Animal models of tendon calcification: Past, present, and future

Ruichen Li , Canhao Lai , Hong Luo , Yujian Lan , Xinfang Duan , Dingsu Bao , Zhipeng Hou , Huan Liu , Shijie Fu

Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (4) : 471 -483.

PDF (1949KB)
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (4) : 471 -483. DOI: 10.1002/ame2.12439
REVIEW

Animal models of tendon calcification: Past, present, and future

Author information +
History +
PDF (1949KB)

Abstract

Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery, or as an expression of fibrodysplasia ossificans progressiva. This condition can be referred to by various names in clinical practice and literature, including tendon ossification, tendon mineralization, heterotopic ossification, and calcific tendonitis. The exact pathogenesis of tendon calcification remains uncertain, but current mainstream research suggests that calcification is mostly cell mediated. To further elucidate the pathogenesis of tendon calcification and to better simulate the overall process, selecting appropriate experimental animal models is important. Numerous animal models have been utilized in various clinical studies, each with its own set of advantages and limitations. In this review, we have discussed the advancements made in research on animal models of tendon calcification, with a focus on the selection of experimental animals, the sites of injury in these models, and the methods employed for modeling.

Keywords

animal models / review / tendon calcification

Cite this article

Download citation ▾
Ruichen Li, Canhao Lai, Hong Luo, Yujian Lan, Xinfang Duan, Dingsu Bao, Zhipeng Hou, Huan Liu, Shijie Fu. Animal models of tendon calcification: Past, present, and future. Animal Models and Experimental Medicine, 2024, 7(4): 471-483 DOI:10.1002/ame2.12439

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chan ED, Morales DV, Welsh CH, McDermott MT, Schwarz MI. Calcium deposition with or without bone formation in the lung. Am J Respir Grit Care Med. 2002;165(12):1654-1669.

[2]

Faure G, Daculsi G. Calcified tendinitis: a review. Ann Rheum Dis. 1983;42 Suppl 1(Suppl 1):49-53.

[3]

Hegazi T. Hydroxyapatite deposition disease: a comprehensive review of pathogenesis, radiological findings, and treatment strategies. Diagnostics (Basel). 2023;13(16):2678.

[4]

Oliva F, Via AG, Maffulli N. Physiopathology of intratendinous calcific deposition. BMC Med. 2012;10:95.

[5]

Oliva F, Via AG, Maffulli N. Calcific tendinopathy of the rotator cuff tendons. Sports Med Arthrosc Rev. 2011;19(3):237-243.

[6]

Mitsui Y, Gotoh M, Tanesue R, et al. Calcific tendonitis of the rotator cuff: an unusual case. Case Rep Orthop. 2012;2012:806769.

[7]

Rufai A, Ralphs JR, Benjamin M. Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res. 1995;13(4):585-593.

[8]

Knapik JJ, Pope R. Achilles tendinopathy: pathophysiology, epidemiology, diagnosis, treatment, prevention, and screening. J Spec Oper Med. 2020;20:125-140.

[9]

Ateschrang A, Grazer C, Weise K. Incidence and effect of calcifications after open-augmented Achilles tendon repair. Arch Orthop Trauma Surg. 2008;128(10):1087-1092.

[10]

Huberty DP, Schoolfield JD, Brady PC, Vadala AP, Arrigoni P, Burkhart SS. Incidence and treatment of postoperative stiffness following arthroscopic rotator cuff repair. Art Ther. 2009;25(8):880-890.

[11]

Buck RC. Regeneration of tendon. J Pathol Bacteriol. 1953;66(1):1-18.

[12]

Mavrikakis ME, Drimis S, Kontoyannis DA, Rasidakis A, Moulopoulou ES, Kontoyannis S. Calcific shoulder periarthritis (tendinitis) in adult onset diabetes mellitus: a controlled study. Ann Rheum Dis. 1989;48:211-214.

[13]

Yang YS, Kim JM, Xie J, et al. Suppression of heterotopic ossification in fibrodysplasia ossificans progressiva using AAV gene delivery. Nat Commun. 2022;13(1):6175.

[14]

Fu J, Zhang J, Jiang T, et al. mTORC1 coordinates NF-κB signaling pathway to promote chondrogenic differentiation of tendon cells in heterotopic ossification. Bone. 2022;163:116507.

[15]

Cho SJ, Horvai A. Chondro-osseous lesions of soft tissue. Surg Pathol Clin. 2015;8(3):419-444.

[16]

de Silva MV, Reid R. Myositis ossificans and fibroosseous pseudotumor of digits: a clinicopathological review of 64 cases with emphasis on diagnostic pitfalls. Int J Surg Pathol. 2003;11(3):187-195.

[17]

Nuovo MA, Norman A, Chumas J, Ackerman LV. Myositis ossificans with atypical clinical, radiographic, or pathologic findings: a review of 23 cases. Skeletal Radiol. 1992;21(2):87-101.

[18]

Walczak BE, Johnson CN, Howe BM. Myositis ossificans. J Am Acad Orthop Surg. 2015;23(10):612-622.

[19]

Lawand J, Loeffelholz Z, Khurshid B, Barcak E. Heterotopic ossification after trauma. Orthop Clin North Am. 2023;54(1):37-46.

[20]

Avendano JP, Pereira D. Treatment of calcific tendonitis of the rotator cuff: an updated review. Orthopedics. 2023;46(6): e326-e332.

[21]

Merolla G, Bhat MG, Paladini P, Porcellini G. Complications of calcific tendinitis of the shoulder: a concise review. J Orthop Traumatol. 2015;16(3):175-183.

[22]

Meyers C, Lisiecki J, Miller S, et al. Heterotopic ossification: a comprehensive review. JBMR Plus. 2019;3(4):e10172.

[23]

Rosenberg AE. Pseudosarcomas of soft tissue. Arch Pathol Lab Med. 2008;132(4):579-586.

[24]

O’Brien EJ, Frank CB, Shrive NG, Hallgrímsson B, Hart DA. Heterotopic mineralization (ossification or calcification) in tendinopathy or following surgical tendon trauma. Int J Exp Pathol. 2012;93(5):319-331.

[25]

Shore EM. Fibrodysplasia ossificans progressiva: a human genetic disorder of extraskeletal bone formation, or—how does one tissue become another? Wiley Interdiscip Rev Dev Biol. 2012;1(1):153-165.

[26]

Kaplan FS, Xu M, Seemann P, et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat. 2009;30(3):379-390.

[27]

Juan C, Bancroft AC, Choi JH, et al. Intersections of fibrodysplasia ossificans progressiva and traumatic heterotopic ossification. Biomolecules. 2024;14(3):349.

[28]

Yea JH, Gomez-Salazar M, Onggo S, et al. Tppp3+ synovial/tendon sheath progenitor cells contribute to heterotopic bone after trauma. Bone Res. 2023;11(1):39.

[29]

Uhthoff HK, Sarkar K. Calcifying tendinitis. Baillieres Clin Rheumatol. 1989;3(3):567-581.

[30]

Uhthoff HK, Loehr JW. Calcific tendinopathy of the rotator cuff: pathogenesis, diagnosis and management. J Am Acad Orthop Surg. 1997;5(4):183-191.

[31]

Shen H, Cheng L, Zheng Q, Liu W, Wang Y. Scavenging of reactive oxygen species can adjust the differentiation of tendon stem cells and progenitor cells and prevent ectopic calcification in tendinopathy. Acta Biomater. 2022;152:440-452.

[32]

Benjamin MRufai A, Ralphs JR. The mechanism of formation of(enthesophytes) in the achilles tendon. Arthritis Rheum. 2000;43(3):576-583.

[33]

Lui PP, Cheuk YC, Lee YW, et al. Ectopic chondro-ossification anderroneous extracellular matrix deposition in a tendon window injurymodel. J Orthop Res. 2012;30(1):37-46.

[34]

Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem /progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219-1227.

[35]

Rui YF, Lui PP, Chan LS, Chan KM, Fu SC, Li G. Does erroneous differentiation oftendon-derived stem cells contribute to the pathogenesis of calcifyingtendinopathy? Chin Med J. 2011;124(4):606-610.

[36]

Hashimoto Y, Yoshida G, Toyoda H, Takaoka K. Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. J Orthop Res. 2007;25(11):1415-1424.

[37]

Lin L, Shen Q, Xue T, Yu C. Heterotopic ossification induced by Achilles tenotomy via endochondral bone formation: expression ofbone and cartilage related genes. Bone. 2010;46(2):425-431.

[38]

Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage celllines produce osteoinductive signals that include bone morphogeneticprotein-2. Bone. 2002;30(1):26-31.

[39]

Kan L, Liu Y, McCuire TL, et al. Dysregulation of local stem/progenitor cells as a common cellular mechanism for heterotopic ossification. Stem Cells. 2009;27(1):150-156.

[40]

Kan L, Hu M, Gomes WA, Kessler JA. Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype. Am J Pathol. 2004;165(4):1107-1115.

[41]

Zhang J, Wang JH. Production of PGE(2) increases in tendonssubjected to repetitive mechanical loading and induces differentiationof tendon stem cells into non-tenocytes. J Orthop Res. 2010;28(2):198-203.

[42]

Zhang J, Wang JH. BMP-2 mediates PGE(2) -induced reduction of proliferation and osteogenic differentiation of human tendon stem cells. J Orthop Res. 2012;30(1):47-52.

[43]

Cilenti F, Barbiera G, Caronni N. A PGE2-MEF2A axis enables context-dependent control of inflammatory gene expression. Immunity. 2021;54(8):1665-1682.e14.

[44]

Zhang K, Wang L, Zhang S, et al. Celecoxib inhibits the heterotopicossification in the rat model with Achilles tenotomy. Eur J Orthop Traumatol. 2013;23(2):145-148.

[45]

Dimmen S, Engebretsen L, Nordsletten L, Madsen JE. Negative effects ofparecoxib and indomethacin on tendon healing: an experimental studyin rats. Knee Surg Sports Traumatol Arthrosc. 2009;17(7):835-839.

[46]

Li F, Mao D, Pan X, Zhang X, Mi J, Rui Y. Celecoxib cannot inhibit the progression of initiated traumatic heterotopic ossification. J Shoulder Elb Surg. 2019;28(12):2379-2385.

[47]

Kaklamanis P, Rigas A, Giannatos J, Matsas S, Economou P. Letter: calcification of the shoulders and diabetes mellitus. N Engl J Med. 1975;293:1266-1267.

[48]

Oxlund CS, Hansen H, Hansen S, Rohold A. Progressive valvular calcifications with critical aortic stenosis in a 25-year-old woman with end-stage renal disease on haemodialysis: a case report. Eur Heart J Case Rep. 2021;5:ytab061.

[49]

Labidi J, Ariba YB, Gabsia AB, et al. Severe metastatic calcifications in a hemodialysis patient. Saudi J Kidney Dis Transpl. 2016;27(5):1037-1042.

[50]

Agarwal R, Burns RR, Vergne-Marini P. Paraparesis due to massive ectopic paravertebral calcification in a patient on maintenance hemodialysis. Am J Kidney Dis. 1993;22(5):717-720.

[51]

Cowlam TE, Bucknall TE. Cutaneous ectopic breast calcification in a haemodialysis patient. Breast. 2003;12:342-344.

[52]

Tillmann FP, Harth A, Jörres A. A rare cause of left shoulder pain in a peritoneal dialysis patient. Am J Case Rep. 2022;23:e933223.

[53]

Xu C, Zhang Z, Liu N, et al. Small extracellular vesicle-mediated miR-320e transmission promotes osteogenesis in OPLL by targeting TAK1. Nat Commun. 2022;13(1):2467.

[54]

Hayes CW, Conway WF. Calcium hydroxyapatite deposition disease. Radiographics. 1990;10(6):1031-1048.

[55]

Zhang J, Wang JH. Moderate exercise mitigates the detrimental effects of aging on tendon stem cells. PLoS One. 2015;10(6):e0130454.

[56]

Dai GC, Li YJ, Chen MH, Lu PP, Rui YF. Tendon stem/progenitor cell ageing: modulation and rejuvenation. World J Stem Cells. 2019;11(9):677-692.

[57]

Liu L, Kim S, Buckley MT, et al. Exercise reprograms the inflammatory landscape of multiple stem cell compartments during mammalian aging. Cell Stem Cell. 2023;30(5):689-705.e4.

[58]

Ranganathan K, Peterson J, Agarwal S, et al. Role of gender in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation. Plast Reconstr Surg. 2015;135(6):1631-1641.

[59]

Shea JE, Hallows RK, Bloebaum RD. Experimental confirmation of the sheep model for studying the role of calcified fibrocartilage in hip fractures and tendon attachments. Anat Rec. 2002;266(3):177-183.

[60]

LaBonty M, Pray N, Yelick PC. A zebrafish model of human fibrodysplasia ossificans progressiva. Zebrafish. 2017;14(4):293-304.

[61]

Kakkar M, Kapoor V, Singla SK, Jethi RK. Fluoride and biological calcification I: effect of fluoride on collagen-induced in vitro mineralization and demineralization reactions. Biol Trace Elem Res. 2021;199(6):2208-2214.

[62]

Valer JA, Sánchez-de-Diego C, Pimenta-Lopes C, Rosa JL, Ventura F. ACVR1 function in health and disease. Cells. 2019;8(11):1366.

[63]

LaBonty M, Pray N, Yelick PC. Injury of adult zebrafish expressing Acvr1lQ204D does not result in heterotopic Ossification. Zebrafish. 2018;15(6):536-545.

[64]

Wentworth KL, Lalonde RL, Groppe JC, et al. Functional testing of bone morphogenetic protein (BMP) pathway variants identified on whole-exome sequencing in a patient with delayed-onset fibrodysplasia ossificans progressiva (FOP) using ACVR1R206H -specific human cellular and zebrafish models. J Bone Miner Res. 2022;37(11):2058-2076.

[65]

Goh BC, Singhal V, Herrera AJ, et al. Activin receptor type 2A (ACVR2A) functions directly in osteoblasts as a negative regulator of bone mass. J Biol Chem. 2017;292(33):13809-13822.

[66]

Blitz E, Viukov S, Sharir A, et al. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell. 2009;17(6):861-873.

[67]

Chen JW, Galloway JL. The development of zebrafish tendon and ligament progenitors. Development. 2014;141(10):2035-2045.

[68]

Kague E, Hughes SM, Lawrence EA, et al. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish. FASEB J. 2019;33(8):9116-9130.

[69]

Li Z, Liu SY, Xu L, Xu SY, Ni GX. Effects of treadmill running with different intensity on rat subchondral bone. Sci Rep. 2017;7(1):1977.

[70]

Yan K, Gao H, Liu X, Zhao Z, Gao B, Zhang L. Establishment and identification of an animal model of long-term exercise-induced fatigue. Front Endocrinol (Lausanne). 2022;13:915937.

[71]

Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Nozaki S, Watanabe Y. Establishment and assessment of a rat model of fatigue. Neurosci Lett. 2003;352(3):159-162.

[72]

Bartlett CS, Rapuano BE, Lorich DG, et al. Early changes in prostaglandins precede bone formation in a rabbit model of heterotopic ossification. Bone. 2006;38(3):322-332.

[73]

Gruber R, Weich HA, Dullin C, Schliephake H. Ectopic bone formation after implantation of a slow release system of polylactic acid and rhBMP-2. Clin Oral Implants Res. 2009;20(1):24-30.

[74]

Liu X, Kang H, Shahnazari M, et al. A novel mouse model of trauma induced heterotopic ossification. J Bone Miner Res. 2014;32:183-188.

[75]

Schneider DJ, Moulton MJ, Singapuri K, et al. The Frank Stinchfield award. Inhibition of heterotopic ossification with radiation therapy in an animal model. Clin Orthop Relat Res. 1998;(355):35-46.

[76]

Strong AL, Spreadborough PJ, Pagani CA, et al. Small molecule inhibition of non-canonical (TAK1-mediated) BMP signaling results in reduced chondrogenic ossification and heterotopic ossification in a rat model of blast-associated combat-related lower limb trauma. Bone. 2020;139:115517.

[77]

Brown H, Ehrlich HP, Newberne PM, Kiyoizumi T. Para osteo arthropathy—ectopic ossification of healing tendon about the rodent ankle joint: histologic and type V collagen changes. Proc Soc Exp Biol Med. 1986;183(2):214-220.

[78]

McClure J. The effect of diphosphonates on heterotopic ossification inregenerating Achilles tendon of the mouse. J Pathol. 1983;139(4):419-430.

[79]

Lin X, Huang M, Yin G, et al. Characterization of a novel calcific Achilles tendinopathy model in mice: contralateral tendinopathy induced by unilateral tenotomy. Calcif Tissue Int. 2018;103(6):698-707.

[80]

Peterson JR, Agarwal S, Brownley RC, et al. Direct mouse trauma/burn model of heterotopic ossification. J Vis Exp. 2015;102:e52880.

[81]

Wang Z, Chen HS, Yi XZY. Comparison of traumatic heterotopic ossification induced in mice by total Achilles tendon excision combined with skin scald versus total Achilles tendon excision alone. Chin J Tissue Eng Res. 2023;27(17):2664-2668.

[82]

O’Brien EJ, Shrive NG, Rosvold JM, et al. Tendon mineralization isaccelerated bilaterally and creep of contralateral tendons is increasedafter unilateral needle injury of murine achilles tendons. J Orthop Res. 2013;31(10):1520-1528.

[83]

Yu H, Watt H, Mohan S. The negative impact of traumatic brain injury (TBI) on bone in a mouse model. Brain Inj. 2014;28(2):244-251.

[84]

Kesavan C, Gomez GA, Pourteymoor S, Mohan S. Development of an animal model for traumatic brain injury augmentation of heterotopic ossification in response to local injury. Biomedicine. 2023;11(3):943.

[85]

Lui PP, Fu SC, Chan LS, Hung LK, Chan KM. Chondrocyte phenotype and ectopicossification in collagenase-induced tendon degeneration. J Histochem Cytochem. 2009;57(2):91-100.

[86]

Hannallah D, Peng H, Young B, Usas A, Gearhart B, Huard J. Retroviral delivery of noggin inhibits the formation of heterotopic ossification induced by BMP-4, demineralized bone matrix, and trauma in an animal model. J Bone Joint Surg Am. 2004;86(1):80-91.

[87]

Zhang J, Dyment NA, Rowe DW, et al. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice. Oncotarget. 2016;7(11):12000-12009.

[88]

de Oliveira LP, Vieira CP, Da Ré Guerra F, et al. Statins induce biochemical changes in the Achilles tendon after chronic treatment. Toxicology. 2013;311(3):162-168.

[89]

de Oliveira LP, Vieira CP, Guerra FD, Almeida MS, Pimentel ER. Structural and biomechanical changes in the Achilles tendon after chronic treatment with statins. Food Chem Toxicol. 2015;77:50-57.

[90]

Kaleağasıoğlu F, Olcay E, Olgaç V. Statin-induced calcific Achilles tendinopathy in rats: comparison of biomechanical and histopathological effects of simvastatin, atorvastatin and rosuvastatin. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1884-1891.

[91]

Chen IP, Wang L, Jiang X, Aguila HL, Reichenberger EJ. A Phe377del mutation in ANK leads to impaired osteoblastogenesis and osteoclastogenesis in a mouse model for craniometaphyseal dysplasia (CMD). Hum Mol Genet. 2011;20(5):948-961.

[92]

Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. Science. 2000;289:265-270.

[93]

Ryan LM. The ank gene story. Arthritis Res. 2001;3(2):77-79.

[94]

Yepes M, Moore E, Brown SA, et al. Progressive ankylosis (Ank) protein is expressed by neurons and Ank immunohistochemical reactivity is increased by limbic seizures. Lab Investig. 2003;83(7):1025-1032.

[95]

Mitton-Fitzgerald E, Gohr CM, Bettendorf B, Rosenthal AK. The role of ANK in calcium pyrophosphate deposition disease. Curr Rheumatol Rep. 2016;18(5):25.

[96]

Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176-185.

[97]

Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342(18):1350-1358.

[98]

Wan M, Li C, Zhen G, et al. Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells. 2012;30(11):2498-2511.

[99]

Wang X, Li F, Xie L, et al. Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice. Nat Commun. 2018;9(1):551.

RIGHTS & PERMISSIONS

2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (1949KB)

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/