How can we establish animal models of HIV-associated lymphoma?

Qing Xiao , Liuyue Zhai , Xiaomei Zhang , Yi Liu , Jun Li , Xiaoqing Xie , Guofa Xu , Sanxiu He , Huihui Fu , Yifeng Tang , Fujie Zhang , Yao Liu

Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (4) : 484 -496.

PDF (1807KB)
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (4) : 484 -496. DOI: 10.1002/ame2.12409
REVIEW

How can we establish animal models of HIV-associated lymphoma?

Author information +
History +
PDF (1807KB)

Abstract

Human immunodeficiency virus (HIV) infection is strongly associated with a heightened incidence of lymphomas. To mirror the natural course of human HIV infection, animal models have been developed. These models serve as valuable tools to investigate disease pathobiology, assess antiretroviral and immunomodulatory drugs, explore viral reservoirs, and develop eradication strategies. However, there are currently no validated in vivo models of HIV-associated lymphoma (HAL), hampering progress in this crucial domain, and scant attention has been given to developing animal models dedicated to studying HAL, despite their pivotal role in advancing knowledge. This review provides a comprehensive overview of the existing animal models of HAL, which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.

Keywords

animal model / HIV-associated lymphoma (HAL) / human immunodeficiency virus (HIV) / immunodeficient mice / primate model

Cite this article

Download citation ▾
Qing Xiao, Liuyue Zhai, Xiaomei Zhang, Yi Liu, Jun Li, Xiaoqing Xie, Guofa Xu, Sanxiu He, Huihui Fu, Yifeng Tang, Fujie Zhang, Yao Liu. How can we establish animal models of HIV-associated lymphoma?. Animal Models and Experimental Medicine, 2024, 7(4): 484-496 DOI:10.1002/ame2.12409

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiao Q, Yan L, Han J, et al. Metabolism-dependent ferroptosis promotes mitochondrial dysfunction and inflammation in CD4(+) T lymphocytes in HIV-infected immune non-responders. EBioMedicine. 2022;86:104382.

[2]

Wang F, Xiang P, Zhao H, et al. A retrospective study of distribution of HIV associated malignancies among inpatients from 2007 to 2020 in China. Sci Rep. 2021;11(1):24353.

[3]

Dal Maso L, Franceschi S. Epidemiology of non-Hodgkin lymphomas and other haemolymphopoietic neoplasms in people with AIDS. Lancet Oncol. 2003;4(2):110-119.

[4]

Wang C, Liu J, Liu Y. Progress in the treatment of HIV-associated lymphoma when combined with the antiretroviral therapies. Front Oncol. 2021;11:798008.

[5]

Noy A. Optimizing treatment of HIV-associated lymphoma. Blood. 2019;134(17):1385-1394.

[6]

Hegde U, Filie A, Little RF, et al. High incidence of occult leptomeningeal disease detected by flow cytometry in newly diagnosed aggressive B-cell lymphomas at risk for central nervous system involvement: the role of flow cytometry versus cytology. Blood. 2005;105(2):496-502.

[7]

Hleyhel M, Belot A, Bouvier AM, et al. Risk of AIDS-defining cancers among HIV-1-infected patients in France between 1992 and 2009: results from the FHDH-ANRS CO4 cohort. Clin Infect Dis. 2013;57(11):1638-1647.

[8]

Coghill AE, Shiels MS, Suneja G, Engels EA. Elevated cancer-specific mortality among HIV-infected patients in the United States. J Clin Oncol. 2015;33(21):2376-2383.

[9]

Kimani SM, Painschab MS, Horner MJ, et al. Epidemiology of haematological malignancies in people living with HIV. Lancet HIV. 2020;7(9): e641-e651.

[10]

Poizot-Martin I, Lions C, Allavena C, et al. Spectrum and incidence trends of AIDS-and non-AIDS-defining cancers between 2010 and 2015 in the French Dat’AIDS cohort. Cancer Epidemiol Biomarkers Prev. 2021;30(3):554-563.

[11]

Carbone A, Gloghini A, Serraino D, Spina M, Tirelli U, Vaccher E. Immunodeficiency-associated Hodgkin lymphoma. Expert Rev Hematol. 2021;14(6):547-559.

[12]

Carbone A, Vaccher E, Gloghini A. Hematologic cancers in individuals infected by HIV. Blood. 2022;139(7):995-1012.

[13]

Pongas GN, Ramos JC. HIV-associated lymphomas: progress and new challenges. J Clin Med. 2022;11(5):1447.

[14]

Hensel ME, Arenas-Gamboa AM. A neglected animal model for a neglected disease: Guinea pigs and the search for an improved animal model for human brucellosis. Front Microbiol. 2018;9:2593.

[15]

Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16(4):201-218.

[16]

Leonard JM, Abramczuk JW, Pezen DS, et al. Development of disease and virus recovery in transgenic mice containing HIV proviral DNA. Science. 1988;242(4886):1665-1670.

[17]

Feinberg MB, Moore JP. AIDS vaccine models: challenging challenge viruses. Nat Med. 2002;8(3):207-210.

[18]

Tinkle BT, Ueda H, Ngo L, et al. Transgenic dissection of HIV genes involved in lymphoid depletion. J Clin Invest. 1997;100(1):32-39.

[19]

Hanna Z, Kay DG, Cool M, Jothy S, Rebai N, Jolicoeur P. Transgenic mice expressing human immunodeficiency virus type 1 in immune cells develop a severe AIDS-like disease. J Virol. 1998;72(1):121-132.

[20]

van Maanen M, Sutton RE. Rodent models for HIV-1 infection and disease. Curr HIV Res. 2003;1(1):121-130.

[21]

Carroll VA, Lafferty MK, Marchionni L, Bryant JL, Gallo RC, Garzino-Demo A. Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice. Proc Natl Acad Sci USA. 2016;113(46):13168-13173.

[22]

Taniguchi H, He M, Wu P, et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 2011;71(6):995-1013.

[23]

Ceredig RA, Massotte D. Fluorescent knock-in mice to decipher the physiopathological role of G protein-coupled receptors. Front Pharmacol. 2014;5:289.

[24]

Bertram K, Leary PJ, Boudesco C, et al. Inhibitors of Bcl-2 and Bruton’s tyrosine kinase synergize to abrogate diffuse large B-cell lymphoma growth in vitro and in orthotopic xenotransplantation models. Leukemia. 2022;36(4):1035-1047.

[25]

Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction. 2008;136(6):823-831.

[26]

Wu CH, Yang CY, Wang L, et al. Cutaneous T-cell lymphoma PDX drug screening platform identifies cooperation between inhibitions of PI3Kα/δ and HDAC. J Invest Dermatol. 2021;141(2):364-373.

[27]

Wen T, Sun G, Jiang W, et al. Histone deacetylases inhibitor chidamide synergizes with humanized PD1 antibody to enhance T-cell chemokine expression and augment Ifn-γ response in NK-T cell lymphoma. EBioMedicine. 2023;87:104420.

[28]

Klöß S, Dehmel S, Braun A, Parnham MJ, Köhl U, Schiffmann S. From cancer to immune-mediated diseases and tolerance induction: lessons learned from immune oncology and classical anti-cancer treatment. Front Immunol. 2020;11:1423.

[29]

Boons E, Vanstreels E, Jacquemyn M, et al. Human exportin-1 is a target for combined therapy of HIV and AIDS related lymphoma. EBioMedicine. 2015;2(9):1102-1113.

[30]

Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29(1):1-13.

[31]

Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447-485.

[32]

Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527-530.

[33]

Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180-191.

[34]

Dick JE. Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol. 1996;8(4):197-206.

[35]

McBride BW, Easterbrook LM, Farrar GH. Human immunodeficiency virus infection of xenografted SCID-beige mice. J Med Virol. 1995;47(2):130-138.

[36]

Goto H, Kariya R, Shimamoto M, et al. Antitumor effect of berberine against primary effusion lymphoma via inhibition of NF-κB pathway. Cancer Sci. 2012;103(4):775-781.

[37]

Nador RG, Cesarman E, Chadburn A, et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood. 1996;88(2):645-656.

[38]

Chen YB, Rahemtullah A, Hochberg E. Primary effusion lymphoma. Oncologist. 2007;12(5):569-576.

[39]

Dewan MZ, Terunuma H, Toi M, et al. Potential role of natural killer cells in controlling growth and infiltration of AIDS-associated primary effusion lymphoma cells. Cancer Sci. 2006;97(12):1381-1387.

[40]

Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68(5):855-867.

[41]

Nosaka T, van Deursen JMA, Tripp RA, et al. Defective lymphoid development in mice lacking Jak3. Science. 1995;270(5237):800-802.

[42]

Ono A, Hattori S, Kariya R, et al. Comparative study of human hematopoietic cell engraftment into BALB/c and C57BL/6 strain of rag-2/jak3 double-deficient mice. J Biomed Biotechnol. 2011;2011:539748.

[43]

Kariya R, Matsuda K, Gotoh K, Vaeteewoottacharn K, Hattori S, Okada S. Establishment of nude mice with complete loss of lymphocytes and NK cells and application for in vivo bio-imaging. In Vivo. 2014;28(5):779-784.

[44]

Schuler W, Bosma MJ. Nature of the scid defect: a defective VDJ recombinase system. Curr Top Microbiol Immunol. 1989;152:55-62.

[45]

Kamel-Reid S, Letarte M, Sirard C, et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science. 1989;246(4937):1597-1600.

[46]

Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256-259.

[47]

Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma (c) (null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175-3182.

[48]

Greiner DL, Hesselton RA, Shultz LD. SCID mouse models of human stem cell engraftment. Stem Cells. 1998;16(3):166-177.

[49]

Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477-6489.

[50]

Okada S, Harada H, Ito T, Saito T, Suzu S. Early development of human hematopoietic and acquired immune systems in new born NOD/Scid/Jak3null mice intrahepatic engrafted with cord blood-derived CD34+ cells. Int J Hematol. 2008;88(5):476-482.

[51]

Park SY, Saijo K, Takahashi T, et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity. 1995;3(6):771-782.

[52]

Söderstrøm I, Bergman ML, Colucci F, Lejon K, Bergqvist I, Holmberg D. Establishment and characterization of RAG-2 deficient non-obese diabetic mice. Scand J Immunol. 1996;43(5):525-530.

[53]

Sakano D, Inoue A, Enomoto T, et al. Insulin2(Q104del) (Kuma) mutant mice develop diabetes with dominant inheritance. Sci Rep. 2020;10(1):12187.

[54]

Knudsen ES, Balaji U, Mannakee B, et al. Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility. Gut. 2018;67(3):508-520.

[55]

Widney D, Boscardin WJ, Kasravi A, Martínez-Maza O. Expression and function of CD28 on Epstein-Barr virus-positive B cell lines and AIDS-associated non-Hodgkin’s lymphoma cell lines. Tumour Biol. 2003;24(2):82-93.

[56]

Ng VL, Hurt MH, Fein CL, et al. IgMs produced by two acquired immune deficiency syndrome lymphoma cell lines: Ig binding specificity and VH-gene putative somatic mutation analysis. Blood. 1994;83(4):1067-1078.

[57]

Wen J, Wu D, Qin M, et al. Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice. Nat Biomed Eng. 2019;3(9):706-716.

[58]

Moses AV, Williams SE, Strussenberg JG, et al. HIV-1 induction of CD40 on endothelial cells promotes the outgrowth of AIDS-associated B-cell lymphomas. Nat Med. 1997;3(11):1242-1249.

[59]

Goto H, Kojima Y, Nagai H, Okada S. Establishment of a CD4-positive cell line from an AIDS-related primary effusion lymphoma. Int J Hematol. 2013;97(5):624-633.

[60]

Lan K, Murakami M, Bajaj B, et al. Inhibition of KSHV-infected primary effusion lymphomas in NOD/SCID mice by gamma-secretase inhibitor. Cancer Biol Ther. 2009;8(22):2136-2143.

[61]

Katano H, Hoshino Y, Morishita Y, et al. Establishing and characterizing a CD30-positive cell line harboring HHV-8 from a primary effusion lymphoma. J Med Virol. 1999;58(4):394-401.

[62]

Knowles DM, Inghirami G, Ubriaco A, Dalla-Favera R. Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood. 1989;73(3):792-799.

[63]

Cannon JS, Ciufo D, Hawkins AL, et al. A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi’s sarcoma herpesvirus-containing supernatant. J Virol. 2000;74(21):10187-10193.

[64]

Renne R, Zhong W, Herndier B, et al. Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med. 1996;2(3):342-346.

[65]

Stone HB, Bernhard EJ, Coleman CN, et al. Preclinical data on efficacy of 10 drug-radiation combinations: evaluations, concerns, and recommendations. Transl Oncol. 2016;9(1):46-56.

[66]

Widney DP, Olafsen T, Wu AM, et al. Levels of murine, but not human, CXCL13 are greatly elevated in NOD-SCID mice bearing the AIDS-associated Burkitt lymphoma cell line, 2F7. PloS One. 2013;8(8):e72414.

[67]

Daniels-Wells TR, Widney DP, Leoh LS, Martínez-Maza O, Penichet ML. Efficacy of an anti-transferrin receptor 1 antibody against AIDS-related non-Hodgkin lymphoma: a brief communication. J Immunother. 2015;38(8):307-310.

[68]

Patel S, Xiao P. Primary effusion lymphoma. Arch Pathol Lab Med. 2013;137(8):1152-1154.

[69]

Boulanger E, Gérard L, Gabarre J, et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol. 2005;23(19):4372-4380.

[70]

Karam L, Abou Staiteieh S, Chaaban R, et al. Anticancer activities of parthenolide in primary effusion lymphoma preclinical models. Mol Carcinog. 2021;60(8):567-581.

[71]

Gruffaz M, Zhou S, Vasan K, et al. Repurposing cytarabine for treating primary effusion lymphoma by targeting Kaposi’s sarcoma-associated herpesvirus latent and lytic replications. MBio. 2018;9(3):e00756-18.

[72]

Boshoff C, Gao SJ, Healy LE, et al. Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in nod/SCID mice. Blood. 1998;91(5):1671-1679.

[73]

Gotoh K, Kariya R, Alam MM, et al. The antitumor effects of methyl-β-cyclodextrin against primary effusion lymphoma via the depletion of cholesterol from lipid rafts. Biochem Biophys Res Commun. 2014;455(3–4):285-289.

[74]

Takahashi-Makise N, Suzu S, Hiyoshi M, et al. Biscoclaurine alkaloid cepharanthine inhibits the growth of primary effusion lymphoma in vitro and in vivo and induces apoptosis via suppression of the NF-kappaB pathway. Int J Cancer. 2009;125(6):1464-1472.

[75]

Towata T, Komizu Y, Suzu S, Matsumoto Y, Ueoka R, Okada S. Hybrid liposomes inhibit the growth of primary effusion lymphoma in vitro and in vivo. Leuk Res. 2010;34(7):906-911.

[76]

Kariya R, Taura M, Suzu S, Kai H, Katano H, Okada S. HIV protease inhibitor Lopinavir induces apoptosis of primary effusion lymphoma cells via suppression of NF-κB pathway. Cancer Lett. 2014;342(1):52-59.

[77]

Katano H, Suda T, Morishita Y, et al. Human herpesvirus 8-associated solid lymphomas that occur in AIDS patients take anaplastic large cell morphology. Mod Pathol. 2000;13(1):77-85.

[78]

Picchio GR, Sabbe RE, Gulizia RJ, McGrath M, Herndier BG, Mosier DE. The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in SCID mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology. 1997;238(1):22-29.

[79]

Staudt MR, Kanan Y, Jeong JH, Papin JF, Hines-Boykin R, Dittmer DP. The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res. 2004;64(14):4790-4799.

[80]

Shiraishi Y, Gotoh K, Towata T, et al. Therapeutic effects of γ-irradiation in a primary effusion lymphoma mouse model. Exp Ther Med. 2010;1(1):79-84.

[81]

Masud Alam M, Kariya R, Kawaguchi A, Matsuda K, Kudo E, Okada S. Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress. Apoptosis. 2016;21(10):1191-1201.

[82]

Ueno M, Kariya R, Sittithumcharee G, Okada S. Cucurbitacin B induces apoptosis of primary effusion lymphoma via disruption of cytoskeletal organization. Phytomedicine. 2021;85:153545.

[83]

Sittithumcharee G, Kariya R, Kasemsuk T, Saeeng R, Okada S. Antitumor effect of acanthoic acid against primary effusion lymphoma via inhibition of c-FLIP. Phytother Res. 2021;35(12):7018-7026.

[84]

Dai L, Lin Z, Qiao J, Chen Y, Flemington EK, Qin Z. Ribonucleotide reductase represents a novel therapeutic target in primary effusion lymphoma. Oncogene. 2017;36(35):5068-5074.

[85]

Dai L, Trillo-Tinoco J, Cao Y, et al. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma. Blood. 2015;126(26):2821-2831.

[86]

Dai L, Cao Y, Chen Y, Parsons C, Qin Z. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J Hematol Oncol. 2014;7:30.

[87]

Dai L, Trillo-Tinoco J, Bai L, et al. Systematic analysis of a xenograft mice model for KSHV+ primary effusion lymphoma (PEL). PloS One. 2014;9(2):e90349.

[88]

Goto H, Matsuda K, Srikoon P, et al. Potent antitumor activity of zoledronic acid-induced Vγ9Vδ2 T cells against primary effusion lymphoma. Cancer Lett. 2013;331(2):174-182.

[89]

Matsuno T, Kariya R, Yano S, et al. Diethyldithiocarbamate induces apoptosis in HHV-8-infected primary effusion lymphoma cells via inhibition of the NF-κB pathway. Int J Oncol. 2012;40(4):1071-1078.

[90]

Stein AP, Swick AD, Smith MA, et al. Xenograft assessment of predictive biomarkers for standard head and neck cancer therapies. Cancer Med. 2015;4(5):699-712.

[91]

Lee JW, Stone RL, Lee SJ, et al. EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clin Cancer Res. 2010;16(9):2562-2570.

[92]

Goto H, Kojima Y, Matsuda K, et al. Efficacy of anti-CD47 antibody-mediated phagocytosis with macrophages against primary effusion lymphoma. Eur J Cancer. 2014;50(10):1836-1846.

[93]

Crowe S, Mills J, McGrath MS. Quantitative immunocytofluorographic analysis of CD4 surface antigen expression and HIV infection of human peripheral blood monocyte/macrophages. AIDS Res Hum Retrovir. 1987;3(2):135-145.

[94]

Crowe SM, Mills J, Kirihara J, Boothman J, Marshall JA, McGrath MS. Full-length recombinant CD4 and recombinant gp120 inhibit fusion between HIV infected macrophages and uninfected CD4-expressing T-lymphoblastoid cells. AIDS Res Hum Retrovir. 1990;6(8):1031-1037.

[95]

Bryant J, Pham L, Yoshimura L, Tamayo A, Ordonez N, Ford RJ. Development of intermediate-grade (mantle cell) and low-grade (small lymphocytic and marginal zone) human non-Hodgkin’s lymphomas xenotransplanted in severe combined immunodeficiency mouse models. Lab Investig. 2000;80(4):557-573.

[96]

Buske C, Hannig H, Schneider EM, et al. Transforming growth factor beta is a growth-inhibitory cytokine of B cell lymphoma in SIV-infected macaques. AIDS Res Hum Retrovir. 1999;15(16):1477-1485.

[97]

Hunt RD, Blake BJ, Chalifoux LV, Sehgal PK, King NW, Letvin NL. Transmission of naturally occurring lymphoma in macaque monkeys. Proc Natl Acad Sci USA. 1983;80(16):5085-5089.

[98]

King NW, Hunt RD, Letvin NL. Histopathologic changes in macaques with an acquired immunodeficiency syndrome (AIDS). Am J Pathol. 1983;113(3):382-388.

[99]

Putkonen P, Kaaya EE, Böttiger D, et al. Clinical features and predictive markers of disease progression in cynomolgus monkeys experimentally infected with simian immunodeficiency virus. Aids. 1992;6(3):257-263.

[100]

Zenger E, Abbey NW, Weinstein MD, et al. Injection of human primary effusion lymphoma cells or associated macrophages into severe combined immunodeficient mice causes murine lymphomas. Cancer Res. 2002;62(19):5536-5542.

[101]

Feichtinger H, Li SL, Kaaya E, et al. A monkey model for Epstein Barr virus-associated lymphomagenesis in human acquired immunodeficiency syndrome. J Exp Med. 1992;176(1):281-286.

[102]

Rezikyan S, Kaaya EE, Ekman M, et al. B-cell lymphomagenesis in SIV-immunosuppressed cynomolgus monkeys. Int J Cancer. 1995;61(4):574-579.

[103]

Hannig H, Mätz-Rensing K, Kuhn EM, et al. Cytokine gene transcription in simian immunodeficiency virus and human immunodeficiency virus-associated non-Hodgkin lymphomas. AIDS Res Hum Retrovir. 1997;13(18):1589-1596.

[104]

Maggiorella MT, Monardo F, Koanga-Mogtomo ML, et al. Detection of infectious simian immunodeficiency virus in B-and T-cell lymphomas of experimentally infected macaques. Blood. 1998;91(9):3103-3111.

[105]

Kahnt K, Mätz-Rensing K, Hofmann P, Stahl-Hennig C, Kaup FJ. SIV-associated lymphomas in rhesus monkeys (Macaca mulatta) in comparison with HIV-associated lymphomas. Vet Pathol. 2002;39(1):42-55.

[106]

Feichtinger H, Putkonen P, Parravicini C, et al. Malignant lymphomas in cynomolgus monkeys infected with simian immunodeficiency virus. Am J Pathol. 1990;137(6):1311-1315.

[107]

Castaños-Vélez E, Heiden T, Lindvall C, et al. Simian AIDS-related lymphoma growth in severe combined immunodeficiency mice is independent of karyotypic abnormalities or Bcl-6 mutations. AIDS Res Hum Retrovir. 2002;18(5):383-390.

[108]

Baskin GB, Martin LN, Rangan SR, et al. Transmissible lymphoma and simian acquired immunodeficiency syndrome in rhesus monkeys. J Natl Cancer Inst. 1986;77(1):127-139.

[109]

Daniel MD, Letvin NL, King NW, et al. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985;228(4704):1201-1204.

[110]

Benveniste RE, Arthur LO, Tsai CC, et al. Isolation of a lentivirus from a macaque with lymphoma: comparison with HTLV-III/LAV and other lentiviruses. J Virol. 1986;60(2):483-490.

[111]

Pingel S, Hannig H, Mätz-Rensing K, Kaup FJ, Hunsmann G, Bodemer W. Detection of Epstein-Barr virus small RNAs EBER1 and EBER2 in lymphomas of SIV-infected rhesus monkeys by in situ hybridization. Int J Cancer. 1997;72(1):160-165.

[112]

Baskin GB, Cremer KJ, Levy LS. Comparative pathobiology of HIV-and SIV-associated lymphoma. AIDS Res Hum Retrovir. 2001;17(8):745-751.

RIGHTS & PERMISSIONS

2024 The Authors. Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (1807KB)

195

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/