Against all odds: The road to success in the development of human immune reconstitution mice

Yixiao Bin , Jing Ren , Haowei Zhang , Tianjiao Zhang , Peijuan Liu , Zhiqian Xin , Haijiao Yang , Zhuan Feng , Zhinan Chen , Hai Zhang

Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (4) : 460 -470.

PDF (2284KB)
Animal Models and Experimental Medicine ›› 2024, Vol. 7 ›› Issue (4) : 460 -470. DOI: 10.1002/ame2.12407
REVIEW

Against all odds: The road to success in the development of human immune reconstitution mice

Author information +
History +
PDF (2284KB)

Abstract

The mouse genome has a high degree of homology with the human genome, and its physiological, biochemical, and developmental regulation mechanisms are similar to those of humans; therefore, mice are widely used as experimental animals. However, it is undeniable that interspecies differences between humans and mice can lead to experimental errors. The differences in the immune system have become an important factor limiting current immunological research. The application of immunodeficient mice provides a possible solution to these problems. By transplanting human immune cells or tissues, such as peripheral blood mononuclear cells or hematopoietic stem cells, into immunodeficient mice, a human immune system can be reconstituted in the mouse body, and the engrafted immune cells can elicit human-specific immune responses. Researchers have been actively exploring the development and differentiation conditions of host recipient animals and grafts in order to achieve better immune reconstitution. Through genetic engineering methods, immunodeficient mice can be further modified to provide a favorable developmental and differentiation microenvironment for the grafts. From initially only being able to reconstruct single T lymphocyte lineages, it is now possible to reconstruct lymphoid and myeloid cells, providing important research tools for immunology-related studies. In this review, we compare the differences in immune systems of humans and mice, describe the development history of human immune reconstitution from the perspectives of immunodeficient mice and grafts, and discuss the latest advances in enhancing the efficiency of human immune cell reconstitution, aiming to provide important references for immunological related researches.

Keywords

hematopoietic stem cell / human immune reconstitution / immune response / immunodeficient mice / peripheral blood mononuclear cell / transplantation

Cite this article

Download citation ▾
Yixiao Bin, Jing Ren, Haowei Zhang, Tianjiao Zhang, Peijuan Liu, Zhiqian Xin, Haijiao Yang, Zhuan Feng, Zhinan Chen, Hai Zhang. Against all odds: The road to success in the development of human immune reconstitution mice. Animal Models and Experimental Medicine, 2024, 7(4): 460-470 DOI:10.1002/ame2.12407

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Casellas J. Inbred mouse strains and genetic stability: a review. Animal. 2011;5(1):1-7.

[2]

Masopust D, Sivula CP, Jameson SC. Of mice, dirty mice, and men: using mice to understand human immunology. J Immunol. 2017;199(2):383-388.

[3]

Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol. 2009;5(5):499-521.

[4]

Vitiello A, Marchesini D, Furze J, Sherman LA, Chesnut RW. Analysis of the HLA-restricted influenza-specific cytotoxic T lymphocyte response in transgenic mice carrying a chimeric human-mouse class I major histocompatibility complex. J Exp Med. 1991;173(4):1007-1015.

[5]

Ito K, Bian HJ, Molina M, et al. HLA-DR4-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis. J Exp Med. 1996;183(6):2635-2644.

[6]

Zhai Y, Chen L, Zhao Q, et al. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science. 2023;379(6637):eabg2482.

[7]

Saito Y, Matsumoto N, Yamanaka S, Yokoo T, Kobayashi E. Beneficial impact of interspecies chimeric renal organoids against a xenogeneic immune response. Front Immunol. 2022;13:848433.

[8]

Thomsen M, Galvani S, Canivet C, Kamar N, Böhler T. Reconstitution of immunodeficient SCID/beige mice with human cells: applications in preclinical studies. Toxicology. 2008;246(1):18-23.

[9]

Emes RD, Goodstadt L, Winter EE, Ponting CP. Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum Mol Genet. 2003;12(7):701-709.

[10]

Waterston RH, Birney E, Rogers J, et al. Initial sequencing and comparative analysis of the mouse genome. Nature (London). 2002;420(6915):520-562.

[11]

Medetgul-Ernar K, Davis MM. Standing on the shoulders of mice. Immunity. 2022;55(8):1343-1353.

[12]

Doeing DC, Borowicz JL, Crockett ET. Gender dimorphism in differential peripheral blood leukocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. BMC Clin Pathol. 2003;3(1):3.

[13]

Martin RM, Lew AM. Is IgG2a a good Th1 marker in mice? Immunol Today. 1998;19(1):49.

[14]

Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol. 2019;4(33):eaau6085.

[15]

Johnson MD, Witherden DA, Havran WL. The role of tissue-resident T cells in stress surveillance and tissue maintenance. Cells. 2020;9(3):686.

[16]

Elbe A, Foster CA, Stingl G. T-cell receptor alpha beta and gamma delta T cells in rat and human skin–are they equivalent? Semin Immunol. 1996;8(6):341-349.

[17]

Monteiro RC, Van De Winkel JG. IgA Fc receptors. Annu Rev Immunol. 2003;21:177-204.

[18]

Lanier LL. NK cell receptors. Annu Rev Immunol. 1998;16:359-393.

[19]

Lodoen M, Ogasawara K, Hamerman JA, et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med. 2003;197(10):1245-1253.

[20]

Kegasawa T, Tatsumi T, Yoshioka T, et al. Soluble UL16-binding protein 2 is associated with a poor prognosis in pancreatic cancer patients. Biochem Biophys Res Commun. 2019;517(1):84-88.

[21]

Fischer A, Cavazzana-Calvo M, De Saint BG, et al. Naturally occurring primary deficiencies of the immune system. Annu Rev Immunol. 1997;15:93-124.

[22]

Peschon JJ, Morrissey PJ, Grabstein KH, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994;180(5):1955-1960.

[23]

Roifman CM, Zhang J, Chitayat D, Sharfe N. A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood. 2000;96(8):2803-2807.

[24]

Hagan P. IgE and protective immunity to helminth infections. Parasite Immunol. 1993;15(1):1-4.

[25]

Pearce EJ, Sher A. Functional dichotomy in the CD4+ T cell response to Schistosoma mansoni. Exp Parasitol. 1991;73(1):110-116.

[26]

Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907-916.

[27]

Weinberg JB. Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol Med. 1998;4(9):557-591.

[28]

Flanagan SP. ‘Nude’ a new hairless gene with pleiotropic effects in the mouse. Genet Res. 1966;8(3):295-309.

[29]

Pantelouris EM. Absence of thymus in a mouse mutant. Nature. 1968;217(5126):370-371.

[30]

Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell. 2002;109(Suppl): S45-S55.

[31]

Chen X, Xu X, Chen Y, et al. Structure of an activated DNA-PK and its implications for NHEJ. Mol Cell. 2021;81(4):801-810.

[32]

Niewolik D, Schwarz K. Physical ARTEMIS:DNA-PKcs interaction is necessary for V(D)J recombination. Nucleic Acids Res. 2022;50(4):2096-2110.

[33]

de Villartay JP. Congenital defects in V(D)J recombination. Br Med Bull. 2015;114(1):157-167.

[34]

Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527-530.

[35]

Mcelwee KJ, Boggess D, King LJ, Sundberg JP. Experimental induction of alopecia areata-like hair loss in C3H/HeJ mice using full-thickness skin grafts. J Invest Dermatol. 1998;111(5):797-803.

[36]

Kenney LL, Shultz LD, Greiner DL, Brehm MA. Humanized mouse models for transplant immunology. Am J Transplant. 2016;16(2):389-397.

[37]

Kataoka S, Satoh J, Fujiya H, et al. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes. 1983;32(3):247-253.

[38]

Prochazka M, Gaskins HR, Shultz LD, Leiter EH. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA. 1992;89(8):3290-3294.

[39]

Pannicke U, Ma Y, Hopfner KP, Niewolik D, Lieber MR, Schwarz K. Functional and biochemical dissection of the structure-specific nuclease ARTEMIS. EMBO J. 2004;23(9):1987-1997.

[40]

Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869-877.

[41]

Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68(5):855-867.

[42]

Goldman JP, Blundell MP, Lopes L, Kinnon C, di Santo JP, Thrasher AJ. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol. 1998;103(2):335-342.

[43]

O’Shea JJ, Pesu M, Borie DC, Changelian PS. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov. 2004;3(7):555-564.

[44]

Giliani S, Mella P, Savoldi G, Mazzolari E. Cytokine-mediated signalling and early defects in lymphoid development. Curr Opin Allergy Clin Immunol. 2005;5(6):519-524.

[45]

Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23(5):598-604.

[46]

Goldberg L, Simon AJ, Lev A, et al. Atypical immune phenotype in severe combined immunodeficiency patients with novel mutations in IL2RG and JAK3. Genes Immun. 2020;21(5):326-334.

[47]

Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477-6489.

[48]

Koyanagi Y, Tanaka Y, Kira J, et al. Primary human immunodeficiency virus type 1 viremia and central nervous system invasion in a novel hu-PBL-immunodeficient mouse strain. J Virol. 1997;71(3):2417-2424.

[49]

Zhao Y, Liu P, Xin Z, et al. Biological characteristics of severe combined immunodeficient mice produced by CRISPR/Cas9-mediated Rag2 and IL2rg mutation. Front Genet. 2019;10:401.

[50]

Bin Y, Wei S, Chen R, et al. Dclre1c-mutation-induced immunocompromised mice are a novel model for human xenograft research. Biomol Ther. 2024;14(2):180-194.

[51]

Brehm MA, Cuthbert A, Yang C, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol. 2010;135(1):84-98.

[52]

Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208-214.

[53]

Kyoizumi S, Baum CM, Kaneshima H, McCune J, Yee EJ, Namikawa R. Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood. 1992;79(7):1704-1711.

[54]

Frey JR, Ernst B, Surh CD, Sprent J. Thymus-grafted SCID mice show transient thymopoiesis and limited depletion of V beta 11+ T cells. J Exp Med. 1992;175(4):1067-1071.

[55]

Diaz I. Rules of thumb to obtain, isolate, and preserve porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol. 2022;251:110461.

[56]

Hughes MR, Canals HD, Cait J, et al. A sticky wicket: defining molecular functions for CD34 in hematopoietic cells. Exp Hematol. 2020;86:1-14.

[57]

Pearson T, Greiner DL, Shultz LD. Creation of “humanized” mice to study human immunity. Curr Protoc Immunol. 2008;CHAPTER: Unit–15:21.

[58]

King MA, Covassin L, Brehm MA, et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol. 2009;157(1):104-118.

[59]

Brehm MA, Kenney LL, Wiles MV, et al. Lack of acute xenogeneic graft-versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB J. 2019;33(3):3137-3151.

[60]

Ali N, Flutter B, Sanchez RR, et al. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rgammanull mice display a T-effector memory phenotype. PLoS One. 2012;7(8):e44219.

[61]

Holguin L, Echavarria L, Burnett JC. Novel humanized peripheral blood mononuclear cell mouse model with delayed onset of graft-versus-host disease for preclinical HIV research. J Virol. 2022;96(3):e0139421.

[62]

Yanagawa S, Tahara H, Shirouzu T, et al. Development of a humanized mouse model to analyze antibodies specific for human leukocyte antigen (HLA). PLoS One. 2021;16(2):e0236614.

[63]

Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786-798.

[64]

Tary-Lehmann M, Lehmann PV, Schols D, Roncarolo MG, Saxon A. Anti-SCID mouse reactivity shapes the human CD4+ T cell repertoire in hu-PBL-SCID chimeras. J Exp Med. 1994;180(5):1817-1827.

[65]

Mosier DE. Adoptive transfer of human lymphoid cells to severely immunodeficient mice: models for normal human immune function, autoimmunity, lymphomagenesis, and AIDS. Adv Immunol. 1991;50:303-325.

[66]

Pino S, Brehm MA, Covassin-Barberis L, et al. Development of novel major histocompatibility complex class I and class II-deficient NOD-SCID IL2R gamma chain knockout mice for modeling human xenogeneic graft-versus-host disease. Methods Mol Biol. 2010;602:105-117.

[67]

Beksac M, Yurdakul P. How to improve cord blood engraftment? Front Med (Lausanne). 2016;3:7.

[68]

Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol. 2017;7(12):170108-170114.

[69]

Mold JE, Venkatasubrahmanyam S, Burt TD, et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science. 2010;330(6011):1695-1699.

[70]

Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020;11(1):34-44.

[71]

Kim SS, Kumar P, Ye C, Shankar P. Humanized mice for studying human leukocyte integrins in vivo. Methods Mol Biol. 2012;757:509-521.

[72]

Rongvaux A, Takizawa H, Strowig T, et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol. 2013;31:635-674.

[73]

Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487-492.

[74]

Stoddart CA, Maidji E, Galkina SA, et al. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rgamma(−/−) (NSG) BLT mice. Virology. 2011;417(1):154-160.

[75]

Roy CN, Shu ST, Kline C, Rigatti L, Smithgall TE, Ambrose Z. Use of pediatric thymus to humanize mice for HIV-1 mucosal transmission. Sci Rep. 2023;13(1):17067.

[76]

Garcia-Beltran WF, Claiborne DT, Maldini CR, et al. Innate immune reconstitution in humanized bone marrow-liver-thymus (HuBLT) mice governs adaptive cellular immune function and responses to HIV-1 infection. Front Immunol. 2021;12:667393.

[77]

Greenblatt MB, Vrbanac V, Tivey T, Tsang K, Tager AM, Aliprantis AO. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model. PLoS One. 2012;7(9):e44664.

[78]

Ivanovic Z. Interleukin-3 and ex vivo maintenance of hematopoietic stem cells: facts and controversies. Eur Cytokine Netw. 2004;15(1):6-13.

[79]

Drexler HG. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia. 1996;10(4):588-599.

[80]

Richter R, Forssmann W, Henschler R. Current developments in mobilization of hematopoietic stem and progenitor cells and their interaction with niches in bone marrow. Transfus Med Hemother. 2017;44(3):151-164.

[81]

Wang W, Zhang Y, Dettinger P, et al. Cytokine combinations for human blood stem cell expansion induce cell-type-and cytokine-specific signaling dynamics. Blood. 2021;138(10):847-857.

[82]

Rausch O, Marshall CJ. Cooperation of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways during granulocyte colony-stimulating factor-induced hemopoietic cell proliferation. J Biol Chem. 1999;274(7):4096-4105.

[83]

Wang X, Dong F, Zhang S, et al. TGF-beta1 negatively regulates the number and function of hematopoietic stem cells. Stem Cell Reports. 2018;11(1):274-287.

[84]

Pillet AH, Theze J, Rose T. Interleukin (IL)-2 and IL-15 have different effects on human natural killer lymphocytes. Hum Immunol. 2011;72(11):1013-1017.

[85]

Katano I, Takahashi T, Ito R, et al. Predominant development of mature and functional human NK cells in a novel human IL-2-producing transgenic NOG mouse. J Immunol. 2015;194(7):3513-3525.

[86]

Aryee KE, Burzenski LM, Yao LC, et al. Enhanced development of functional human NK cells in NOD-scid-IL2rg(null) mice expressing human IL15. FASEB J. 2022;36(9):e22476.

[87]

Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol. 2014;32(4):364-372.

[88]

Wunderlich M, Chou FS, Link KA, et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia. 2010;24(10):1785-1788.

[89]

Ito R, Takahashi T, Katano I, et al. Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. J Immunol. 2013;191(6):2890-2899.

[90]

Watanabe Y, Takahashi T, Okajima A, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009;21(7):843-858.

[91]

Majji S, Wijayalath W, Shashikumar S, et al. Differential effect of HLA class-I versus class-II transgenes on human T and B cell reconstitution and function in NRG mice. Sci Rep. 2016;6:28093.

[92]

Majji S, Wijayalath W, Shashikumar S, Brumeanu TD, Casares S. Humanized DRAGA mice immunized with plasmodium falciparum sporozoites and chloroquine elicit protective pre-erythrocytic immunity. Malar J. 2018;17(1):114.

[93]

Labarthe L, Henriquez S, Lambotte O, et al. Frontline science: exhaustion and senescence marker profiles on human T cells in BRGSF-A2 humanized mice resemble those in human samples. J Leukoc Biol. 2020;107(1):27-42.

[94]

Billerbeck E, Horwitz JA, Labitt RN, et al. Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. J Immunol. 2013;191(4):1753-1764.

[95]

Li Y, Mention JJ, Court N, et al. A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development. Eur J Immunol. 2016;46(5):1291-1299.

[96]

Takenaka K, Prasolava TK, Wang JC, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 2007;8(12):1313-1323.

[97]

Legrand N, Huntington ND, Nagasawa M, et al. Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T-and natural killer-(NK) cell homeostasis in vivo. Proc Natl Acad Sci USA. 2011;108(32):13224-13229.

[98]

Lavender KJ, Pang WW, Messer RJ, et al. BLT-humanized C57BL/6 Rag2−/−gammac−/-CD47−/− mice are resistant to GVHD and develop B-and T-cell immunity to HIV infection. Blood. 2013;122(25):4013-4020.

[99]

Lopez-Lastra S, Masse-Ranson G, Fiquet O, et al. A functional DC cross talk promotes human ILC homeostasis in humanized mice. Blood Adv. 2017;1(10):601-614.

[100]

Jinnouchi F, Yamauchi T, Yurino A, et al. A human SIRPA knock-in xenograft mouse model to study human hematopoietic and cancer stem cells. Blood. 2020;135(19):1661-1672.

[101]

Cowan MJ, Gennery AR. Radiation-sensitive severe combined immunodeficiency: the arguments for and against conditioning before hematopoietic cell transplantation–what to do? J Allergy Clin Immunol. 2015;136(5):1178-1185.

[102]

Cosgun KN, Rahmig S, Mende N, et al. Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell. 2014;15(2):227-238.

[103]

Chen SS, Wang H, Xing J, et al. NCG-MHC-dKO mice—an excellent model for PBMC reconstitution and pharmacodynamic evaluation in the absence of GvHD. J Immunol. 2023;89(1_Supplement): (210):22-23.

[104]

Yaguchi T, Kobayashi A, Inozume T, et al. Human PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term evaluation of human immune responses. Cell Mol Immunol. 2018;15(11):953-962.

[105]

Takahashi T, Katano I, Ito R, et al. Enhanced antibody responses in a novel NOG transgenic mouse with restored lymph node organogenesis. Front Immunol. 2017;8:2017.

[106]

Li Y, Masse-Ranson G, Garcia Z, et al. A human immune system mouse model with robust lymph node development. Nat Methods. 2018;15(8):623-630.

[107]

Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833-846.

[108]

Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res. 2000;9(6):841-848.

[109]

Ran Y, Dong Y, Li Y, et al. Mesenchymal stem cell aggregation mediated by integrin alpha4/VCAM-1 after intrathecal transplantation in MCAO rats. Stem Cell Res Ther. 2022;13(1):507.

[110]

Zhang Y, Chai C, Jiang XS, Teoh SH, Leong KW. Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Eng. 2006;12(8):2161-2170.

[111]

Carrancio S, Romo C, Ramos T, et al. Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant. 2013;22(7):1171-1183.

[112]

Garrigos MM, de Oliveira FA, Nucci MP, et al. How mesenchymal stem cell cotransplantation with hematopoietic stem cells can improve engraftment in animal models. World J Stem Cells. 2022;14(8):658-679.

[113]

Yin X, Hu L, Zhang Y, et al. PDGFB-expressing mesenchymal stem cells improve human hematopoietic stem cell engraftment in immunodeficient mice. Bone Marrow Transplant. 2020;55(6):1029-1040.

[114]

Hansen M, Stahl L, Heider A, et al. Reduction of graft-versus-host-disease in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ (NSG) mice by Cotransplantation of syngeneic human umbilical cord-derived mesenchymal stromal cells. Transplant Cell Ther. 2021;27(8):651-658.

[115]

Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439-1441.

[116]

Hu L, Cheng H, Gao Y, et al. Antioxidant N-acetyl-L-cysteine increases engraftment of human hematopoietic stem cells in immune-deficient mice. Blood. 2014;124(20):e45-e48.

[117]

Zeleniak A, Wiegand C, Liu W, et al. De novo construction of T cell compartment in humanized mice engrafted with iPSC-derived thymus organoids. Nat Methods. 2022;19(10):1306-1319.

[118]

Ramos SA, Armitage LH, Morton JJ, et al. Generation of functional thymic organoids from human pluripotent stem cells. Stem Cell Reports. 2023;18(4):829-840.

[119]

Provin N, Giraud M. Differentiation of pluripotent stem cells into thymic epithelial cells and generation of thymic organoids: applications for therapeutic strategies against APECED. Front Immunol. 2022;13:930963.

[120]

Reinisch A, Thomas D, Corces MR, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22(7):812-821.

RIGHTS & PERMISSIONS

2024 The Authors. Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.

AI Summary AI Mindmap
PDF (2284KB)

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/