Phytochemical investigation of the branches of Viburnum awabuki K. Koch and its chemotaxonomic significance

Sidie Li , Ningning Du , Qi Song , Xiaoxiao Huang , Shaojiang Song

Asian Journal of Traditional Medicines ›› 2025, Vol. 20 ›› Issue (5) : 213 -225.

PDF (2390KB)
Asian Journal of Traditional Medicines ›› 2025, Vol. 20 ›› Issue (5) :213 -225.
Regular article
research-article

Phytochemical investigation of the branches of Viburnum awabuki K. Koch and its chemotaxonomic significance

Author information +
History +
PDF (2390KB)

Abstract

Phytochemical investigation of the branches of Viburnum awabuki K. Koch led to the isolation of thirteen known compounds, including five lignans (1-5), one phytosterol (6), two phenylpropanoids (7-8), one chromone derivative (9), three pentacyclic triterpenoids (10-12), and one glyceride (13). The structures of these compounds were elucidated through extensive spectroscopic analyses and comparison of experimental data with literature data. Additionally, the chemotaxonomic significance of the isolated secondary metabolites was also discussed.

Keywords

Viburnum awabuki / spectroscopic analysis / secondary metabolites / chemotaxonomic significance

Cite this article

Download citation ▾
Sidie Li, Ningning Du, Qi Song, Xiaoxiao Huang, Shaojiang Song. Phytochemical investigation of the branches of Viburnum awabuki K. Koch and its chemotaxonomic significance. Asian Journal of Traditional Medicines, 2025, 20(5): 213-225 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32370425).

References

[1]

Malécot V, McNeill J. Lectotypification of the Linnaean names in Viburnum L.(Viburnaceae). Taxon, 2002, 51: 747-750.

[2]

Royal Botanic Gardens, Kew. Plants of the World Online. [6/6/2025].

[3]

Ren JX, Cheng ZY, Huang XX, et al. Research review on the main chemical constituents and pharmacological activities of Viburnum awabuki. Asian J Tradit Med, 2022, 17: 244-252.

[4]

Kuroyanagi M, Shiotsu M, Ebihara T, et al. Chemical studies on Viburnum awabuki K.KOCH. Chem Pharm Bull, 1986, 34: 4012-4017.

[5]

Zhang Y, Zhou WY, Song XY, et al. Neuroprotective terpenoids from the leaves of Viburnum odoratissimum. Nat Prod Res, 2020, 34: 1352-1359.

[6]

Li SF, Yu XQ, Li YL, et al. Vibsane-type diterpenoids from Viburnum odoratissimum and their cytotoxic activities. Bioorg Chem, 2021, 106: 104498.

[7]

El-Gamal AA. Cytotoxic lupane-, secolupane-, and oleanane-type triterpenes from Viburnum awabuki. Nat Prod Res, 2008, 22: 191-197.

[8]

Xue XB, Lv TM, Hou J Y, et al. Vibsane-type diterpenoids from Viburnum odoratissimum inhibit hepatocellular carcinoma cells via the PI3K/AKT pathway. Phytomedicine, 2023, 108: 154499.

[9]

Zhang ZH, Li RR, Chen Y, et al. Integration of traditional, complementary, and alternative medicine with modern biomedicine: the scientization, evidence, and challenges for integration of traditional Chinese medicine. Acupunct Herb Med, 2024, 4: 68-78.

[10]

Yu ZY, Xiao H, Wang LM, et al. Natural product vibsanin a induces differentiation of myeloid leukemia cells through PKC activation. Cancer Res, 2016, 76: 2698-2709.

[11]

Minami H, Anzaki S, Kubo M, et al. Structures of new seven-membered ring vibsane-type diterpenes isolated from leaves of Viburnum awabuki. Chem Pharm Bull, 1998, 46: 1194-1198.

[12]

Fukuyama Y, Minami H, Kagawa M, et al. Chemical conversion of vibsanin C to vibsanin E and structure of 3-Hydroxyvibsanin E from Viburnum awabuki. J Nat Prod, 1999, 62: 337-339.

[13]

Duh CY, El-Gamal AA, Wang SK. Vibsanin O, a novel diterpenoid from Viburnum awabuki. Tetrahedron Lett, 2003, 44: 9321-9322.

[14]

El-Gamal AA, Wang SK, Duh CY. New diterpenoids from Viburnum awabuki. J Nat Prod, 2004, 67: 333-336.

[15]

Fukuyama Y, Minami H, Takaoka S, et al. Absolute structure of vibsanins B and C, and their chemical correlation. Tetrahedron Lett, 1997, 38: 1435-1438.

[16]

Kagawa M, Minami H, Nakahara M, et al. Oleanane-type triterpenes from Viburnum awabuki. Phytochemistry, 1998, 47: 1101-1105.

[17]

Fukuyama Y, Nakahara M, Minami H, et al. Two new benzofuran-type lignans from the wood of Viburnum awabuki. Chem Pharm Bull, 1996, 44: 1418-1420.

[18]

Matsuda N, Sato H, Yaoita Y, et al. Isolation and absolute structures of the neolignan glycosides with the enantiometric aglycones from the leaves of Viburnum awabuki K. KOCH. Chem Pharm Bull, 1996, 44: 1122-1123.

[19]

Fukuyama Y, Minami H, Ichikawa R, et al. Hydroperoxylated guaiane-type sesquiterpenes from Viburnum awabuki. Phytochemistry, 1996, 42: 741-746.

[20]

Huang PQ, Kang KW, Huang DY, et al. Lignan glucosides from Gentiana macrophylla with potential anti-arthritis and hepatoprotective activities. Phytochemistry, 2024, 217: 113920.

[21]

Wei F, Zhang WT, Kang SW, et al. Phenolic Constituents with Glucose Uptake and GLUT4 Translocation Bioactivities from the Fruits of Cordia dichotoma. J Agric Food Chem, 2024, 72: 16298-16311.

[22]

Chen SX, Wei BC, Wen LL, et al. Metabolomics analysis of bioactive compositions of Michelia macclurei Dany and its antioxidant and enzyme inhibitory activities. J Sci Food Agric, 2025, 105: 635-648.

[23]

Wang XW, Zhao Y, Dong XQ, et al. Amides and lignans from Solanum lyratum. Phytochem Lett, 2021, 45: 25-29.

[24]

Ma JZ, Yang XW, Zhang JJ, et al. Sterols and Terpenoids from Viburnum odoratissimum. Nat Prod Bioprospect, 2014, 4: 175-180.

[25]

Li FJ, Yu JH, Wang GC, et al. Diterpenes and lignans from Viburnum odoratissimum var. Odoratissimum. J Asian Nat Prod Res, 2015, 17: 475-481.

[26]

Ma N, Liu SX, Li YF, et al. Lignan glycosides from Fritillaria verticillata Willd. and their anti-inflammatory activities. Fitoterapia, 2023, 168: 105553.

[27]

Yin RH, Bai X, Feng T, et al. Two new compounds from Xanthium strumarium. J Asian Nat Prod Res, 2016, 18: 354-359.

[28]

Wang YX, Ren Q, Yan ZY, et al. Flavonoids and their derivatives with β-amyloid aggregation inhibitory activity from the leaves and twigs of Pithecellobium clypearia Benth. Bioorg Med Chem Lett, 2017, 27: 4823-4827.

[29]

Ahn JH, Park Y, Yeon SW, et al. Phenylpropanoid- conjugated triterpenoids from the leaves of Actinidia arguta and their inhibitory activity on α-glucosidase. J Nat Prod, 2020, 83: 1416-1423.

[30]

Wang MC, Kong WZ, Yang GC, et al. Structure, anti- inflammatory and anti-bacterial activities of novel pentacyclic triterpenoids and other constituents from the leaves of Pittosporum elevaticostatum. Fitoterapia, 2024, 177: 106142.

[31]

Mo XY, Mai JB. Chemical constituents of ethyl acetate extract part of Stelmatocrypton khasianum. Chin J Exp Tradit Med Formulae, 2012, 18: 61-63.

[32]

Lee RX, Hassan Z, Subramaniam S, et al. Adventitious root cultures of Clitoria ternatea L. and its potential as a memory enhancer alternative. Plant Biotechnol Rep, 2021, 15: 163-176.

[33]

Li SF, Lv TM, Li YL, et al. Vibsanoids A-D, four new subtypes of vibsane diterpenoids with a distinctive tricyclo [8.2.1.02,9] tridecane core from Viburnum odoratissimum. Org Chem Front, 2022, 9: 4561-4568.

[34]

Zhang YY, Chen JJ, Li DQ, et al. Network pharmacology uncovers anti-cancer activity of vibsane-type diterpenes from Viburnum odoratissimum. Nat Prod Res, 2021, 35: 637-640.

[35]

Pang B, Chen YB, Wang S, et al. World’s top 50 high- impact research studies in traditional medicine in 2024. Acupunct Herb Med, 2024, 4: 552-558.

[36]

Miura K, Matsuki W, Ogura A, et al. Identification of vibsanin A analog as a novel HSP 90 inhibitor. Bioorg Med Chem, 2020, 28: 115253.

[37]

Shen YC, Prakash CVS, Wang LT, et al. Vibsane diterpenoids from the leaves and flowers of Viburnum odoratissimum. J Nat Prod, 2004, 67: 74-77.

[38]

Shen YC, Prakash CVS, Wang LT, et al. New triterpenoids fatty acid esters from the small twigs of Viburnum odoratissimum. J Chin Chem Soc, 2003, 50: 297-302.

[39]

Lv TM, Han JL, Yan QL, et al. Discovery of the caged- vibsane norditerpenoids with unprecedented chemical architectures and exploration of their various acid tolerances. J Org Chem, 2023, 88: 12385-12393.

[40]

Tian J, Wang YG, Ma J, et al. Hepatoprotective benzofurans and furanolignans from Gymnema tingens. J Asian Nat Prod Res, 2015, 17: 268-273.

[41]

Zhang H, Yan Z Y, Wang YX, et al. Network pharmacology-based screening of the active ingredients and potential targets of the genus of Pithecellobium marthae (Britton & Killip) Niezgoda & Nevl for application to Alzheimer’s disease. Nat Prod Res, 2019, 33: 2368-2371.

[42]

Fan JR, Kuang Y, Dong ZY, et al. Prenylated phenolic compounds from the aerial parts of Glycyrrhiza uralensis as PTP1B and α-glucosidase inhibitors. J Nat Prod, 2020, 83: 814-824.

[43]

Nishimura K, Miyase T, Noguchi H. Acyl-CoA: Cholesterol acyltransferase (ACAT) inhibitors from Ilex spp. Arch Pharmacal Res, 2000, 54: 297-305.

[44]

Verma R, Tapwal A, Kumar D, et al. Assessment of antimicrobial potential and phytochemical profiling of ethnomedicinal plant Bergenia ciliata (Haw.) Sternb. in western Himalaya. J Microbiol, Biotechnol. Food Sci, 2019, 9: 15-20.

[45]

Liu H, Chen ZY, Liu M, et al. The Terminalia chebula Retz extract treats hyperuricemic nephropathy by inhibiting TLR4/MyD88/NF-κB axis. J Ethnopharmacol, 2024, 322: 117678.

[46]

Hsieh CC, Yu SH, Kuo HC, et al. Alleviation of PM2.5- induced alveolar macrophage inflammation using extract of fermented Chenopodium formosanum Koidz sprouts via regulation of NF-κB pathway. J Ethnopharmacol, 2024, 318: 116980.

[47]

Shen YC, Prakash CVS, Wang LT, et al. New vibsane diterpenes and lupane triterpenes from Viburnum odoratissimum. J Nat Prod, 2002, 65: 1052-1055.

[48]

Phuong NT M, Cuong T T, Qua ng DN. Ant i - inflammatory activity of methyl ferulate isolated from Stemona tuberosa Lour. Asian Pac J Trop Med, 2014, 7: S327-S331.

[49]

Seca AML, Silva AMS, Silvestre AJD, et al. Phenolic constituents from the core of kenaf (Hibiscus cannabinus). Phytochemistry, 2001, 56: 759-767.

[50]

Sajid-Ur-Rehman M, Ishtiaq S, Khan MA, et al. Phytochemical profiling, in vitro and in vivo anti- inflammatory, analgesic and antipyretic potential of Sesuvium sesuvioides (Fenzl) Verdc. (Aizoaceae). Inflammopharmacology, 2021, 29: 789-800.

[51]

La CS, Lv TM, Liang JJ, et al. Molecular properties, structure and chiral resolution of secondary metabolites from the leaves of Viburnum chingii. Nat Prod Res, 2024, 9: 1-6.

[52]

Suh WS, Subedi L, Kim SY, et al. Bioactive lignan constituents from the twigs of Sambucus williamsii. Bioorg Med Chem Lett, 2016, 26: 1877-1880.

[53]

Fan M, Liu YC, Jiang WW, et al. Three new iridoids from two Viburnum species. J Asian Nat Prod Res, 2015, 17: 976-981.

[54]

Ouyang F, Liu Y, Li R, et al. Five lignans and an iridoid from Sambucus williamsii. Chin J Nat Med, 2011, 9: 26- 29.

[55]

Chen J, Shao JH, Zhao CC, et al. Chemical constituents f rom Viburnum fordiae Hance and their anti- inflammatory and antioxidant activities. Arch Pharmacal Res, 2018, 41: 625-632.

[56]

Xiao HH, Dai Y, Wan HY, et al. Bone-protective effects of bioactive fractions and ingredients in Sambucus williamsii HANCE. Br J Nutr, 2011, 106: 1802-1809.

[57]

Hwang B, Cho J, Hwang I, et al. Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochem Biophys Res Commun, 2011, 410: 489-493.

[58]

Wu ZB, Zheng MM, Qin SR, et al. Chemical constituents from the aerial parts of Sambucus adnata Wall. and their chemotaxonomic significance. Biochem Syst Ecol, 2023, 107: 104616.

[59]

Sakurai N, Nagashima S, Kawai K, et al. A new lignan, (-)-berchemol, from Berchemia racemosa. Chem Pharm Bull, 1989, 37: 3311-3315.

[60]

Tan RX, Jakupovic J, Jia ZJ. Aromatic constituents from Vladimiria souliei. Planta Med, 1990, 56: 475-477.

[61]

Wang QH, Wang XL, Bao B, et al. Four lignans from Syringa pinnatifolia and their antioxidant activity. Chem Nat Compd, 2018, 54: 18-21.

[62]

Nguyen VL, Nguyen TT, Pham XP, et al. New phenylethanoid and other compounds from Passiflora foetida L., with their nitric oxide inhibitory activities. Nat Prod Commun, 2022, 17: 1934578X221141163.

[63]

Sun N, Yang HH, Zhou M, et al. Isolation and evaluation of antioxidants from Arisaema heterophyllum tubers. Phytochem Lett, 2023, 53: 106-110.

[64]

Dong LP, Ni W, Dong JY, et al. A new neolignan glycoside from the leaves of Acer truncatum. Molecules, 2006, 11: 1009-1014.

[65]

Jang SW, Suh WS, Kim CS, et al. A new phenolic glycoside from Spiraea prunifolia var. simpliciflora twigs. Arch Pharmacal Res, 2015, 38: 1943-1951.

[66]

Lin S, Chen T, Liu XH, et al. Iridoids and lignans from Valeriana jatamansi. J Nat Prod, 2010, 73: 632-638.

[67]

Yuan MF, Ao YL, Yao N, et al. Two new flavonoids from the nuts of Areca catechu. Molecules, 2019, 24: 2862.

[68]

Erdemoglu N, Sener B, Ozcan Y, et al. Structural and spectroscopic characteristics of two new dibenzylbutane type lignans from Taxus baccata L. J Mol Struct, 2003, 655: 459-466.

[69]

He WJ, Fu ZH, Zeng GZ, et al. Terpene and lignan glycosides from the twigs and leaves of an endangered conifer, Cathaya argyrophylla. Phytochemistry, 2012, 83: 63-69.

[70]

Morikawa T, Tao J, Ando S, e t a l. Absolute Stereostructures of New Arborinane-Type Triterpenoids and Inhibitors of Nitric Oxide Production from Rubia yunnanensis. J Nat Prod, 2003, 66: 638-645.

[71]

Bonzanini F, Bruni R, Palla G, et al. Identification and distribution of lignans in Punica granatum L. fruit endocarp, pulp, seeds, wood knots and commercial juices by GC-MS. Food Chem, 2009, 117: 745-749.

[72]

Tang C, Gao R, Tang XY, et al. Metabolites isolated from Penicillium HDS-Z-1E, an endophytic fungal strain isolated from Taxus cuspidata and their activation effect of catalase. Chin Herb Med, 2024, 16: 227-230.

[73]

Yang YL, Chang FR, Wu YC. Squadinorlignoside: a novel 7,9′‐dinorlignan from the Stems of Annona squamosa. Helv Chim Acta, 2005, 88: 2731-2737.

[74]

Liu X, Yang MH, Wang XB, et al. Lignans from the root of Paeonia lactiflora and their anti-β-amyloid aggregation activities. Fitoterapia, 2015, 103: 136-142.

[75]

D’Abrosca B, DellaGreca M, Fiorentino A, et al. Potential allelochemicals from Sambucus nigra. Phytochemistry, 2001, 58: 1073-1081.

[76]

Nakatsubo T, Mizutani M, Suzuki S, et al. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem, 2008, 283: 15550-15557.

[77]

Okunishi T, Umezawa T, Shimada M. Isolation and enzymatic formation of lignans of Daphne genkwa and Daphne odora. J Wood Sci, 2001, 47: 383-388.

[78]

Erdemoglu N, Sahin E, Sener B, et al. Structural and spectroscopic characteristics of two lignans from Taxus baccata L. J Mol Struct, 2004, 692: 57-62.

[79]

Lee DY, Song MC, Yoo KH, et al. Lignans from the fruits of Cornus kousa Burg. and their cytotoxic effects on human cancer cell lines. Arch Pharmacal Res, 2007, 30: 402-407.

[80]

Suzuki S, Umezawa T, Shimada M. Stereochemical diversity in lignan biosynthesis of Arctium lappa L. Biosci Biotechnol Biochem, 2002, 66: 1262-1269.

[81]

Pullela SV, Takamatsu S, Khan SI, et al. Isolation of lignans and biological activity studies of Ephedra viridis. Planta Med, 2005, 71: 789-791.

[82]

Abe F, Yamauchi T. Lignan glycosides from Parsonsia laevigata. Phytochemistry, 1989, 28: 1737-1741.

[83]

Sugiyama M, Kikuchi M. Characterization of lariciresinol glucosides from Osmanthus asiaticus. Heterocycles, 1993, 36: 117-121.

[84]

Subbaraju G V, Kumar KKK, Raju BL, et al. Justiciresinol, a new furanoid lignan from Justicia glauca. J Nat Prod, 1991, 54: 1639-1641.

[85]

Yuasa K, Ide T, Otsuka H, et al. Lignan and neolignan glycosides from stems of Alangium premnifolium. Phytochemistry, 1997, 45: 611-615.

[86]

Zhang Y, Meng H, Lyu FF, et al. Temporal characteristics of agarwood formation in Aquilaria sinensis after applying whole-tree agarwood-inducing technique. Chin Herb Med, 2023, 15: 37-44.

[87]

Rahman MDA, Katayama T, Suzuki T, et al. Stereochemistry and biosynthesis of (+)-lyoniresinol, a syringyl tetrahydronaphthalene lignan in Lyonia ovalifolia var. elliptica II: feeding experiments with 14C labeled precursors. J Wood Sci, 2007, 53: 114-120.

[88]

Liu X, Fu J, Yao XJ, et al. Phenolic constituents isolated from the twigs of Cinnamomum cassia and their potential neuroprotective effects. J Nat Prod, 2018, 81: 1333-1342.

[89]

Shang SZ, Kong LM, Yang LP, et al. Bioactive phenolics and terpenoids from Manglietia insignis. Fitoterapia, 2013, 84: 58-63.

[90]

Kim KH, Moon E, Ha SK, et al. Bioactive lignan constituents from the twigs of Lindera glauca. Chem Pharm Bull, 2014, 62: 1136-1140.

[91]

Zhao XF, Zhang Q, Zhao HT, et al. A new cyclic peptide from the fibrous root of Pseudostellaria heterophylla. Nat Prod Res, 2022, 36: 3368-3374.

[92]

Maurya A, Srivastava SK. Determination of ursolic acid and ursolic acid lactone in the leaves of Eucalyptus tereticornis by HPLC. J Brazil Chem Soc, 2012, 23: 468-472.

[93]

Yoshi da M, Fuchigami M, Naga o T, e t a l. Antiproliferative constituents from Umbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biol Pharm Bull, 2005, 28: 173-175.

[94]

Papanov G, Bozov P, Malakov P. Triterpenoids from Lavandula spica. Phytochemistry, 1992, 31: 1424-1426.

[95]

Bano Z, Begum S, Ali SS, et al. Phytochemicals from Carissa carandas with potent cytotoxic and anti-inflammatory activities. Nat Prod Res, 2022, 36: 1587-1592.

[96]

Xie GB, Zhou SX, Lu YN, et al. Triterpenoid glycosides from the leaves of Ilex pernyi. Chem Pharm Bull, 2009, 57: 520-524.

[97]

Banno N, Akihisa T, Tokuda H, et al. Anti-inflammatory and antitumor-promoting effects of the triterpene acids from the leaves of Eriobotrya japonica. Biol Pharm Bull, 2005, 28: 1995-1999.

[98]

Zhang C, Jiang K, Qu SJ, et al. Triterpenoids from the barks of Terminalia chebula. J Asian Nat Prod Res, 2015, 17: 996-1001.

[99]

Chen XQ, Li Y, He J, et al. Triterpenoids and diterpenoids from Viburnum chingii. Chem Pharm Bull, 2011, 59: 496-498.

AI Summary AI Mindmap
PDF (2390KB)

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/