Role of short-chain fatty acids in host physiology

Mingyue Liu , Yubo Lu , Guoyu Xue , Le Han , Hanbing Jia , Zi Wang , Jia Zhang , Peng Liu , Chaojuan Yang , Yingjie Zhou

Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (5) : 641 -652.

PDF (1909KB)
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (5) : 641 -652. DOI: 10.1002/ame2.12464
REVIEW

Role of short-chain fatty acids in host physiology

Author information +
History +
PDF (1909KB)

Abstract

Short-chain fatty acids (SCFAs) are major metabolites produced by the gut microbiota through the fermentation of dietary fiber, and they have garnered significant attention due to their close association with host health. As important mediators between the gut microbiota and the host, SCFAs serve as energy substrates for intestinal epithelial cells and maintain homeostasis in host immune and energy metabolism by influencing host epigenetics, activating G protein-coupled receptors, and inhibiting pathogenic microbial infections. This review provides a comprehensive summary of SCFAs synthesis and metabolism and offering an overview of the latest research progress on their roles in protecting gut health, enhancing energy metabolism, mitigating diseases such as cancer, obesity, and diabetes, modulating the gut-brain axis and gut-lung axis, and promoting bone health.

Keywords

gut microbiota / host / interaction relationship / short-chain fatty acids

Cite this article

Download citation ▾
Mingyue Liu, Yubo Lu, Guoyu Xue, Le Han, Hanbing Jia, Zi Wang, Jia Zhang, Peng Liu, Chaojuan Yang, Yingjie Zhou. Role of short-chain fatty acids in host physiology. Animal Models and Experimental Medicine, 2024, 7(5): 641-652 DOI:10.1002/ame2.12464

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan Q, Zhai W, Yang C, et al. The relationship among physical activity, intestinal Flora, and cardiovascular disease. Cardiovasc Ther. 2021;2021:3364418.

[2]

Pant A, Maiti TK, Mahajan D, Das B. Human gut microbiota and drug metabolism. Microb Ecol. 2023;86(1):97-111.

[3]

Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-195.

[4]

Sulistyowati E, Handayani D, Soeharto S, Rudijanto A. A high-fat and high-fructose diet lowers the cecal digesta’s weight and short-chain fatty acid level of a Sprague-Dawley rat model. Turk J Med Sci. 2022;52(1):268-275.

[5]

Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661-672.

[6]

Rey FE, Faith JJ, Bain J, et al. Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem. 2010;285(29):22082-22090.

[7]

Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29-41.

[8]

Scheiman J, Luber JM, Chavkin TA, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019;25(7):1104-1109.

[9]

Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol. 2002;68(10):5186-5190.

[10]

Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. 2014;5(2):e00889.

[11]

Deehan EC, Yang C, Perez-Munoz ME, et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe. 2020;27(3):389-404.e6.

[12]

Slizewska K, Wlodarczyk M, Sobczak M, et al. Comparison of the activity of fecal enzymes and concentration of SCFA in healthy and overweight children. Nutrients. 2023;15(4):987.

[13]

Hu J, Kyrou I, Tan BK, et al. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in Brown adipocytes. Endocrinology. 2016;157(5):1881-1894.

[14]

Dupraz L, Magniez A, Rolhion N, et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal gammadelta T cells. Cell Rep. 2021;36(1):109332.

[15]

Zhang Y, Sun Z, Jia J, et al. Overview of histone modification. Adv Exp Med Biol. 2021;1283:1-16.

[16]

Yang W, Yu T, Huang X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020;11(1):4457.

[17]

Sanchez HN, Moroney JB, Gan H, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 2020;11(1):60.

[18]

Hou H, Chen D, Zhang K, et al. Gut microbiota-derived short-chain fatty acids and colorectal cancer: ready for clinical translation? Cancer Lett. 2022;526:225-235.

[19]

Thomas SP, Denu JM. Short-chain fatty acids activate acetyltransferase p300. elife. 2021;10:e72171.

[20]

Gonzalez-Bosch C, Zunszain PA, Mann GE. Control of redox homeostasis by short-chain fatty acids: implications for the prevention and treatment of breast cancer. Pathogens. 2023;12(3):486.

[21]

Chriett S, Dabek A, Wojtala M, Vidal H, Balcerczyk A, Pirola L. Prominent action of butyrate over beta-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci Rep. 2019;9(1):742.

[22]

Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis. Cells. 2023;12(5):793.

[23]

Liu P, Wang Y, Yang G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 2021;165:105420.

[24]

Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease. Physiol Rev. 2020;100(1):171-210.

[25]

Milligan G, Barki N, Tobin AB. Chemogenetic approaches to explore the functions of free fatty acid receptor 2. Trends Pharmacol Sci. 2021;42(3):191-202.

[26]

Lavoie S, Chun E, Bae S, et al. Expression of free fatty acid receptor 2 by dendritic cells prevents their expression of interleukin 27 and is required for maintenance of mucosal barrier and immune response against colorectal tumors in mice. Gastroenterology. 2020;158(5):1359-1372.e9.

[27]

Zhang ZJ, Pedicord VA, Peng T, Hang HC. Site-specific acylation of a bacterial virulence regulator attenuates infection. Nat Chem Biol. 2020;16(1):95-103.

[28]

Homann C, Eckey I, Chuppava B, et al. Rye and Rye bran as components of diets in piglet production-effects on salmonella prevalence. Animals (Basel). 2023;13(14):2262.

[29]

Sorbara MT, Dubin K, Littmann ER, et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J Exp Med. 2019;216(1):84-98.

[30]

Dunkley KD, Callaway TR, Chalova VI, et al. Foodborne Salmonella ecology in the avian gastrointestinal tract. Anaerobe. 2009;15(1–2):26-35.

[31]

Szabo RT, Kovacs-Weber M, Zimboran A, Kovacs L, Erdelyi M. Effects of short-and medium-chain fatty acids on production, meat quality, and microbial attributes-a review. Molecules. 2023;28(13):4956.

[32]

Xue W, Yuan X, Ji Z, Li H, Yao Y. Nutritional ingredients and prevention of chronic diseases by fermented koumiss: a comprehensive review. Front Nutr. 2023;10:1270920.

[33]

Byndloss MX, Olsan EE, Rivera-Chavez F, et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 2017;357(6351):570-575.

[34]

Martin-Gallausiaux C, Marinelli L, Blottiere HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80(1):37-49.

[35]

Salvi PS, Cowles RA. Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease. Cells. 2021;10(7):1775.

[36]

Yu M, Han Y, Li J, Wang L. Magnetic N-doped carbon aerogel from sodium carboxymethyl cellulose/collagen composite aerogel for dye adsorption and electrochemical supercapacitor. Int J Biol Macromol. 2018;115:185-193.

[37]

Zhao J, Hu J, Ma X. Sodium caprylate improves intestinal mucosal barrier function and antioxidant capacity by altering gut microbial metabolism. Food Funct. 2021;12(20):9750-9762.

[38]

Tian P, Yang W, Guo X, et al. Early life gut microbiota sustains liver-resident natural killer cells maturation via the butyrate-IL-18 axis. Nat Commun. 2023;14(1):1710.

[39]

Beisner J, Filipe Rosa L, Kaden-Volynets V, Stolzer I, Gunther C, Bischoff SC. Prebiotic inulin and sodium butyrate attenuate obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides. Front Immunol. 2021;12:678360.

[40]

Korsten S, Vromans H, Garssen J, Willemsen LEM. Butyrate protects barrier integrity and suppresses immune activation in a Caco-2/PBMC Co-culture model while HDAC inhibition mimics butyrate in restoring cytokine-induced barrier disruption. Nutrients. 2023;15(12):2760.

[41]

Huang J, Pearson JA, Peng J, et al. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI. Insight. 2020;5(10):e135718.

[42]

Goncalves P, Araujo JR, Di Santo JP. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(3):558-572.

[43]

Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247-2252.

[44]

Zhang H, Du M, Yang Q, Zhu MJ. Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. J Nutr Biochem. 2016;27:299-306.

[45]

Liang L, Liu L, Zhou W, et al. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin Sci (Lond). 2022;136(4):291-307.

[46]

Schiweck C, Edwin Thanarajah S, Aichholzer M, et al. Regulation of CD4(+) and CD8(+) T cell biology by short-chain fatty acids and its relevance for autoimmune pathology. Int J Mol Sci. 2022;23(15):8272.

[47]

Yang J, Pei G, Sun X, et al. RhoB affects colitis through modulating cell signaling and intestinal microbiome. Microbiome. 2022;10(1):149.

[48]

Ji J, Shu D, Zheng M, et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep. 2016;6:24838.

[49]

Wiechers C, Zou M, Galvez E, et al. The microbiota is dispensable for the early stages of peripheral regulatory T cell induction within mesenteric lymph nodes. Cell Mol Immunol. 2021;18(5):1211-1221.

[50]

Sun M, Wu W, Chen L, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun. 2018;9(1):3555.

[51]

Zhao Y, Chen F, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018;11(3):752-762.

[52]

Hinrichsen F, Hamm J, Westermann M, et al. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab. 2021;33(12):2355-2366.e8.

[53]

Moniri NH, Farah Q. Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochem Pharmacol. 2021;186:114483.

[54]

Alvandi E, Wong WKM, Joglekar MV, Spring KJ, Hardikar AA. Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer: a systematic review and meta-analysis. BMC Med. 2022;20(1):323.

[55]

Zagato E, Pozzi C, Bertocchi A, et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol. 2020;5(3):511-524.

[56]

Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 2020;469:456-467.

[57]

Zhang SL, Mao YQ, Zhang ZY, et al. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Theranostics. 2021;11(9):4155-4170.

[58]

Luu M, Riester Z, Baldrich A, et al. Microbial short-chain fatty acids modulate CD8(+) T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 2021;12(1):4077.

[59]

Okumura S, Konishi Y, Narukawa M, et al. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun. 2021;12(1):5674.

[60]

Fluitman KS, Wijdeveld M, Nieuwdorp M, IJzerman RG. Potential of butyrate to influence food intake in mice and men. Gut. 2018;67(7):1203-1204.

[61]

Boland BB, Mumphrey MB, Hao Z, et al. Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice. Mol Metab. 2019;25:64-72.

[62]

Kubrak O, Koyama T, Ahrentlov N, et al. The gut hormone Allatostatin C/somatostatin regulates food intake and metabolic homeostasis under nutrient stress. Nat Commun. 2022;13(1):692.

[63]

Wang D, Liu CD, Li HF, et al. LSD1 mediates microbial metabolite butyrate-induced thermogenesis in brown and white adipose tissue. Metabolism. 2020;102:154011.

[64]

Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc. 2015;74(3):328-336.

[65]

De Vadder F, Plessier F, Gautier-Stein A, Mithieux G. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis. Neurogastroenterol Motil. 2015;27(3):443-448.

[66]

Bell KJ, Saad S, Tillett BJ, et al. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome. 2022;10(1):9.

[67]

Marino E, Richards JL, McLeod KH, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18(5):552-562.

[68]

Tison SE, Shikany JM, Long DL, et al. Differences in the Association of Select Dietary Measures with Risk of incident type 2 diabetes. Diabetes Care. 2022;45(11):2602-2610.

[69]

Lancaster SM, Lee-McMullen B, Abbott CW, et al. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe. 2022;30(6):848-862.e7.

[70]

Guo W, Zhang Z, Li L, et al. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacol Res. 2022;182:106355.

[71]

Ju S, Shin Y, Han S, et al. The gut-brain Axis in schizophrenia: the implications of the gut microbiome and SCFA production. Nutrients. 2023;15(20):4391.

[72]

Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int. 2016;99:110-132.

[73]

Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain Axis: from motility to mood. Gastroenterology. 2021;160(5):1486-1501.

[74]

Lukens JR, Eyo UB. Microglia and neurodevelopmental disorders. Annu Rev Neurosci. 2022;45:425-445.

[75]

Colosimo DA, Kohn JA, Luo PM, et al. Mapping interactions of microbial metabolites with human G-protein-coupled receptors. Cell Host Microbe. 2019;26(2):273-282.e7.

[76]

Erny D, Dokalis N, Mezo C, et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 2021;33(11):2260-2276.e7.

[77]

Wessels AG. Influence of the gut microbiome on feed intake of farm animals. Microorganisms. 2022;10(7):1305.

[78]

Isacson R, Nielsen E, Dannaeus K, et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test. Eur J Pharmacol. 2011;650(1):249-255.

[79]

Verma MK, Goel R, Krishnadas N, Nemmani KVS. Targeting glucose-dependent insulinotropic polypeptide receptor for neurodegenerative disorders. Expert Opin Ther Targets. 2018;22(7):615-628.

[80]

Painsipp E, Herzog H, Holzer P. The gut-mood axis: a novel role of the gut hormone peptide YY on emotional-affective behaviour in mice. BMC Pharmacol. 2009;9(S2):A13.

[81]

Painsipp E, Herzog H, Sperk G, Holzer P. Sex-dependent control of murine emotional-affective behaviour in health and colitis by peptide YY and neuropeptide Y. Br J Pharmacol. 2011;163(6):1302-1314.

[82]

Kornhuber J, Zoicas I. Neuropeptide Y reduces social fear in male mice: involvement of Y1 and Y2 receptors in the dorsolateral septum and central amygdala. Int J Mol Sci. 2021;22(18):10142.

[83]

Wakabayashi T, Yamaguchi K, Matsui K, et al. Differential effects of diet-and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):15.

[84]

Kullmann S, Kleinridders A, Small DM, et al. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol. 2020;8(6):524-534.

[85]

Kaneko K, Fu Y, Lin HY, et al. Gut-derived GIP activates central Rap1 to impair neural leptin sensitivity during overnutrition. J Clin Invest. 2019;129(9):3786-3791.

[86]

Bali A, Jaggi AS. An integrative review on role and mechanisms of ghrelin in stress, anxiety and depression. Curr Drug Targets. 2016;17(5):495-507.

[87]

Wu T, Li H, Su C, et al. Microbiota-derived short-chain fatty acids promote LAMTOR2-mediated immune responses in macrophages. mSystems. 2020;5(6):e00587-20.

[88]

McLoughlin R, Berthon BS, Rogers GB, et al. Soluble fibre supplementation with and without a probiotic in adults with asthma: a 7-day randomised, double blind, three way cross-over trial. EBioMedicine. 2019;46:473-485.

[89]

Brown JA, Sanidad KZ, Lucotti S, et al. Gut microbiota-derived metabolites confer protection against SARS-CoV-2 infection. Gut Microbes. 2022;14(1):2105609.

[90]

Li J, Richards EM, Handberg EM, Pepine CJ, Raizada MK. Butyrate regulates COVID-19-relevant genes in gut epithelial organoids from normotensive rats. Hypertension. 2021;77(2):e13-e16.

[91]

Baradaran Ghavami S, Pourhamzeh M, Farmani M, et al. Cross-talk between immune system and microbiota in COVID-19. Expert Rev Gastroenterol Hepatol. 2021;15(11):1281-1294.

[92]

He J, Chu Y, Li J, et al. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. Sci Adv. 2022;8(6):eabm1511.

[93]

Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab. 2020;2(9):840-848.

[94]

Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 2018;9(1):55.

[95]

Rosser EC, Piper CJM, Matei DE, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 2020;31(4):837-851.e10.

[96]

Serino M. SCFAs -the thin microbial metabolic line between good and bad. Nat Rev Endocrinol. 2019;15(6):318-319.

[97]

Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213-217.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (1909KB)

296

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/