Epidural pressure measurement using a fiber-optic sensor (proof-of-principle in vivo animal trial)

Susanne Barz , Marvin Friedemann , Sebastian Voigt , Markus Melloh , Thomas Barz

Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (5) : 769 -776.

PDF (2443KB)
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (5) : 769 -776. DOI: 10.1002/ame2.12469
ORIGINAL ARTICLE

Epidural pressure measurement using a fiber-optic sensor (proof-of-principle in vivo animal trial)

Author information +
History +
PDF (2443KB)

Abstract

Background: An increase in epidural pressure around the stenosis has been observed in patients with lumbar spinal stenosis (LSS) with positive signs of sedimentation or redundant nerve roots. Further analysis of the pressure conditions in the stenotic area would be of great interest. We hypothesized that it would be possible to determine the physiological parameters of the epidural pulse wave and its course in pathological stenosis as a basis for objective identification of LSS based on pressure using a new measuring method with continuous spatial and temporal resolution.

Methods: We performed a single-case proof-of-principle in vivo animal trial and used a newly developed hybrid pressure-measurement probe with a fiber-tip Fabry–Pérot interferometer and several fiber Bragg gratings (FBG).

Results: With reproducible precision, we determined the mean epidural pressure to be 7.5 mmHg and the peak-to-peak value to be 4–5 mmHg. When analyzing the pressure measured by an FBG array, both the heart and respiratory rates can be precisely determined. This study was the first to measure the pulse wave velocity of the cerebrospinal fluid pressure wave as 0.97 m/s using the newly developed pressure probe. A simulated LSS was detected in real time and located exactly.

Conclusions: The developed fiber-optic pressure sensor probe enables a new objective measurement of epidural pressure. We confirmed our hypothesis that physiological parameters of the epidural pulse wave can be determined and that it is possible to identify an LSS.

Keywords

animal / cerebrospinal fluid pressure / pulse wave velocity / spinal stenosis

Cite this article

Download citation ▾
Susanne Barz, Marvin Friedemann, Sebastian Voigt, Markus Melloh, Thomas Barz. Epidural pressure measurement using a fiber-optic sensor (proof-of-principle in vivo animal trial). Animal Models and Experimental Medicine, 2024, 7(5): 769-776 DOI:10.1002/ame2.12469

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lurie J, Tomkins-Lane C. Management of lumbar spinal stenosis. BMJ. 2016;352:h6234.

[2]

Yukawa Y, Lenke LG, Tenhula J, et al. A comprehensive study of patients with surgically treated lumbar spinal stenosis with neurogenic claudication. JBJS. 2002;84:1954-1959.

[3]

Schizas C, Kulik G. Decision-making in lumbar spinal stenosis: a survey on the influence of the morphology of the dural sac. J Bone Joint Surg Br. 2012;94-B:98-101.

[4]

Barz C, Melloh M, Staub LP, Lord SJ, Merk HR, Barz T. Reversibility of nerve root sedimentation sign in lumbar spinal stenosis patients after decompression surgery. Eur Spine J. 2017;26:2573-2580.

[5]

Sengupta DK, Herkowitz HN. Lumbar spinal stenosis: treatment strategies and indications for surgery. Orthoped Clin North America. 2003;34:281-295.

[6]

Bae YJ, Lee JW, Lee E, Yeom JS, Kim KJ, Kang HS. Cervical compressive myelopathy: flow analysis of cerebrospinal fluid using phase-contrast magnetic resonance imaging. Eur Spine J. 2017;26:40-48.

[7]

Kheram N, Pfender N, Boraschi A, et al. Cerebrospinal fluid pressure dynamics reveal signs of effective spinal canal narrowing in ambiguous spine conditions. Front Neurol. 2022;13:9511018.

[8]

Barz T, Melloh M, Staub LP, Lord SJ, Lange J, Merk HR. Increased intraoperative epidural pressure in lumbar spinal stenosis patients with a positive nerve root sedimentation sign. Eur Spine J. 2014;23:985-990.

[9]

Zipser CM, Pfender N, Spirig JM, et al. Study protocol for an observational study of cerebrospinal fluid pressure in patients with degenerative cervical myelopathy undergoing surgical deCOMPression of the spinal CORD: the COMP-CORD study. BMJ Open. 2020;10:e037332.

[10]

Koch MJ, Duy PQ, Grannan BL, et al. Angiographic pulse wave coherence in the human brain. Front Bioeng Biotechnol. 2022;10:873530.

[11]

Yamada S. Cerebrospinal fluid dynamics. Croat Med J. 2021;62:399-410.

[12]

Kollmeier JM, Gürbüz-Reiss L, Sahoo P, et al. Deep breathing couples CSF and venous flow dynamics. Sci Rep. 2022;12:2568.

[13]

Attarpour A, Ward J, Chen JJ. Vascular origins of low-frequency oscillations in the cerebrospinal fluid signal in resting-state fMRI: interpretation using photoplethysmography. Hum Brain Mapp. 2021;42:2606-2622.

[14]

Bert RJ, Settipalle N, Tiwana E, et al. The relationships among spinal CSF flows, spinal cord geometry, and vascular correlations: evidence of intrathecal sources and sinks. Am J Physiol Regul Integr Comp Physiol. 2019;317:R470-R484.

[15]

Sweetman B, Linninger AA. Cerebrospinal fluid flow dynamics in the central nervous system. Ann Biomed Eng. 2011;39:484-496.

[16]

Hirasawa M, de Lange ECM. Revisiting cerebrospinal fluid flow direction and rate in physiologically based pharmacokinetic model. Pharmaceutics. 2022;14:1764.

[17]

Kalata W, Martin BA, Oshinski JN, Jerosch-Herold M, Royston TJ, Loth F. MR measurement of cerebrospinal fluid velocity wave speed in the Spinal Canal. IEEE Trans Biomed Eng. 2009;56:1765-1768.

[18]

Poeggel S, Tosi D, Duraibabu D, Leen G, McGrath D, Lewis E. Optical fibre pressure sensors in medical applications. Sensors (Basel). 2015;15:17115-17148.

[19]

Friedemann M, Voigt S, Kriebel D, et al. Pressure sensor Catheter based on piezoelectric actuated aluminum nitride membrane and fiber tip Fabry-Pérot-Interferometer. 2021; VDE e.V. ISBN 978-3-8007-5656-8.

[20]

Arkwright JW, Blenman NG, Underhill ID, et al. A fibre optic catheter for simultaneous measurement of longitudinal and circumferential muscular activity in the gastrointestinal tract. J Biophotonics. 2011;4:244-251.

[21]

Voigt D-IS. Drucksensorkatheter auf Basis von Faser-Bragg-Gittern. 2012. https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa-83302

[22]

Degen L, Beglinger C. Motilitätstests des Gastrointestinaltraktes (inkl. Langzeit-pH-Metrie). In: Siewert JR, Harder F, Rothmund M, eds. Praxis der Viszeralchirurgie: Gastroenterologische Chirurgie. Springer; 2002:75-90.

[23]

Polito D, Caponero M, Polimadei A, et al. A needle-like probe for temperature monitoring during laser ablation based on FBG: manufacturing and characterization. J Med Devices. 2015;9:041006.

[24]

Friedemann M, Voigt S, Mehner J. Pressure sensor catheter based on fiber tip Fabry-Pérot-interferometer and fiber Bragg grating for temperature compensation: fiber-optic hybrid sensor catheter for invasive pressure measuring. Curr Dir Biomed Eng. 2022;8:404-407.

[25]

Friedemann M, Voigt S, Otto R, et al. In-vitro Verifikation medizinischer Drucksensoren am dynamischen Gefäßmodell. 2022. Technische Universität Chemnitz.

[26]

Zhou Z, Wei F, Huang S, et al. In vivo magnetic resonance imaging evaluation of porous tantalum interbody fusion devices in a porcine spinal arthrodesis model. Spine. 2015;40:1471-1478.

[27]

Lin T-H, Hu H-T. Wang H-C, Wu MC, Wu SW, Yeh ML. Evaluation of osseous integration of titanium orthopedic screws with novel SLA treatment in porcine model. PLoS ONE. 2017;12:e0188364.

[28]

Barz T, Lange J, Melloh M, et al. Histomorphometric and radiographical changes after lumbar implantation of the PEEK nonfusion interspinous device in the BB.4S rat model. Spine. 2013;38:E263-E269.

[29]

Li J-Q, Kwong W-H. Chan Y-L, Kawabata M. Comparison of in vivo intradiscal pressure between sitting and standing in human lumbar spine: a systematic review and meta-analysis. Life. 2022;12:457.

[30]

Liebsch C, Wilke HJ. The effect of multiplanar loading on the intradiscal pressure of the whole human spine: systematic review and meta-analysis. Eur Cell Mater. 2021;41:388-400.

[31]

Ambastha S, Umesh S, Dabir S, Asokan S. Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device. JBO. 2016;21:117002.

[32]

Carotenuto B, Micco A, Ricciardi A, et al. Optical guidance systems for epidural space identification. IEEE J Sel Top Quantum Electron. 2016;23:1.

[33]

De Tommasi F, Lo Presti D, Virgili F, et al. Soft system based on fiber Bragg grating sensor for loss of resistance detection during epidural procedures: in silico and in vivo assessment. Sensors. 2021;21:5329.

[34]

Takahashi K, Miyazaki T, Takino T, Matsui T, Tomita K. Epidural pressure measurements. Relationship between epidural pressure and posture in patients with lumbar spinal stenosis. Spine. 1995;20:650-653.

[35]

Takahashi K, Kagechika K, Takino T, Matsui T, Miyazaki T, Shima I. Changes in epidural pressure during walking in patients with lumbar spinal stenosis. Spine. 1995;20:2746-2749.

[36]

Huang Z, Xie Z, Wu X. Research progress on nerve root sedimentation sign of lumbar spinal stenosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019;33:795-800. doi:10.7507/1002-1892.201904034

[37]

Nathani KR, Barakzai MD, Rai HH, et al. Redundant nerve roots indicate higher degree of stenosis in lumbar spine stenotic patients. Acta Neurol Belg. 2022;123:1781-1787.

[38]

Papavero L, Ali N, Schawjinski K, Holtdirk A, Maas R, Ebert S. The prevalence of redundant nerve roots in standing positional MRI decreases by half in supine and almost to zero in flexed seated position: a retrospective cross-sectional cohort study. Neuroradiology. 2022;64:2191-2201.

[39]

Norimoto M, Eguchi Y, Kanamoto H, et al. Diffusion tensor imaging of the spinal canal in quantitative assessment of patients with lumbar spinal canal stenosis. Asian Spine J. 2021;15:207-215.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (2443KB)

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/