PDF
(6142KB)
Abstract
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health, elucidating the underlying mechanisms involving the Toll-like receptor 4 (TLR4)/Nuclear factor kappa light chain enhancer of activated B cells (NF-kB) pathway and the Cytochrome P450 2E1 (CYP2E1)/reactive oxygen species (ROS)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. The TLR4/NF-kB pathway, crucial for inflammatory and immune responses, triggers the production of pro-inflammatory agents and type-1 interferon, disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to alcohol. Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns (PAMPs), leading to liver cell infection and subsequent inflammation. Concurrently, CYP2E1-mediated alcohol metabolism generates ROS, causing oxidative stress and damaging cells, lipids, proteins, and deoxyribonucleic acid (DNA). To counteract this inflammatory imbalance, Nrf2 regulates gene expression, inhibiting inflammatory progression and promoting antioxidant responses. Excessive alcohol intake results in elevated liver enzymes (ADH, CYP2E1, and catalase), ROS, NADH, acetaldehyde, and acetate, leading to damage in vital organs such as the heart, brain, and lungs. Moreover, alcohol negatively affects reproductive health by inhibiting the hypothalamic–pituitary-gonadal axis, causing infertility in both men and women. These findings underscore the profound health concerns associated with alcohol-induced damage, emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ impacts of alcohol consumption.
Keywords
alcohol
/
health impact
/
inflammation
/
metabolism
/
molecular pathways
Cite this article
Download citation ▾
Eason Qi Zheng Kong, Vetriselvan Subramaniyan, Natasha Sura Anak Lubau.
Uncovering the impact of alcohol on internal organs and reproductive health: Exploring TLR4/NF-kB and CYP2E1/ROS/Nrf2 pathways.
Animal Models and Experimental Medicine, 2024, 7(4): 444-459 DOI:10.1002/ame2.12436
| [1] |
Walke G, Gaurkar SS, Prasad R, Lohakare T, Wanjari M. The impact of oxidative stress on male reproductive function: exploring the role of antioxidant supplementation. Cureus. 2023;15(7):e42583.
|
| [2] |
Simon L, Souza-Smith FM, Molina PE. Alcohol-associated tissue injury: current views on pathophysiological mechanisms. Annu Rev Physiol. 2022;84:87-112.
|
| [3] |
Subramaniyan V, Lubau NSA, Mukerjee N, Kumarasamy V. Alcohol-induced liver injury in signalling pathways and curcumin’s therapeutic potential. Toxicol Rep. 2023;11:355-367.
|
| [4] |
Dejban P, Nikravangolsefid N, Chamanara M, Dehpour A, Rashidian A. The role of medicinal products in the treatment of inflammatory bowel diseases (IBD) through inhibition of TLR4/NF-kappaB pathway. Phytother Res. 2021;35(2):835-845.
|
| [5] |
Wu Z, Mehrabi Nasab E, Arora P, Athari SS. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J Transl Med. 2022;20(1):130.
|
| [6] |
Liu X, Vigorito M, Huang W, Khan MA, Chang SL. The impact of alcohol-induced dysbiosis on diseases and disorders of the central nervous system. J Neuroimmune Pharmacol. 2022;17(1–2):131-151.
|
| [7] |
Saha S, Buttari B, Panieri E, Profumo E, Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules. 2020;25(22):5474.
|
| [8] |
Heidarzadeh S, Azarbayjani MA, Matin Homaei H, Hedayati M. Evaluation of the effect of aerobic exercise and curcumin consumption on HPG Axis (hypothalamus-pituitary-gonadotropic) in alcohol binge drinking rats. Nutr Food Sci Res. 2020;7(2):13-19.
|
| [9] |
Finelli R, Mottola F, Agarwal A. Impact of alcohol consumption on male fertility potential: a narrative review. Int J Environ Res Public Health. 2021;19(1):328.
|
| [10] |
Kany S, Janicova A, Relja B. Innate immunity and alcohol. J Clin Med. 2019;8(11):1-31.
|
| [11] |
Subramaniyan V, Chakravarthi S, Jegasothy R, et al. Alcohol-associated liver disease: a review on its pathophysiology, diagnosis and drug therapy. Toxicol Rep. 2021;8:376-385.
|
| [12] |
Naoto K. Chapter 11—The role of stem cells in the hepatobiliary system and in cancer development: a Surgeon’s perspective. In: Yun-Wen Z, ed. Stem Cells and Cancer in Hepatology. Academic Press;2018:211-253.
|
| [13] |
Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel). 2017;5(4):1-25.
|
| [14] |
Adams JL, Duffy KJ, Moore ML, Yang J. 5.11—Cancer immunotherapy—an emerging field that bridges oncology and immunology research. In: Samuel C, David R, Simon EW, eds. Comprehensive Medicinal Chemistry III. Elsevier;2017:357-394.
|
| [15] |
Fox CB, Carter D, Kramer RM, Beckmann AM, Reed SG. Chapter 6—Current status of toll-like receptor 4 ligand vaccine adjuvants. In: Virgil EJCS, Derek TOH, eds. Immunopotentiators in Modern Vaccines. 2nd ed. Academic Press;2017:105-127.
|
| [16] |
Terry KM. Chapter 17—Toll-like receptors in SLE. In: Robert GL, ed. Systemic Lupus Erythematosus. 5th ed. Academic Press;2011:293-306.
|
| [17] |
Yoshinori N, Kiyoshi T. Chapter 26—Role of the immune system in obesity-associated inflammation and insulin resistance. In: Ronald Ross W, ed. Nutrition in the Prevention and Treatment of Abdominal Obesity. Academic Press;2014:281-293.
|
| [18] |
Allen TH, Brian MC, Henry K, Sean AP, Roland GWS. Chapter four—Recent developments in targeting Neuroinflammation in disease. In: Manoj CD, ed. Annual Reports in Medicinal Chemistry. Academic Press;2012:37-53.
|
| [19] |
Valkov E, Stamp A, DiMaio F, et al. Crystal structure of toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proc Natl Acad Sci. 2011;108(36):14879-14884.
|
| [20] |
Enokizono Y, Kumeta H, Funami K, et al. Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling. Proc Natl Acad Sci. 2013;110(49):19908-19913.
|
| [21] |
Mahsa K-F, Nima R. Chapter 3—Vaccines, adjuvants, and delivery systems. In: Nima R, Mahsa K-F, eds. Vaccines for Cancer Immunotherapy. Academic Press;2019:45-59.
|
| [22] |
Guven-Maiorov E, Keskin O, Gursoy A, et al. The architecture of the TIR domain signalosome in the toll-like Receptor-4 signaling pathway. Sci Rep. 2015;5(1):13128.
|
| [23] |
Lin S-C, Lo Y-C, Wu H. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465(7300):885-890.
|
| [24] |
Lin Z, Lu J, Zhou W, Shen Y. Structural insights into TIR domain specificity of the bridging adaptor mal in TLR4 signaling. PLoS One. 2012;7(4):e34202.
|
| [25] |
Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14(8):546-558.
|
| [26] |
Ferrao R, Zhou H, Shan Y, et al. IRAK4 dimerization and <em>trans</em>-autophosphorylation are induced by Myddosome assembly. Mol Cell. 2014;55(6):891-903.
|
| [27] |
Marene L. The TAK1–TRAF6 signalling pathway. Int J Biochem Cell Biol. 2010;42(5):585-589.
|
| [28] |
Ines A, Nataliya L, Gabriela G, Catharina S. Chapter 106—Urinary tract infections and the mucosal immune system. In: Jiri M, Warren S, Michael WR, Brian LK, Hilde C, Bart NL, eds. Mucosal Immunology. 4th ed. Academic Press;2015:2039-2058.
|
| [29] |
Liu S, Cai X, Wu J, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347(6227):aaa2630.
|
| [30] |
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36-49.
|
| [31] |
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87-103.
|
| [32] |
Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol. 2020;18(10):918-935.
|
| [33] |
Szatkowski P, Krzysciak W, Mach T, Owczarek D, Brzozowski B, Szczeklik K. Nuclear factor-κB-importance, induction of inflammation, and effects of pharmacological modulators in Crohn’s disease. J Physiol Pharmacol. 2020;71(4):453-465.
|
| [34] |
Carrà G, Lingua MF, Maffeo B, Taulli R, Morotti A. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell Mol Life Sci. 2020;77:4449-4458.
|
| [35] |
Sun SC, Chang JH, Jin J. Regulation of nuclear factor-κB in autoimmunity. Trends Immunol. 2013;34(6):282-289.
|
| [36] |
Sun SC. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21(1):71-85.
|
| [37] |
Zhang H, Sun SC. NF-κB in inflammation and renal diseases. Cell Biosci. 2015;5(1):63.
|
| [38] |
Iacobazzi D, Convertini P, Todisco S, Santarsiero A, Iacobazzi V, Infantino V. New insights into NF-kB signaling in innate immunity: focus on Immunometabolic Crosstalks. Biology. 2023;12(6):776.
|
| [39] |
Gaptulbarova K, Tsyganov M, Pevzner A, Ibragimova M, Litviakov N. NF-kB as a potential prognostic marker and a candidate for targeted therapy of cancer. Exp Oncol. 2020;42(4):263-269.
|
| [40] |
Khongthong P, Roseweir AK, Edwards J. The NF-KB pathway and endocrine therapy resistance in breast cancer. Endocr Relat Cancer. 2019;26(6): R369-R380.
|
| [41] |
Sun SC. The noncanonical NF-κB pathway. Immunol Rev. 2012;246(1):125-140.
|
| [42] |
Sun SC, Liu ZG. A special issue on NF-κB signaling and function. Cell Res. 2011;21(1):1-2.
|
| [43] |
Moghadam YJ, Asadi MR, Abbaszadeh V, et al. Analysis of NFKB1 and NFKB2 gene expression in the blood of patients with sudden sensorineural hearing loss. Int J Pediatr Otorhinolaryngol. 2023;166:111470.
|
| [44] |
Laurindo LF, Santos AR, Carvalho ACA, et al. Phytochemicals and regulation of NF-kB in inflammatory bowel diseases: an overview of in vitro and in vivo effects. Meta. 2023;13(1):96.
|
| [45] |
Jin M, Ande A, Kumar A, Kumar S. Regulation of cytochrome P450 2e1 expression by ethanol: role of oxidative stress-mediated pkc/jnk/sp1 pathway. Cell Death Dis. 2013;4(3):e554.
|
| [46] |
Zhu L, Yang X, Feng J, et al. CYP2E1 plays a suppressive role in hepatocellular carcinoma by regulating Wnt/Dvl2/β-catenin signaling. J Transl Med. 2022;20(1):194.
|
| [47] |
García-Suástegui WA, Ramos-Chávez LA, Rubio-Osornio M, et al. The role of CYP2E1 in the drug metabolism or bioactivation in the brain. Oxidative Med Cell Longev. 2017;2017:4680732.
|
| [48] |
Lin Q, Kang X, Li X, et al. NF-κB-mediated regulation of rat CYP2E1 by two independent signaling pathways. PLoS One. 2019;14(12):e0225531.
|
| [49] |
Arnaud Fondjo K, Brice Ayissi O, Rodrigue F, Frédéric Nico N, Paul Fewou M. Inhibition of CYP2E1 and activation of Nrf2 signaling pathways by a fraction from Entada africana alleviate carbon tetrachloride-induced hepatotoxicity. Heliyon. 2020;6(8):e04602.
|
| [50] |
Kim S-M, Grenert JP, Patterson C, Correia MA. CHIP−/−-mouse liver: adiponectin-AMPK-FOXO-activation overrides CYP2E1-elicited JNK1-activation, delaying onset of NASH: therapeutic implications. Sci Rep. 2016;6(1):29423.
|
| [51] |
Wang RY, Chen XW, Zhang WW, Jiang F, Liu MQ, Shen XB. CYP2E1 changes the biological function of gastric cancer cells via the PI3K/Akt/mTOR signaling pathway. Mol Med Rep. 2020;21(2):842-850.
|
| [52] |
Jörn MS, Mark JC. Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling. Redox Biol. 2014;3:7-15.
|
| [53] |
Cao XL, Du J, Zhang Y, Yan JT, Hu XM. Hyperlipidemia exacerbates cerebral injury through oxidative stress, inflammation and neuronal apoptosis in MCAO/reperfusion rats. Exp Brain Res. 2015;233(10):2753-2765.
|
| [54] |
Read A, Schröder M. The unfolded protein response: an overview. Biology (Basel). 2021;10(5):1-10.
|
| [55] |
Maureen R-D, Diana AA-B. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977-2992.
|
| [56] |
Nogueira V, Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 2013;19(16):4309-4314.
|
| [57] |
Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192-203.
|
| [58] |
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7-15.
|
| [59] |
Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longev. 2016;2016:4350965.
|
| [60] |
Villalpando-Rodriguez GE, Gibson SB. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxidative Med Cell Longev. 2021;2021:9912436.
|
| [61] |
Nakamura H, Takada K. Reactive oxygen species in cancer: current findings and future directions. Cancer Sci. 2021;112(10):3945-3952.
|
| [62] |
Syed Minhaj Uddin A, Lin L, Akhileshwar N, Xiu Jun W, Xiuwen T. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta. 2017;1863(2):585-597.
|
| [63] |
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126-1167.
|
| [64] |
Haftcheshmeh SM, Abedi M, Mashayekhi K, et al. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res. 2022;36(3):1216-1230.
|
| [65] |
Hussain MS, Altamimi ASA, Afzal M, et al. Kaempferol: paving the path for advanced treatments in aging-related diseases. Exp Gerontol. 2024;188:112389.
|
| [66] |
He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):1-23.
|
| [67] |
Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med. 2015;88:101-107.
|
| [68] |
Ian MC. The Keap1–Nrf2 cell defense pathway – a promising therapeutic target? In: Gabrielle MH, ed. Current Concepts in Drug Metabolism and Toxicology. Academic Press;2012:43-79.
|
| [69] |
Kim KM, Ki SH. Chapter 28—Nrf2: a key regulator of redox signaling in liver diseases. In: Pablo M, ed. Liver Pathophysiology. Academic Press;2017:355-374.
|
| [70] |
Hirotsu Y, Katsuoka F, Funayama R, et al. Nrf2–MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 2012;40(20):10228-10239.
|
| [71] |
Niture SK, Jaiswal AK. 2.26—Antioxidant induction of gene expression. In: Charlene AM, ed. Comprehensive Toxicology. 2nd ed. Elsevier;2010:523-528.
|
| [72] |
Veera GN, Shyam SS, Ashutosh K. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol. 2013;1(1):394-397.
|
| [73] |
Haines DD, Tosaki A. Heme degradation in pathophysiology of and countermeasures to inflammation-associated disease. Int J Mol Sci. 2020;21(24):1-25.
|
| [74] |
Lee DF, Kuo HP, Liu M, et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell. 2009;36(1):131-140.
|
| [75] |
Cheng L, Egon U, Tõnu V, Andres M. The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: aging and anti-aging. Med Hypotheses. 2011;77(2):174-178.
|
| [76] |
Alam MM, Okazaki K, Nguyen LTT, et al. Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. J Biol Chem. 2017;292(18):7519-7530.
|
| [77] |
Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans. 2015;43(4):621-626.
|
| [78] |
Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol. 2022;13:967193.
|
| [79] |
Nowak AJ, Relja B. The impact of acute or chronic alcohol intake on the NF-κB signaling pathway in alcohol-related liver disease. Int J Mol Sci. 2020;21(24):1-35.
|
| [80] |
Czerwińska-Błaszczyk A, Pawlak E, Pawłowski T. The significance of toll-like receptors in the Neuroimmunologic background of alcohol dependence. Front Psych. 2021;12:797123.
|
| [81] |
Haseba T, Ohno Y. A new view of alcohol metabolism and alcoholism—role of the high-km class III alcohol dehydrogenase (ADH3). Int J Environ Res Public Health. 2010;7(3):1076-1092.
|
| [82] |
Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci. 2021;22(11):1-16.
|
| [83] |
Claudio DA, Mauro M. Chapter 21—Alcohol and epigenetic modulations. In: Vinood BP, ed. Molecular Aspects of Alcohol and Nutrition. Academic Press;2016:261-273.
|
| [84] |
Setshedi M, Wands JR, Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010;3(3):178-185.
|
| [85] |
Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health. 2006;29(4):245-254.
|
| [86] |
Grzegorz WT. 17—Hepatomegaly. In: Robert MK, Heather T, Brett JB, Donald B, eds. Nelson Pediatric Symptom-Based Diagnosis: Common Diseases and their Mimics.2nd ed. Elsevier;2023:306-319.e1.
|
| [87] |
Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. Targeting oxidative stress for the treatment of liver fibrosis. In: Nilius B, de Tombe P, Gudermann T, Jahn R, Lill R, eds. Reviews of Physiology, Biochemistry and Pharmacology. Vol 175. Springer International Publishing;2018:71-102.
|
| [88] |
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003-2014. doi:10.3969/j.issn.1673-5374.2013.21.009
|
| [89] |
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-950.
|
| [90] |
Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health. 2003;27(4):277-284.
|
| [91] |
Chianese R, Pierantoni R. Mitochondrial reactive oxygen species (ROS) production alters sperm quality. Antioxidants. 2021;10(1):92.
|
| [92] |
Korge P, Calmettes G, Weiss JN. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: modulation by substrate-dependent regulation of the NADH/NAD(+) ratio. Free Radic Biol Med. 2016;96:22-33.
|
| [93] |
Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22(9):2-21.
|
| [94] |
Edenberg HJ, Bosron WF. 4.06 -Alcohol Dehydrogenases. In: Charlene AM, ed. Comprehensive Toxicology. 2nd ed. Elsevier;2010:111-130.
|
| [95] |
Heit C, Dong H, Chen Y, Thompson DC, Deitrich RA, Vasiliou VK. The role of CYP2E1 in alcohol metabolism and sensitivity in the central nervous system. Subcell Biochem. 2013;67:235-247.
|
| [96] |
Zhang P, Li Y, Wang K, et al. Altered DNA methylation of CYP2E1 gene in schizophrenia patients with tardive dyskinesia. BMC Med Genet. 2022;15(1):253.
|
| [97] |
Peng Q, Chen H, Huo JR. Alcohol consumption and corresponding factors: a novel perspective on the risk factors of esophageal cancer. Oncol Lett. 2016;11(5):3231-3239.
|
| [98] |
David FW, Franz MM. Ethanol metabolism: the good, the bad, and the ugly. Med Hypotheses. 2020;140:109638.
|
| [99] |
Joana GM, Claudia DB, Patricia AC, Ariane Z, Patricia SB. Chapter 51—Ethanol exposure during development, and brain oxidative stress. In: Victor RP, ed. Neuroscience of Alcohol. Academic Press;2019:493-503.
|
| [100] |
Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate revisited: a key biomolecule at the nexus of metabolism, epigenetics and Oncogenesis-part 1: acetyl-CoA, Acetogenesis and acyl-CoA short-chain Synthetases. Front Physiol. 2020;11:580167.
|
| [101] |
Pirjo HM, Zoe MU. Chapter 21—Hypoxia. In: Hemanshu P, ed. Complications in Neuroanesthesia. Academic Press;2016:169-180.
|
| [102] |
Xiao W, Wang RS, Handy DE, Loscalzo J. NAD(H) and NADP(H) Redox couples and cellular energy metabolism. Antioxid Redox Signal. 2018;28(3):251-272.
|
| [103] |
Trius-Soler M, Praticò G, Gürdeniz G, et al. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. Genes Nutr. 2023;18(1):7.
|
| [104] |
Hugbart C, Verres Y, Le Daré B, et al. Non-oxidative ethanol metabolism in human hepatic cells in vitro: involvement of uridine diphospho-glucuronosyltransferase 1A9 in ethylglucuronide production. Toxicol In Vitro. 2020;66:104842.
|
| [105] |
Heier C, Xie H, Zimmermann R. Nonoxidative ethanol metabolism in humans-from biomarkers to bioactive lipids. IUBMB Life. 2016;68(12):916-923.
|
| [106] |
Stachel N, Skopp G. Identification and characterization of sulfonyltransferases catalyzing ethyl sulfate formation and their inhibition by polyphenols. Int J Legal Med. 2016;130(1):139-146.
|
| [107] |
Susannah SL, Mark RH, Yingning Z, et al. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun. 2013;30:24-32.
|
| [108] |
Park KE, Kim JD, Nagashima Y, et al. Detection of choline and phosphatidic acid (PA) catalyzed by phospholipase D (PLD) using MALDI-QIT-TOF/MS with 9-aminoacridine matrix. Biosci Biotechnol Biochem. 2014;78(6):981-988.
|
| [109] |
Jencks DS, Adam JD, Borum ML, Koh JM, Stephen S, Doman DB. Overview of current concepts in gastric intestinal metaplasia and gastric cancer. Gastroenterol Hepatol (N Y). 2018;14(2):92-101.
|
| [110] |
Anton P, Rutt LN, Twardy SM, McCullough RL. Fatty acid ethyl ethers: new modulators of acute ethanol-mediated hepatotoxicity? Cell Mol Gastroenterol Hepatol. 2023;15(2):505-506.
|
| [111] |
Huang W, Booth DM, Cane MC, et al. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+−dependent mitochondrial dysfunction and acute pancreatitis. Gut. 2013:1313-1324.
|
| [112] |
Clemens DL, Schneider KJ, Arkfeld CK, Grode JR, Wells MA, Singh S. Alcoholic pancreatitis: new insights into the pathogenesis and treatment. World J Gastrointest Pathophysiol. 2016;7(1):48-58.
|
| [113] |
Erol A, Ho AM, Winham SJ, Karpyak VM. Sex hormones in alcohol consumption: a systematic review of evidence. Addict Biol. 2019;24(2):157-169.
|
| [114] |
Hauger RL, Saelzler UG, Pagadala MS, Panizzon MS. The role of testosterone, the androgen receptor, and hypothalamic-pituitary-gonadal axis in depression in ageing men. Rev Endocr Metab Disord. 2022;23(6):1259-1273.
|
| [115] |
Frydenberg H, Flote VG, Larsson IM, et al. Alcohol consumption, endogenous estrogen and mammographic density among premenopausal women. Breast Cancer Res. 2015;17(1):103.
|
| [116] |
Mitchell JM, O’Neil JP, Janabi M, Marks SM, Jagust WJ, Fields HL. Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci Transl Med. 2012;4(116):116ra6.
|
| [117] |
Wehbeh L, Dobs AS. Opioids and the hypothalamic-pituitary-gonadal (HPG) Axis. J Clin Endocrinol Metab. 2020;105(9): e3105-e3113.
|
| [118] |
Nguyen VA, Le T, Tong M, Silbermann E, Gundogan F, De la Monte SM. Impaired insulin/IGF signaling in experimental alcohol-related myopathy. Nutrients. 2012;4(8):1058-1075.
|
| [119] |
Hiney JK, Srivastava VK, Les Dees W. Insulin-like growth factor-1 stimulation of hypothalamic KiSS-1 gene expression is mediated by Akt: effect of alcohol. Neuroscience. 2010;166(2):625-632.
|
| [120] |
Van Heertum K, Rossi B. Alcohol and fertility: how much is too much? Fertil Res Pract. 2017;3:10.
|
| [121] |
Stella L, Maria J, Marcos Sean T, Marta T. Chapter 7—Endocrinological causes of female infertility. In: Antonio Simone L, Antonino G, eds. Management of Infertility. Academic Press;2023:65-70.
|
| [122] |
Jirge PR. Ovarian reserve tests. J Hum Reprod Sci. 2011;4(3):108-113.
|
| [123] |
Sepideh K, Pegah V. Gonadotropin releasing hormone. Reference Module in Biomedical Sciences. Elsevier;2018.
|
| [124] |
Aguirre LE, Colleluori G, Fowler KE, et al. High aromatase activity in hypogonadal men is associated with higher spine bone mineral density, increased truncal fat and reduced lean mass. Eur J Endocrinol. 2015;173(2):167-174.
|
| [125] |
Omu AE. Sperm parameters: paradigmatic index of good health and longevity. Med Princ Pract. 2013;22:30-42.
|
| [126] |
Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed. 2016;14(4):231-240.
|
| [127] |
Sadeghzadeh M, Shirpoor A, Naderi R, et al. Long-term ethanol consumption promotes changes in β-defensin isoform gene expression and induces structural changes and oxidative DNA damage to the epididymis of rats. Mol Reprod Dev. 2019;86(6):624-631.
|
| [128] |
Jeong JE, Joo SH, Hahn C, Kim DJ, Kim TS. Gender-specific association between alcohol consumption and stress perception, depressed mood, and suicidal ideation: the 2010-2015 KNHANES. Psychiatry Investig. 2019;16(5):386-396.
|
| [129] |
Knox J, Hasin DS, Larson FRR, Kranzler HR. Prevention, screening, and treatment for heavy drinking and alcohol use disorder. Lancet Psychiatry. 2019;6(12):1054-1067.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.