dis. 2016;10(4):e0004682.

[53]

Christofferson RC, McCracken MK, Johnson A-M. Chisenhall DM, Mores CN. Development of a transmission model for dengue virus. Virol J. 2013;10(1):127.

[54]

Soares-Schanoski A, Le TT, Kaiserman D, et al. Granzyme a in chikungunya and other Arboviral infections. Front Immunol. 2020;10:10.

[55]

Shoushtari M, Roohvand F, Salehi-Vaziri M, Arashkia A, Bakhshi H, Azadmanesh K. Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses. Hum Vaccin Immunother. 2022;18(5):2079323.

[56]

Smither SJ, Kempster S, Priestnall SL, et al. Early isolates of SARS-CoV-2 result in different pathogenesis in the transduced mouse model of COVID-19. Viruses. 2022;14(8):1769.

[57]

Gary EN, Warner BM, Parzych EM, et al. A novel mouse AAV6 hACE2 transduction model of wild-type SARS-CoV-2 infection studied using synDNA immunogens. iScience. 2021;24(7):102699.

[58]

Chen H, Min N, Ma L, Mok C-K. Chu JJH. Adenovirus vectored IFN-α protects mice from lethal challenge of chikungunya virus infection. PLoS Negl Trop Dis. 2020;14(12):e0008910.

[59]

Orozco S, Schmid MA, Parameswaran P, et al. Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor. J Gen Virol. 2012;93(Pt 10):2152-2157.

[60]

Espinosa DA, Beatty PR, Puerta-Guardo H, et al. Increased serum sialic acid is associated with morbidity and mortality in a murine model of dengue disease. J Gen Virol. 2019;100(11):1515-1522.

[61]

Muller DA, Depelsenaire ACI, Shannon AE, et al. Efficient delivery of Dengue virus subunit vaccines to the skin by microprojection arrays. Vaccines (Basel). 2019;7(4):189.

[62]

Thieulent Côme J, Dittmar W, Balasuriya Udeni BR, et al. Mouse-adapted SARS-CoV-2 MA10 strain displays differential pulmonary tropism and accelerated viral replication, Neurodissemination, and pulmonary host responses in K18-hACE2 mice. mSphere. 2023;8(1):e00558-22.

[63]

Clever S, Volz A. Mouse models in COVID-19 research: analyzing the adaptive immune response. Med Microbiol Immunol. 2023;212(2):165-183.

[64]

Miao J, Chard LS, Wang Z, Wang Y. Syrian hamster as an animal model for the study on infectious diseases. Front Immunol. 2019;10:10.

[65]

Xian X, Wang Y, Liu G. Genetically engineered hamster models of Dyslipidemia and atherosclerosis. Methods Mol Biol. 2022;2419:433-459.

[66]

Bosco-Lauth AM, Han S, Hartwig A, Bowen RA. Development of a hamster model for chikungunya virus infection and pathogenesis. PLoS One. 2015;10(6):e0130150.

[67]

Bosco-Lauth A, Mason G, Bowen R. Pathogenesis of Japanese encephalitis virus infection in a Golden hamster model and evaluation of Flavivirus cross-protective immunity. Am J Trop Med Hyg. 2011;84(5):727-732.

[68]

Julander JG, Testori M, Cédric C, Volkmann A. Immunogenicity and protection after vaccination with a modified vaccinia virus Ankara-vectored yellow fever vaccine in the hamster model. Front Immunol. 2018;9:9.

[69]

Siddharthan V, Van Wettere AJ, Li R, et al. Zika virus infection of adult and fetal STAT2 knock-out hamsters. Viruses. 2017;507:89-95.

[70]

Xiao S-Y, Guzman H, Zhang H, Travassos da Rosa APA, Tesh RB. West Nile virus infection in the Golden hamster (Mesocricetus auratus):a model for West Nile encephalitis. Emerg Infect Dis. 2001;7(4):714-721.

[71]

Klitting R, Roth L, Rey FA, de Lamballerie X. Molecular determinants of yellow fever virus pathogenicity in Syrian Golden hamsters: one mutation away from virulence. Emerg Microbes Infect. 2018;7(1):1-18.

[72]

Morrey JD, Day CW, Julander JG, et al. Modeling hamsters for evaluating West Nile virus therapies. Antivir Res. 2004;63(1):41-50.

[73]

Ma J, Yakass MB, Jansen S, et al. Live-attenuated YF17D-vectored COVID-19 vaccine protects from lethal yellow fever virus infection in mouse and hamster models. EBioMedicine. 2022;83:104240.

[74]

Estes JD, Wong SW, Brenchley JM. Nonhuman primate models of human viral infections. Nat Rev Immunol. 2018;18(6):390-404.

[75]

Ramsey J, Martin EC, Purcell OM, Lee KM, MacLean AG. Self-injurious behaviours in rhesus macaques: potential glial mechanisms. J Intellect Disabil Res. 2018;62(12):1008-1017.

[76]

Haese NN, Roberts VHJ, Chen A, Streblow DN, Morgan TK, Hirsch AJ. Nonhuman primate models of Zika virus infection and disease during pregnancy. Viruses. 2021;13(10):2088.

[77]

Marlin R, Desjardins D, Contreras V, et al. Antiviral efficacy of favipiravir against Zika and SARS-CoV-2 viruses in non-human primates. Nat Commun. 2022;13(1):5108.

[78]

Douam F, Ploss A. A humanized “new-trophil” mouse to study early inflammatory processes. Proc Natl Acad Sci USA. 2022;119(49):e2216699119.

[79]

Gardner CL, Erwin-Cohen RA, Lewis BS, et al. Syrian hamsters model does not reflect human-like disease after aerosol exposure to encephalitic alphaviruses. Methods and Protocols. 2024;7(3):42.

[80]

Golden Joseph W, Li R, Cline Curtis R, et al. Hamsters expressing human angiotensin-converting enzyme 2 develop severe disease following exposure to SARS-CoV-2. MBio. 2022;13(1):e02906-21.

[81]

Jiang L, Lu C, Sun Q. Tree shrew as a new animal model for the study of Dengue virus. Front Immunol. 2021;12:621164.

[82]

Kayesh MEH, Sanada T, Kohara M, Tsukiyama-Kohara K. Tree shrew as an emerging small animal model for human viral infection: a recent overview. Viruses. 2021;13(8):1641.

[83]

Karuppannan K, Saaban S, Mustapa AR, Zainal Abidin FA, Azimat NA, Keliang C. Population status of long-tailed Macaque (Macaca fascicularis) in Peninsular Malaysia. J Primatol. 2014;3(2):1-10.

[84]

Choong SS, Mohamad MA, Tan LP, Hamdan RH. The Predicament of Macaque Conservation in Malaysia. IntechOpen; 2021.

[85]

Mikail M, Tengku Azizan TRM, Mohd Noor MH, Abu Hassim H, Che’Amat A, Ab Latip MQ. Long-tailed macaque (Macaca fascicularis) contraception methods: a systematic review. Biology. 2023;12:848.

[86]

Birdwell L. Cynomolgus Macaques (Macaca fascicularis) in biomedical research. 2023. National Primate Research Centers (NPRC). Accessed 2023. https://nprcresearch.org/primate/CynomolgusMacaquesinBiomedicalResearch.pdf

[87]

Chua CL, Chan YF, Andu ESGS, et al. Little evidence of Zika virus infection in wild long-tailed macaques, Peninsular Malaysia. Emerg Infect Dis. 2019;25(2):374-376.

[88]

Mohd Yuseri AN, Abd Rahaman Y, Arshad SS, et al. Exposure to zoonotic West Nile virus in long-tailed macaques and bats in peninsular Malaysia. Animals. 2020;10(12):2367.

[89]

Sam IC, Chua CL, Rovie-Ryan JJ, et al. Chikungunya Virus in Macaques, Malaysia. Emerg Infect Dis. 2015;21(9):1683-1685.

[90]

Hansen MF, Ang A, Trinh TTH, et al. Macaca fascicularis. IUCN Red List of Threatened Species; 2022.

[91]

Inglis MI. Wildlife ethics and practice: why we need to change the way we talk about ‘invasive species’. J Agric Environ Ethics. 2020;33:299-313.

[92]

Mackenzie JS, Williams DT, van den Hurk AF, Smith DW, Currie BJ. Japanese Encephalitis virus: the emergence of genotype IV in Australia and its potential endemicity. Viruses. 2022;14(11):2480.

[93]

Te N, Rodon Aldrufeu J, Creve R, et al. Evaluation of alpaca tracheal explants as an ex vivo model for the study of Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vet Res. 2022;53:67.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (1562KB)

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/