Exploring the frontier of oral nanomedicine in colorectal cancer therapy: Folate-targeted 5FU-Nisin-Selenium conjugates and probiotic-rich diets as a novel approach

Mozhgan Derakhshan-sefidi , Bita Bakhshi , Aliakbar Rasekhi , Roya Saeidnejad

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) : 101106

PDF (4451KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) :101106 DOI: 10.1016/j.ajps.2025.101106
Research articles
research-article

Exploring the frontier of oral nanomedicine in colorectal cancer therapy: Folate-targeted 5FU-Nisin-Selenium conjugates and probiotic-rich diets as a novel approach

Author information +
History +
PDF (4451KB)

Abstract

This study aimed to assess the therapeutic potential of nisin, 5 -fluorouracil (5FU) and selenium encapsulated in folate-conjugated thiolated chitosan nanoparticles (N/5FU/Se@FTCsNPs), combined with a probiotic cocktail of Lactobacillus acidophilus and Bifidobacterium bifidum, against colorectal cancer (CRC). The nanoparticles ( 277 nm, +9.2 mV ) exhibited high drug loading efficiencies (5FU: 89.11%, nisin: 70.68%) and pHresponsive release, with minimal drug release under gastric conditions and ∼60.7% release at colonic pH, facilitating targeted delivery. The formulation remained stable for over 40 d at $-{20}^{\circ }\mathrm{C}$ and ${4}^{\circ }\mathrm{C}$, demonstrating excellent biocompatibility ( <2% hemolysis) and exhibiting strong mucoadhesive and mucus-penetrating abilities. In vitro, N/5FU/Se@FTCsNPs selectively targeted CT26 colon cancer cells ( ${\mathrm{I}\mathrm{C}}_{5n}:1.57\mu \text{ }\mathrm{g}/\mathrm{m}\mathrm{l}$ ) with minimal effects on healthy cells, enhanced cellular uptake, and induced ROS-mediated apoptosis. In vivo, oral administration-especially with probiotics-significantly reduced tumor volume, improved survival rates and alleviated chemotherapy-related side effects such as diarrhea and weight loss. Biodistribution studies confirmed increased tumor targeting and decreased off-target exposure. Mechanistically, the treatment downregulated oncogenes and inflammatory markers ( 2 - to 12.5 -fold), including β-catenin, mTOR, COX- 2 and VEGF- $\alpha $, while upregulating tumor suppressors and protective genes ( 4 to 14.8 fold), such as PTEN, CASP9 and Mucin 2(P<0.0001). This indicates inhibition of proliferation, metastasis, inflammation, and angiogenesis, along with improved gut barrier function. Cytokine profiling and histological analysis further confirmed reduced systemic inflammation and maintained hematological safety. These findings highlight N/5FU/Se@FTCsNPs combined with probiotics as a promising, safe and effective oral therapy for CRC, leveraging microbiota modulation and targeted delivery.

Keywords

Colorectal cancer / Nisin / Selenium / Chitosan / Drug delivery systems / Probiotics

Cite this article

Download citation ▾
Mozhgan Derakhshan-sefidi, Bita Bakhshi, Aliakbar Rasekhi, Roya Saeidnejad. Exploring the frontier of oral nanomedicine in colorectal cancer therapy: Folate-targeted 5FU-Nisin-Selenium conjugates and probiotic-rich diets as a novel approach. Asian Journal of Pharmaceutical Sciences, 2025, 20(6): 101106 DOI:10.1016/j.ajps.2025.101106

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare that there is no conflicts of interest.

Acknowledgments

The study was supported by the Research Council of Tarbiat Modares University and the Iran National Science Foundation (INSF) (Grant Number: 4043897).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ajps.2025.101106. The figures and tables with " S " before the serial number are included in the Supplementary material.

References

[1]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71( 3):209-49.

[2]

Mulsow J, Merkel S, Agaimy A, Hohenberger W. Outcomes following surgery for colorectal cancer with synchronous peritoneal metastases. Br J Surg 2011; 98(12):1785-91.

[3]

Body A, Prenen H, Latham S, Lam M, Tipping-Smith S, Raghunath A, et al. The role of neoadjuvant chemotherapy in locally advanced colon cancer. Cancer Manag Res 2021; 13:2567-79.

[4]

Beumer JH, Chu E, Allegra C, Tanigawara Y, Milano G, Diasio R, et al. Therapeutic drug monitoring in oncology: international association of therapeutic drug monitoring and clinical toxicology recommendations for 5-fluorouracil therapy. Clin Pharmacol Ther 2019; 105(3):598-613.

[5]

Palazzolo S, Bayda S, Hadla M, Caligiuri I, Corona G, Toffoli G, et al. The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem 2018; 25(34):4224-68.

[6]

Eisenmann ED, Talebi Z, Sparreboom A, Baker SD. Boosting the oral bioavailability of anticancer drugs through intentional drug-drug interactions. Basic Clin Pharmacol Toxicol 2022; 130(S1):23-35.

[7]

Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8(1):201.

[8]

Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polym 2021; 13(11):1717.

[9]

Derakhshan-Sefidi M, Bakhshi B, Rasekhi A. Thiolated chitosan nanoparticles encapsulated nisin and selenium: antimicrobial/antibiofilm/anti-attachment/immunomodulatory multi-functional agent. BMC Microbiol 2024; 24(1):257.

[10]

Wei X, Liao J, Davoudi Z, Zheng H, Chen J, Li D, et al. Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar Drugs 2018; 16(11):439.

[11]

Heydari Z, Rahaie M, Alizadeh AM. Different anti-inflammatory effects of Lactobacillus acidophilus and bifidobactrum bifidioum in hepatocellular carcinoma cancer mouse through impact on microRNAs and their target genes. JNIM 2019; 16:100096.

[12]

El-Deeb NM, Yassin AM, Al-Madboly LA, El-Hawiet A. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF- κ b inflammatory pathways in human colon cancer. MCF 2018; 17(1):1-15.

[13]

Ghanavati R, Asadollahi P, Shapourabadi MB, Razavi S, Talebi M, Rohani M. Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the notch and wnt/ β-catenin signaling pathways. Microb Pathog 2020; 139:103829.

[14]

Deol PK, Khare P, Bishnoi M, Kondepudi KK, Kaur IP. Coadministration of ginger extract-Lactobacillus acidophilus (cobiotic) reduces gut inflammation and oxidative stress via downregulation of COX-2, i-NOS, and c-Myc. Phytother Res 2018; 32(10):1950-6.

[15]

Balcik-Ercin P, Sever B. An investigation of bacteriocin nisin anti-cancer effects and FZD7 protein interactions in liver cancer cells. Chem Biol Interact 2022; 366:110152.

[16]

Al-Madboly LA, El-Deeb NM, Kabbash A, Nael MA, Kenawy AM, Ragab AE. Purification, characterization, identification, and anticancer activity of a circular bacteriocin from Enterococcus thailandicus. Front Bioeng Biotechnol 2020; 8:450.

[17]

Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Nisin and nisin-loaded nanoparticles: a cytotoxicity investigation. Drug Dev Ind Pharm 2022; 48(7):310-21.

[18]

Patil SM, Kunda NK. Nisin ZP, an antimicrobial peptide, induces cell death and inhibits non-small cell lung cancer (NSCLC) progression in vitro in 2D and 3D cell culture. Pharm Res 2022; 39(11):2859-70.

[19]

Ahmadi S, Ghollasi M, Hosseini HM. The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microb Pathog 2017; 111:193-7.

[20]

Debnath S, Agarwal A, Kumar NR, Bedi A. Selenium-based drug development for antioxidant and anticancer activity. Future pharmacol 2022; 2(4):595-607.

[21]

Menon S, Shanmugam VK. Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J Trace Elem Med Biol 2020; 62:126549.

[22]

Bagheri-Josheghani S, Bakhshi B. Formulation of selenium nanoparticles encapsulated by alginate-chitosan for controlled delivery of Vibrio Cholerae LPS: a novel delivery system candidate for nanovaccine. Int J Biol Macromol 2022; 208:494-508.

[23]

Llabot JM, Salman H, Millotti G, Bernkop-Schnürch A, Allemandi D, Manuel Irache J. Bioadhesive properties of poly (anhydride) nanoparticles coated with different molecular weights chitosan. J Microencapsul 2011; 28(5):455-63.

[24]

Palomo-Siguero M, AMa Gutiérrez, Pérez-Conde C, Madrid Y. Effect of selenite and selenium nanoparticles on lactic bacteria: a multi-analytical study. Microchim J 2016; 126:488-95.

[25]

Iranpour S, Bahrami AR, Nekooei S, Sh Saljooghi A, Matin MM. Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J Nanobiotechnology 2021; 19(1):314.

[26]

Zhou T, Wu J, Tang H, Liu D, Jeon B-H, Jin W, et al. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10(1): 6.

[27]

Jing ZL, Liu GL, Zhou N, Xu DY, Feng N, Lei Y, et al. Interferon- $\gamma$ in the tumor microenvironment promotes the expression of B7H 4 in colorectal cancer cells, thereby inhibiting cytotoxic T cells. Sci Rep 2024; 14(1):6053.

[28]

Bowen JM, Stringer AM, Gibson RJ, Yeoh AS, Hannam S, Keefe DM. VSL# 3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol Ther 2007; 6(9):1449.

[29]

Ruvindy R, Barua A, Bolch CJ, Sarowar C, Savela H, Murray SA. Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms. ISME Communications 2023; 3(1):70.

[30]

Dünnhaupt S, Barthelmes J, Iqbal J, Perera G, Thurner CC, Friedl H, et al. In vivo evaluation of an oral drug delivery system for peptides based on S-protected thiolated chitosan. J Control Release 2012; 160(3):477-85.

[31]

Kowapradit J, Opanasopit P, Ngawhirunpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U, et al. In vitro permeability enhancement in intestinal epithelial cells (Caco-2) monolayer of water soluble quaternary ammonium chitosan derivatives. AAPS PharmSciTech 2010;11: 497-508.

[32]

Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 2009; 30(29):5691-700.

[33]

Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech 2010; 11:362-71.

[34]

Clausen AE, Kast CE, Bernkop-Schnürch A. The role of glutathione in the permeation enhancing effect of thiolated polymers. Pharm Res 2002; 19:602-8.

[35]

Dahlgren D, Lennernäs H. Review on the effect of chemotherapy on the intestinal barrier: epithelial permeability, mucus and bacterial translocation. Biomed pharmacother 2023; 162:114644.

[36]

Gonzalez T, Muminovic M, Nano O, Vulfovich M. Folate receptor alpha-A novel approach to cancer therapy. Int J Mol Sci 2024; 25(2):1046.

[37]

Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15(6):1966-2006.

[38]

Khan S, Madni A, Shah H, Jan N, Shafiq A, Basit A, et al. Folate decorated lipid chitosan hybrid nanoparticles of 5-fluorouracil for enhanced anticancer efficacy against colon cancer. Int J Biol Macromol 2022; 222:497-508.

[39]

Zhao R, Diop-Bove N, Goldman ID. Enhanced receptor-mediated endocytosis and cytotoxicity of a folic acid-desacetylvinblastine monohydrazide conjugate in a pemetrexed-resistant cell line lacking folate-specific facilitative carriers but with increased folate receptor expression. Mol Pharmacol 2014; 85(2):310-21.

[40]

Ullah S, Azad AK, Nawaz A, Shah KU, Iqbal M, Albadrani GM, et al. 5-fluorouracil-loaded folic-acid-fabricated chitosan nanoparticles for site-targeted drug delivery cargo. Polymers (Basel) 2022; 14(10):2010.

[41]

An J, Ha EM. Combination therapy of Lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells. J Microbiol Biotechnol 2016; 26(8):1490-503.

[42]

Lindsay JO, Whelan K, Stagg AJ, Gobin P, HO Al-Hassi, Rayment N, et al. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn's disease. Gut 2006; 55(3):348-55.

[43]

Elham N, Naheed M, Elahe M, Hossein MM, Majid T. Selective cytotoxic effect of probiotic, paraprobiotic and postbiotics of L.casei strains against colorectal cancer cells: in vitro studies. BrazJ Pharm 2022; 58:e19400.

[44]

Niazy AA, Alrashed MM, Lambarte RNA, Niazy AA. 5-Fluorouracil inhibits bacterial growth and reduces biofilm in addition to having synergetic effects with gentamicin against Pseudomonas aeruginosa. Microorganisms 2024; 12(11):2257.

[45]

Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 2018; 359(6382):1366-70.

[46]

Chang CW, Liu CY, Lee HC, Huang YH, Li LH, Chiau JSC, et al. Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5 -fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. Front Microbiol 2018; 9:983.

[47]

Maria-Aggeliki KS, Nikolaos KL, Kyrias GM, Vassilis KE. The potential clinical impact of probiotic treatment for the prevention and/or anti-inflammatory therapeutic effect against radiation induced intestinal mucositis. A review. Recent Pat Inflamm Allergy Drug Discov 2009; 3(3):195-200.

[48]

Alessandri G, van Sinderen D, Ventura M. The genus bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota running title: bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021; 19:1472-87.

[49]

Wang Q, Feng M, Yu T, Liu X, Zhang P. Intratumoral regulatory T cells are associated with suppression of colorectal carcinoma metastasis after resection through overcoming IL-17 producing T cells. Cell Immunol 2014; 287(2):100-5.

[50]

Razi S, Noveiry BB, Keshavarz-Fathi M, Rezaei N. IL-17 and colorectal cancer: from carcinogenesis to treatment. Cytokine 2019; 116:7-12.

[51]

Lin TY, Tsai MC, Tu W, Yeh HC, Wang SC, Huang S-P, et al. Role of the NLRP3 inflammasome: insights into cancer hallmarks. Front Immunol 2021; 11:610492.

[52]

Sharma BR, Kanneganti TD. Inflammasome signaling in colorectal cancer. Transl Res 2023; 252:45-52.

[53]

Kay SK, Harrington HA, Shepherd S, Brennan K, Dale T, Osborne JM, et al. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt. PLoS Comput Biol 2017; 13(2):e1005400.

[54]

Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, et al. The role of Notch, Hedgehog, and wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev Biol 2021; 9:650772.

[55]

de Araújo WM, Tanaka MN, Lima PHS, de Moraes CF, Leve F, Bastos LG, et al. TGF- β acts as a dual regulator of COX-2/PGE(2) tumor promotion depending of its cross-interaction with H-Ras and wnt/ β-catenin pathways in colorectal cancer cells. Cell Biol Int 2021; 45(3):662-73.

[56]

Tang F, Cao F, Lu C, He X, Weng L, Sun L. Dvl 2 facilitates the coordination of NF- κb and wnt signaling to promote colitis-associated colorectal progression. Cancer Sci 2022; 113(2):565-75.

[57]

Rivai MI, Lusikooy RE, Putra AE, Elliyanti A. Effects of lactococcus lactis on colorectal cancer in various terms: a narrative review. Ann Med Surg 2024; 86(6):3503-7.

[58]

Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18(5):1141-60.

[59]

Mikkola T, Almahmoudi R, Salo T, Al-Samadi A. Variable roles of interleukin-17F in different cancers. BMC Cancer 2022; 22(1):1-14.

[60]

Bockerstett KA, Osaki LH, Petersen CP, Cai CW, Wong CF, Nguyen TLM, et al. Interleukin-17A promotes parietal cell atrophy by inducing apoptosis. CMGH 2018; 5(4): 678-690.

[61]

Almahmoudi R, Salem A, Hadler-Olsen E, Svineng G, Salo T, Al-Samadi A. The effect of interleukin-17F on vasculogenic mimicry in oral tongue squamous cell carcinoma. Cancer Sci 2021; 112(6):2223-32.

[62]

Vandeghinste N, Klattig J, Jagerschmidt C, Lavazais S, Marsais F, Haas JD, et al. Neutralization of IL-17C reduces skin inflammation in mouse models of psoriasis and atopic dermatitis. JID 2018; 138(7):1555-63.

[63]

Abdel-Latif MM, O'Riordan J, Windle HJ, Carton E, Ravi N, Kelleher D, et al. NF- κ b activation in esophageal adenocarcinoma: relationship to Barrett's metaplasia, survival, and response to neoadjuvant chemoradiotherapy. Ann Surg 2004; 239(4):491.

[64]

Ertilav K, Nazıroğlu M, Ataizi ZS, Braidy N. Selenium enhances the apoptotic efficacy of docetaxel through activation of TRPM2 channel in DBTRG glioblastoma cells. Neurotox Res 2019; 35:797-808.

[65]

Tan HW, Mo H-Y, Lau AT, Xu Y-M. Selenium species: current status and potentials in cancer prevention and therapy. Int J Mol Sci 2018; 20(1):75.

[66]

El-Sayed Ibrahim N, Morsy H, Abdelgwad M. The comparative effect of nisin and thioridazine as potential anticancer agents on hepatocellular carcinoma. RBMB 2021; 9(4):452-62.

[67]

vJ Haussen, R Koczulla, Shaykhiev R, Herr C, Pinkenburg O, Reimer D, et al. The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 2008; 59(1):12-23.

[68]

Miricescu D, Balan DG, Tulin A, Stiru O, Vacaroiu IA, Mihai DA, et al. PI3K/AKT/mTOR signalling pathway involvement in renal cell carcinoma pathogenesis. Exp Ther Med 2021; 21(5):1-7.

[69]

Hu T, Li C. Convergence between wnt- β-catenin and EGFR signaling in cancer. Mol Cancer 2010; 9:1-7.

[70]

Zainodini N, Hassanshahi G, Hajizadeh M, Khanamani Falahati-Pour S, Mahmoodi M, Mirzaei MR. Nisin induces cytotoxicity and apoptosis in human astrocytoma cell line (SW1088). APJCP 2018; 19(8):2217-22.

[71]

Dehghani N, Tafvizi F, Jafari P. Cell cycle arrest and anti-cancer potential of probiotic Lactobacillus rhamnosus against HT-29 cancer cells. BI 2021; 11(4):245.

[72]

Ghatak S, Hascall VC, Karamanos N, Markwald RR, Misra S. Chemotherapy induces feedback up-regulation of CD44v6 in colorectal cancer initiating cells through β-catenin/MDR1 signaling to sustain chemoresistance. Front Oncol 2022; 12:906260.

[73]

Xu FQ, Li BW, Liu Y, Wei YW. Fusobacterium nucleatum upregulates ABCG2 by activating the E-cadherin/ β-catenin signaling pathway to promote oxaliplatin resistance in colorectal cancer. Zhonghua Zhong Liu Za Zhi 2025; 47(4):329-39.

[74]

Skarkova V, Kralova V, Vitovcova B, Rudolf E. Selected aspects of chemoresistance mechanisms in colorectal carcinoma-a focus on epithelial-to-mesenchymal transition, autophagy, and apoptosis. Cell J 2019; 8(3).

[75]

Shakibaei M, Mobasheri A, Lueders C, Busch F, Shayan P, Goel A. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF- κb and src protein kinase signaling pathways. PLoS ONE 2013; 8(2):e57218.

[76]

Nair R, Lannagan TRM, Jackstadt R, Andrusaite A, Cole J, Boyne C, et al. Co-inhibition of TGF- β and PD-L1 pathways in a metastatic colorectal cancer mouse model triggers interferon responses, innate cells and T cells, alongside metabolic changes and tumor resistance. Oncoimmunology 2024; 13(1):2330194.

[77]

Eftekhar E, Naghibalhossaini F. Carcinoembryonic antigen expression level as a predictive factor for response to 5-fluorouracil in colorectal cancer. Mol Biol Rep 2014; 41:459-66.

[78]

Arabzadeh A, McGregor K, Breton V, Van Der Kraak L, Akavia UD, Greenwood CMT, et al. EphA2 signaling is impacted by carcinoembryonic antigen cell adhesion molecule 1-L expression in colorectal cancer liver metastasis in a cell context-dependent manner. Oncotarget 2017; 8(61):104330-46.

[79]

Huang CC, Shen MH, Chen SK, Yang SH, Liu CY, Guo JW, et al. Gut butyrate-producing organisms correlate to Placenta Specific 8 protein: importance to colorectal cancer progression. J Adv Res 2020; 22:7-20.

[80]

Yazdani Y, Farazmandfar T, Azadeh H, Zekavatian Z. The prognostic effect of PTEN expression status in colorectal cancer development and evaluation of factors affecting it: miR-21 and promoter methylation. J Biomed Sci 2016; 23(1):1-8.

[81]

Omran S, Barakat H, Muliira JK, McMillan S. Dietary and lifestyle risk factors for colorectal cancer in apparently healthy adults in Jordanian hospitals. JCE 2017; 32:447-53.

[82]

Nakamura Y, Nawata M, Wakitani S. Expression profiles and functional analyses of Wnt-related genes in human joint disorders. Am J Pathol 2005; 167(1):97-105.

[83]

Shi B, Ma C, Liu G, Guo Y. MiR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells. CMBL 2019; 24(1):1.

[84]

Xu W, Guo G, Li J, Ding Z, Sheng J, Li J, et al. Activation of bcl-2-caspase-9 apoptosis pathway in the testis of asthmatic mice. PLoS ONE 2016; 11(3):e0149353.

[85]

Allhorn S, Böing C, Koch AA, Kimmig R, Gashaw I. TLR3 and TLR4 expression in healthy and diseased human endometrium. Reprod Biol Endocrinol 2008; 6(1):1-11.

[86]

Esmaeili B, Rezaee SA, Layegh P, Tavakkol Afshari J, Dye P, Ghayoor Karimiani E, et al. Expression of IL-17 and COX2 gene in peripheral blood leukocytes of vitiligo patients. IJAAI 2011; 10(2):81-9.

[87]

Leon-Coria A, Kumar M, Moreau F, Chadee K. Defining cooperative roles for colonic microbiota and Muc2 mucin in mediating innate host defense against Entamoeba histolytica. PLoS Pathog 2018; 14(11):e1007466.

[88]

Wu X, Li R, Song Q, Zhang C, Jia R, Han Z, et al. JMJD2C promotes colorectal cancer metastasis via regulating histone methylation of MALAT1 promoter and enhancing β-catenin signaling pathway. J Exp Clin Cancer Res 2019; 38:1-13.

[89]

Nosaka M, Ishida Y, Kimura A, Kuninaka Y, Inui M, Mukaida N, et al. Absence of IFN $-\gamma$ accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J Clin Invest 2011; 121(7):2911-20.

[90]

Chen K, Zhang S, Ji Y, Li J, An P, Ren H, et al. Baicalein inhibits the invasion and metastatic capabilities of hepatocellular carcinoma cells via down-regulation of the ERK pathway. PLoS ONE 2013; 8(9):e72927.

[91]

Ieta K, Tanaka F, Utsunomiya T, Kuwano H, Mori M. CEACAM6 gene expression in intrahepatic cholangiocarcinoma. Br J Cancer 2006; 95(4):532-40.

[92]

Tachikawa K, Schröder O, Frey G, Briggs SP, Sera T. Regulation of the endogenous VEGF-A gene by exogenous designed regulatory proteins. PNAS 2004; 101(42):15225-30.

[93]

Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, et al. The Notch target Hes 1 directly modulates Gli1 expression and hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 2010; 16(24):6060-70.

[94]

Zhang L, Tong Z, Sun Z, Zhu G, Shen E, Huang Y. MiR-25-3p targets PTEN to regulate the migration, invasion, and apoptosis of esophageal cancer cells via the PI3K/AKT pathway. Biosci Rep 2020; 40(10):BSR20201901.

[95]

Li L, Li X, Zhong W, Yang M, Xu M, Sun Y, et al. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apcmin/+ mice. EBioMedicine 2019; 48:301-15.

[96]

Zou L, Chai J, Gao Y, Guan J, Liu Q, Du JJ. Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/akt/GSK3 β /wnt/ β-catenin signaling. Biomed Pharmacother 2016; 84:139-46.

[97]

Doles J, Cook C, Shi X, Valosky J, Lipinski R, Bushman W. Functional compensation in Hedgehog signaling during mouse prostate development. Dev Biol J 2006; 295(1): 13-25.

[98]

Riquelme I, Tapia O, Espinoza JA, Leal P, Buchegger K, Sandoval A, et al. The gene expression status of the PI3K/AKT/mTOR pathway in gastric cancer tissues and cell lines. POR 2016; 22(4):797-805.

[99]

Chen X, He J, Ding Y, Zeng L, Gao R, Cheng S, et al. The role of MTOR in mouse uterus during embryo implantation. Reproduction 2009; 138(2):351.

[100]

Perez Gonçalves BÔ De Andrade WP, Braga LDC, Fialho SL, Silva LM. Epithelial-to-mesenchymal transition markers are differentially expressed in epithelial cancer cell lines after everolimus treatment. Oncol Lett 2020; 20(5):158.

[101]

Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X, et al. A metagenomic study of the gut microbiome in Behcet's disease. Microbiome 2018; 6(1):135.

PDF (4451KB)

197

Accesses

0

Citation

Detail

Sections
Recommended

/