Artificial polysaccharide-binding protein mediates co-assembly of nanodrug and probiotics against drug-resistant infectious enteritis

Ying Sun , Jiayue Yang , Zirun Zhao , Suke Liu , Mingchun Li , Qilin Yu

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) : 101094

PDF (7990KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) :101094 DOI: 10.1016/j.ajps.2025.101094
Research articles
research-article

Artificial polysaccharide-binding protein mediates co-assembly of nanodrug and probiotics against drug-resistant infectious enteritis

Author information +
History +
PDF (7990KB)

Abstract

Intestinal drug-resistant pathogens, e.g., Salmonella enterica subsp. enterica serovar Typhimurium (S. Tm) and enteropathogenic Escherichia coli (E. coli), frequently cause lifethreatening infectious enteritis. Probiotic-based therapy is a promising way to eliminate drug-resistant pathogens for treatment of infectious enteritis, but its colonizing and therapeutic efficacy after oral administration are limited. Here, we developed a facile therapeutic agent to treat infectious enteritis by co-assembly of the peptide nanodrug melittin-loaded MSN grafted by polysaccharide-binding protein (MMPB) with the famous probiotic bacteria Lactobacillus plantarum (Lac) and Bifidobacterium animalis subsp. lactis (Bif). The nanodrug was composed of the antimicrobial peptide melittin and mesoporous silica nanoparticles exposing the artificial polysaccharide-binding protein. Owing to presence of the artificial protein on the MMPB surface, the nanodrug strongly bound and cross-linked the probiotic cells, forming the Lac + Bif + MMPB co-assembly. During co-incubation with the kanamycin-resistant E. coli strain (Ecka), the co-assembly strongly reduced the viability of Ecka, leading to the increase in the ratio of probiotic to Ecka from 1.6 to 9.2. After oral administration of the co-assembly to the mice pre-colonized by Ecka, Lac + Bif + MMPB almost eliminated the kanamycin-resistant gene in the intestine, and led to 2-3-fold higher levels of the probiotic cells than the nanodrug MMPB or the combined probiotics Lac+Bif. More importantly, in the mice suffering from enteritis caused by drug-resistant S.Tm, the coassembly remarkably recovered the mouse body weight, reduced intestine colonization of S. Tm cells, and decreased the levels of pro-inflammatory cytokines in both serum and colons. This study realized the synthetic biology technique-mediated abiotic/biotic co-assembly for efficient treating infectious enteritis induced by drug-resistant pathogens.

Keywords

Mesoporous silica nanoparticle / Enteritis / Drug resistance / Probiotic / Assembly

Cite this article

Download citation ▾
Ying Sun, Jiayue Yang, Zirun Zhao, Suke Liu, Mingchun Li, Qilin Yu. Artificial polysaccharide-binding protein mediates co-assembly of nanodrug and probiotics against drug-resistant infectious enteritis. Asian Journal of Pharmaceutical Sciences, 2025, 20(6): 101094 DOI:10.1016/j.ajps.2025.101094

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare that there is no conflicts of interest.

Acknowledgments

This work was supported by National Natural Science Foundation of China (32170102), Natural Science Foundation of Tianjin (25JCLMJC00400), and the Fundamental Research Funds for the Central Universities (63253191).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ajps.2025.101094.

The figures and tables with " S " before the serial number are included in the Supplementary material.

References

[1]

Padmesh S, Singh A, Chopra S, Sen M, Habib S, Shrivastava D, et al. Isolation and characterization of novel lytic bacteriophages that infect multi drug resistant clinical strains of Escherichia coli. Environ Sci Pollut Res Int 2024; 31(46):57327-37.

[2]

Larsson DGJ, Gaze WH, Laxminarayan R, Topp E. AMR, one health and the environment. Nat Microbiol 2023; 8(5):754-5.

[3]

Yuan S, Shen DD, Bai YR, Zhang M, Zhou T, Sun C, et al. Oxazolidinone: a promising scaffold for the development of antibacterial drugs. Eur J Med Chem 2023; 250:115239.

[4]

Zhao Q, Xin L, Liu Y, Liang C, Li J, Jian Y, et al. Current landscape and future perspective of oxazolidinone scaffolds containing antibacterial drugs. J Med Chem 2021; 64(15):10557-80.

[5]

Wang L, Zhu M, Li Y, Zhao Z, Hu T. Deterministic assembly process dominates bacterial antibiotic resistome in wastewater effluents receiving river. Environ Sci Pollut Res Int 2022; 29(60):90207-18.

[6]

Peng Q Wang R, Zhang Q Yuan H, Luo X, Lin W, et al. pH -responsive targeted epigallocatechin gallate-delivery nanosystem for in vivo persistent luminescence imaging and synergistic therapy of bacterial infection. ACS Mater Lett 2023; 5(12):3161-70.

[7]

Kothari A, Kumar P, Gaurav A, Kaushal K, Pandey A, Yadav SRM, et al. Association of antibiotics and heavy metal arsenic to horizontal gene transfer from multidrug-resistant clinical strains to antibiotic-sensitive environmental strains. J Hazard Mater 2023;443(Pt B):130260.

[8]

Tan P, Fu H, Ma X. Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications. Nano Today 2021; 39:101229.

[9]

Martins JCL, Pintor-Cora A, Alegría Á, Santos JA, Herrera-Arias F. Characterization of ESBL-producing Escherichia spp. and report of an mcr-1 colistin-resistance Escherichia fergusonni strain from minced meat in Pamplona, Colombia. Int J Food Microbiol 2023; 394:110168.

[10]

Feehan A, Garcia-Diaz J. Bacterial, gut microbiome-modifying therapies to defend against multidrug resistant organisms. Microorganisms 2020; 8(2):166.

[11]

Du L, Ahmad S, Liu L, Wang L, Tang J. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. Sci Total Environ 2023; 858(Pt 2):159815.

[12]

Li X, Brejnrod A, Thorsen J, Zachariasen T, Trivedi U, Russel J, et al. Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults. Nat Commun 2023; 14(1):8526.

[13]

Caracciolo PC, Abraham GA, Battaglia ES. Bongiovanni Abel S. Recent progress and trends in the development of electrospun and 3D printed polymeric-based materials to overcome antimicrobial resistance (AMR). Pharmaceutics 2023; 15(7):1964.

[14]

Bashir N, Dablool AS, Khan MI, Almalki MG, Ahmed A, Mir MA, et al. Antibiotics resistance as a major public health concern: a pharmaco-epidemiological study to evaluate prevalence and antibiotics susceptibility-resistance pattern of bacterial isolates from multiple teaching hospitals. J Infect Public Health 2023; 16:61-8.

[15]

Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399(10325):629-55.

[16]

Huang T, Holden JA, Reynolds EC, Heath DE, O'Brien-Simpson NM, O'Connor AJ. Multifunctional antimicrobial polypeptide-selenium nanoparticles combat drug-resistant bacteria. ACS Appl Mater Interfaces 2020; 12(50):55696-709.

[17]

Balasubramanian R, Im J, Lee JS, Jeon HJ, Mogeni OD, Kim JH, et al. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum Vaccin Immunother 2019; 15(6):1421-6.

[18]

Buddhasiri S, Sukjoi C, Kaewsakhorn T, Nambunmee K, Nakphaichit M, Nitisinprasert S, et al. Anti-inflammatory effect of probiotic Limosilactobacillus reuteri KUB-AC5 against Salmonella infection in a mouse colitis model. Front Microbiol 2021; 12:716761.

[19]

Qin C, Tang N, Gan Y, Zhao H, Li Y, Tian GB, et al.Liposomes Co-delivering curcumin and colistin to overcome colistin resistance in bacterial infections. Adv Healthc Mater 2023; 12(24):e2202903.

[20]

Ge P, Zhang J, Ding T, Xianyu Y. Surface chemistry of gold nanoparticles for bacterial detection and antimicrobial applications. ACS Mater Lett 2023; 5(3):638-55.

[21]

Wang X, Zhao D, Li Y, Zhou X, Hui Z, Lei X, et al. Collagen hydrogel with multiple antimicrobial mechanisms as anti-bacterial wound dressing. Int J Biol Macromol 2023; 232:123413.

[22]

Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat Commun 2021; 12(1):2435

[23]

Crits-Christoph A, Hallowell HA, Koutouvalis K, Suez J. Good microbes bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes 2022; 14(1):2055944.

[24]

Zhou M, Cai Q, Zhang C, Ouyang P, Yu L, Xu Y. Antibiotic resistance bacteria and antibiotic resistance genes survived from the extremely acidity posing a risk on intestinal bacteria in an in vitro digestion model by horizontal gene transfer. Ecotoxicol Environ Saf 2022; 247:114247.

[25]

Kim H, Lee YR, Jeong H, Lee J, Wu X, Li H, et al. Photodynamic and photothermal therapies for bacterial infection treatment. Smart Mol 2023; 1(1):e20220010.

[26]

Liu KM, Wang Y, Xia FW, Feng S, Yu XQ, Wu MY. A mitochondria-targeted aggregation-induced emission photosensitizer for eradication Candida biofilms and treating oral ulcer. Smart Mol 2025; 3(3):e20240060.

[27]

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastro Hepat 2014; 11(8):506-14.

[28]

Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 2014; 11(5):4745-67.

[29]

Pacyga-Prus K, Jakubczyk D, Sandström C, Šrůtková D, Pyclik MJ, Leszczyńska K, et al. Polysaccharide BAP 1 of Bifidobacterium adolescentis CCDM 368 is a biologically active molecule with immunomodulatory properties. Carbohydr Polym 2023; 315:120980.

[30]

Novik G, Savich V. Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microbes Infect 2020; 22(1):8-18.

[31]

Junxing M, Yaoxing C, Zixu W, Ran W, Yulan D. Lactiplantibacillus plantarum CR12 attenuates chronic unforeseeable mild stress induced anxiety and depression-like behaviors by modulating the gut microbiota-brain axis. J Funct Foods 2023; 107:105710.

[32]

Fernanda BT, Borghi VL, Soares JN, Neves CS, Barretto PAL. Fruit bioactive compounds: effect on lactic acid bacteria and on intestinal microbiota. Food Res Inter 2022; 161:111809.

[33]

Abdul Hakim BN, Xuan NJ, Oslan SNH. A comprehensive review of bioactive compounds from lactic acid bacteria: potential functions as functional food in dietetics and the food industry. Foods 2023; 12(15):2850.

[34]

Sharma H, Ozogul F, Bartkiene E, Rocha JM. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit Rev Food Sci Nutr 2023; 63(21):4819-41.

[35]

Chen B, Pu W, Zhang J. Functional microgel enables effective delivery and colonization of probiotics for treating colitis. ACS Cent Sci 2023; 9(7):1260-2.

[36]

Śliżewska K, Markowiak-Kopeć P, Śliżewska W. The role of probiotics in cancer prevention. Cancers (Basel) 2020; 13(1):20.

[37]

Shahbazi R, Yasavoli-Sharahi H, Alsadi N, Ismail N, Matar C. Probiotics in treatment of viral respiratory infections and neuroinflammatory disorders. Molecules 2020; 25(21):4891.

[38]

Gunzburg WH, Aung MM, Toa P, Ng S, Read E, Tan WJ, et al. Efficient protection of microorganisms for delivery to the intestinal tract by cellulose sulphate encapsulation. Microb Cell Fact 2020; 19(1):216.

[39]

Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, et al. Probiotics for the treatment of depression and its comorbidities: a systemic review. Front Cell Infect Microbiol 2023; 13:1167116.

[40]

Bu Y, Liu Y, Liu Y, Wang S, Liu Q, Hao H, et al. Screening and probiotic potential evaluation of bacteriocin-producing Lactiplantibacillus plantarum in vitro. Foods 2022; 11:1575.

[41]

Phùng TT, Gerometta M, Chanut J, Raise A, Ureña M, Dupont S, et al. Comprehensive approach to the protection and controlled release of extremely oxygen sensitive probiotics using edible polysaccharide-based coatings. Int J Biol Macromol 2022; 218:706-19.

[42]

Minj J, Chandra P, Paul C, Sharma RK. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr 2021; 61(13):2207-24.

[43]

Yu Y, Zong M, Lao L, Wen J, Pan D, Wu Z. Adhesion properties of cell surface proteins in Lactobacillus strains in the GIT environment. Food Funct 2022; 13(6):3098-109.

[44]

Porter SB, Johnston BD, Kisiela D, Clabots C, Sokurenko EV, Johnson JR. Bacteriophage cocktail and microcin-producing probiotic Escherichia coli protect mice against gut colonization with multidrug-resistant Escherichia coli sequence type 131. Front Microbiol 2022; 13:887799.

[45]

Xinyuan Y, Jiali Y, Zihan Y, Guizhen Z, Weimin N, Hui C, et al. Physiologically inspired mucin coated Escherichia coli Nissle 1917 enhances biotherapy by regulating the pathological bicroenvironment to improve intestinal colonization. ACS Nano 2022; 16(3):4041-58.

[46]

Peng P, Feng T, Yang X, Nie C, Yu L, Ding R, et al. Gastrointestinal microenvironment responsive nanoencapsulation of probiotics and drugs for synergistic therapy of intestinal diseases. ACS Nano 2023; 17(15):14718-30.

[47]

Hou W, Li J, Cao Z, Lin S, Pan C, Pang Y, et al. Decorating bacteria with a therapeutic nanocoating for synergistically enhanced biotherapy. Small 2021; 17(37):e2101810.

[48]

Feng P, Cao Z, Wang X, Li J, Liu J. On-demand bacterial reactivation by restraining within a triggerable nanocoating. Adv Mater 2020; 32(34):e2002406.

[49]

Pan J, Gong G, Wang Q, Shang J, He Y, Catania C, et al. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nat Commun 2022; 13(1):2117.

[50]

Song Q, Zhao H, Zheng C, Wang K, Gao H, Feng Q, et al. A bioinspired versatile spore coat nanomaterial for oral probiotics delivery. Adv Func Mater 2021; 31(41):2104994.

[51]

Liu Q Chen Z, Guiseppi-Elie A, Meng F, Luo L. Recent progress on nanotechnologies for enhancing blood-brain barrier permeability. Smart Mol 2025; 3(2): e20240052.

[52]

Zhao H, Li Y, Chen J, ZhangJ, Yang Q, Cui J, et al. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms. Colloids Surf B Biointerfaces 2024; 234:113758.

[53]

Budiman A, Wardhana YW, Ainurofiq A, Nugraha YP, Qaivani R, Hakim S, et al. Drug-coformer loaded-mesoporous silica nanoparticles: a review of the preparation, characterization, and mechanism of drug release. Int J Nanomed 2024; 19:281-305.

[54]

Fatemi M, Meshkini A, Matin MM. A dual catalytic functionalized hollow mesoporous silica-based nanocarrier coated with bacteria-derived exopolysaccharides for targeted delivery of irinotecan to colorectal cancer cells. Int J Biol Macromol 2024; 259(Pt 1):129179.

[55]

Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51(13):5365-451.

[56]

Mohan A, Santhamoorthy M, Lee YC. Recent advances in the pH -responsive organic-inorganic mesoporous hybrid silica for targeted drug delivery. Eur Polym J 2024;206: 112783.

[57]

Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017; 46(19):6024-45.

[58]

Yu Q, Deng T, Lin FC, Zhang B, Zink JI. Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms. ACS Nano 2020; 14(5):5926-37.

[59]

Kazemzadeh P, Sayadi K, Toolabi A, Sayadi J, Zeraati M, Chauhan NPS, et al. Structure-property relationship for different mesoporous silica nanoparticles and its drug delivery applications: a review. Front Chem 2022; 10:823785.

[60]

Ramezanian S, Moghaddas J, Roghani-Mamaqani H, Rezamand A. Dual pH - and temperature-responsive poly(dimethylaminoethyl methacrylate)-coated mesoporous silica nanoparticles as a smart drug delivery system. Sci Rep 2023; 13(1):20194.

[61]

Wang SY, Pan YH, Qu YC, Chen XX, Shao N, Niu LY, et al. Activatable theranostic prodrug scaffold with tunable drug release rate for sequential photodynamic and chemotherapy. Smart Mol 2024; 2(1):e20230024.

[62]

Zhao Y, Liu S, Shi Z, Zhu H, Li M, Yu Q. Pathogen infection-responsive nanoplatform targeting macrophage endoplasmic reticulum for treating life-threatening systemic infection. Nano Res 2022; 15(7):6243-55.

[63]

Rincon MT, Cepeljnik T, Martin JC, Barak Y, Lamed R, Bayer EA, et al. A novel cell surface-anchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens. J Bacteriol 2007; 189(13):4774-83.

[64]

Israeli-Ruimy V, Bule P, Jindou S, Dassa B, Moraïs S, Borovok I, et al. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Sci Rep 2017; 7(1):42355.

[65]

Yin H, Chen Y, Feng Y, Feng L, Yu Q. Synthetic physical contact-remodeled rhizosphere microbiome for enhanced phytoremediation. J Hazard Mater 2022; 433:128828.

[66]

Ferrari M, Hameleers L, Stuart MCA, Oerlemans MMP, de Vos P, Jurak E, et al. Efficient isolation of membrane-associated exopolysaccharides of four commercial bifidobacterial strains. Carbohydr Polym 2022; 278:118913.

[67]

Yang M, Zhang Y, Ma Y, Yan X, Gong L, Zhang M, et al. Nanoparticle-based therapeutics of inflammatory bowel diseases: a narrative review of the current state and prospects. J Bio-X Res 2020; 03(04):157-73.

[68]

Nunes R, Neves JD, Sarmento B. Nanoparticles for the regulation of intestinal inflammation: opportunities and challenges. Nanomedicine 2019; 14(19):26312644.

[69]

Liu N, Yang C, Liang X, Cao K, Xie J, Luo Q, et al. Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain burden and improves olfactory dysfunction of APP/PS 1 mice by nasal delivery. J Nanobiotechnol 2022; 20(1):439.

[70]

Wei H, Geng W, Yang XY, Kuipers J, van der Mei HC, Busscher HJ. Activation of a passive, mesoporous silica nanoparticle layer through attachment of bacterially-derived carbon-quantum-dots for protection and functional enhancement of probiotics. Mater Today Bio 2022; 15:100293.

[71]

Liu S, Ji Y, Zhu H, Shi Z, Li M, Yu Q. Gallium-based metal-organic frameworks loaded with antimicrobial peptides for synergistic killing of drug-resistant bacteria. J Mater Chem B 2023; 11(43):10446-54.

[72]

Zhu YX, You Y, Chen Z, Xu D, Yue W, Ma X, et al. Inorganic nanosheet-shielded probiotics: a self-adaptable oral delivery system for intestinal disease treatment. Nano Lett 2023; 23(10):4683-92.

[73]

Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Nanoscale Adv 2021; 3(10):2699-709.

[74]

Garcia-Gonzalez N, Prete R, Battista N, Corsetti A. Adhesion properties of food-associated Lactobacillus plantarum strains on human intestinal epithelial cells and modulation of IL-8 release. Front Microbiol 2018; 9:2392.

[75]

Wang G, Gong H, Zou Y, Zhang H, Mao X. Bifidobacterium animalis subsp. Lactis PB200 improves intestinal barrier function and flora disturbance in mice with antibiotic-induced intestinal injury. Nutrients 2025; 17(10):1610.

[76]

Van Tassell ML, Miller MJ. Lactobacillus adhesion to mucus. Nutrients 2011; 3(5):613-36.

[77]

Kainulainen V, Reunanen J, Hiippala K, Guglielmetti S, Vesterlund S, Palva A, et al. BopA does not have a major role in the adhesion of Bifidobacterium bifidum to intestinal epithelial cells, extracellular matrix proteins, and mucus. Appl Environ Microbiol 2013; 79(22):6989-97.

[78]

Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, et al. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14(1):79.

[79]

Yi S, Zhang C, Yin P, Yu L, Tian F, Chen W, et al. Compositional and functional features of the intestinal lactobacilli associated with different long-term diet types. Food Funct 2023; 14(14):6570-81.

PDF (7990KB)

169

Accesses

0

Citation

Detail

Sections
Recommended

/