Critical quality attributes of lipid nanoparticles and in vivo fate

Jiaxing Di , Yuhong Xu , Tonglei Li

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) : 101092

PDF (1503KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) :101092 DOI: 10.1016/j.ajps.2025.101092
Review articles
research-article

Critical quality attributes of lipid nanoparticles and in vivo fate

Author information +
History +
PDF (1503KB)

Abstract

Lipid nanoparticles (LNPs) have emerged as versatile carriers for the delivery of genetic medicines and small-molecule drugs, offering desired benefits for therapeutic applications. Optimization of the treatment efficacy of nanocarriers necessitates a thorough understanding of the connection between pharmacokinetics and physicochemical properties. This review consolidates scientific efforts to elucidate how LNP's physicochemical attributes influence their in vivo fate, emphasizing particle size and shape, surface electric potential and ligand-binding chemistry. By examining the interplay between LNPs and biological barriers across various administration routes, this review provides insights into tailoring LNP properties for optimal delivery and reduced off-target effects. Recommendations for future research are provided to advance the study of LNP in vivo behaviors and offer a practical framework for optimizing in vivo performance through product design parameters.

Keywords

Lipid nanoparticles / Pharmacokinetics / Biodistribution / Formulation / Administration route

Cite this article

Download citation ▾
Jiaxing Di, Yuhong Xu, Tonglei Li. Critical quality attributes of lipid nanoparticles and in vivo fate. Asian Journal of Pharmaceutical Sciences, 2025, 20(6): 101092 DOI:10.1016/j.ajps.2025.101092

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Acknowledgments

Tonglei Li is thankful for the support of Allen Chao Endowment.

References

[1]

Raza K, Kumar P, Kumar N, Malik R. Pharmacokinetics and biodistribution of the nanoparticles. In:Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Woodhead Publishing; 2017. p. 165-86.

[2]

Su C, Liu Y, Li R, Wu W, Fawcett JP, Gu J. Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Delivery Rev 2019; 143:97-114.

[3]

Thi TTH, Suys EJ, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines (Basel) 2021; 9(4):359.

[4]

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11):16982-7015.

[5]

Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2022; 2(2):2100109.

[6]

Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Delivery Rev 2013; 65(1):36-48.

[7]

Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021; 6(12):1078-94.

[8]

Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís , del Pozo-Rodríguez A. Nanomedicines to deliver mRNA: state of the art and future perspectives. Nanomaterials 2020; 10(2):364.

[9]

Working P, Newman M, Huang S, Mayhew E, Vaage J, Lasic D. Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in Stealth® liposomes ( Doxil®). J Liposome Res 1994; 4(1):667-87.

[10]

Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simões S, Moreira JN. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res 2012; 45(7):1163-71.

[11]

Hafez I, Maurer N, Cullis P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 2001; 8(15):1188-96.

[12]

Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm 2021; 601:120586.

[13]

Wilhelm S, Tavares AJ, Dai Q, Ohta S, AudetJ, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1(5):1-12.

[14]

Di J, Wu K, Hou P, Corpstein CD, Xu Y, Li T. Multiphysics-informed pharmacokinetic modeling of systemic exposure of intramuscularly injected LNPs. Mol Pharmaceut 2023; 20(12):6162-8.

[15]

Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: a quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Delivery Rev 2023:114708.

[16]

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9):941-51.

[17]

Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacolog Rep 2012; 64(5):1020-37.

[18]

Cai Y, Qi J, Lu Y, He H, Wu W. The in vivo fate of polymeric micelles. Adv Drug Delivery Rev 2022; 188:114463.

[19]

Qi J, Zhuang J, Lu Y, Dong X, Zhao W, Wu W. Drug Discov. In vivo fate of lipid-based nanoparticles. Today 2017; 22(1):166-72.

[20]

Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Delivery Rev 2019; 143:3-21.

[21]

Yuan D, He H, Wu Y, Fan J, Cao Y. Physiologically based pharmacokinetic modeling of nanoparticles. J Pharm Sci 2019; 108(1):58-72.

[22]

Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WC. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Controlled Release 2016; 240:332-48.

[23]

Li S-D, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharmaceutics 2008; 5(4):496-504.

[24]

Shargel L., Yu A. Applied biopharmaceutics & pharmacokinetics: seventh edition 2015. Available from: https://akfarstfransiskusxaverius.ac.id/wp-content/uploads/2023/08/3_Applied-Biopharmaceutics-Pharmacokinetics-PDFDrive-.pdf. Accessed on: September 8, 2025.

[25]

Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad OC. Nanoparticles for targeted and temporally controlled drug delivery. In: Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery; 2012. p. 9-29.

[26]

Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol 2007; 25(10):1165-70.

[27]

Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020; 284:102261.

[28]

Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Delivery Rev 2009; 61(6):428-37.

[29]

Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res 2021; 11:471-97.

[30]

Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today 2020; 25(1):150-9.

[31]

Ball RL, Bajaj P, Whitehead KA. Oral delivery of siRNA lipid nanoparticles: fate in the GI tract. Sci Rep 2018; 8(1): 2178.

[32]

Lokugamage MP, Vanover D, Beyersdorf J, Hatit MZ, Rotolo L, Echeverri ES, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Eng 2021; 5(9):1059-68.

[33]

Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Delivery Rev 2019; 143:68-96.

[34]

Lv Y, Wu W, Corpstein CD, Li T, Lu Y. Biological and intracellular fates of drug nanocrystals through different delivery routes: recent development enabled by bioimaging and PK modeling. Adv Drug Delivery Rev 2022; 188:114466.

[35]

Ashford M, Fell J. Targeting drugs to the colon: delivery systems for oral administration. J Drug Targeting 1994; 2(3):241-57.

[36]

Crum MF, Trevaskis NL, Williams HD, Pouton CW, Porter CJ. A new in vitro lipid digestion-in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations. Pharm Res 2016; 33:970-82.

[37]

Hu X, Fan W, Yu Z, Lu Y, Qi J, Zhang J, et al. Evidence does not support absorption of intact solid lipid nanoparticles via oral delivery. Nanoscale 2016; 8(13):7024-35.

[38]

des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Controlled Release 2006; 116(1):1-27.

[39]

Kohli A, Alpar H. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. IntJ Pharm 2004; 275(1-2):13-17.

[40]

Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulationsopportunities and limitations. Drug Discov Today Technol 2012; 9(2):e87-95.

[41]

Sung J, Alghoul Z, Long D, Yang C, Merlin D. Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: a novel therapeutic solution to treat ulcerative colitis. Biomaterials 2022; 288:121707.

[42]

Sanders M. Inhalation therapy: an historical review. Prim Care Respirat J 2007; 16(2):71-81.

[43]

Yin B, Chan CKW, Liu S, Hong H, Wong SHD, Lee LKC, et al. Intrapulmonary cellular-level distribution of inhaled nanoparticles with defined functional groups and its correlations with protein corona and inflammatory response. ACS Nano 2019; 13(12):14048-69.

[44]

Yang W, Peters JI, Williams III RO. Inhaled nanoparticles-A current review. Int J Pharm 2008; 356(1-2):239-47.

[45]

Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7):823-39.

[46]

Li M, Al-Jamal KT, Kostarelos K, Reineke J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 2010; 4(11):6303-17.

[47]

Zhang H, Leal J, Soto MR, Smyth HD, Ghosh D. Aerosolizable lipid nanoparticles for pulmonary delivery of mRNA through design of experiments. Pharmaceutics 2020; 12(11):1042.

[48]

Liu J, Zheng A, Peng B, Xu Y, Zhang N. Size-dependent absorption through stratum corneum by drug-loaded liposomes. Pharm Res 2021; 38:1429-37.

[49]

Schramlova J, Blazek K, Bartackova M, Otova B, Mardesicova L, Zizkovský V, et al. Electron microscopic demonstration of the penetration of liposomes through skin. Folia Biol 1997; 43(4):165-9.

[50]

Katare OP, Raza K, Singh B, Dogra S. Novel drug delivery systems in topical treatment of psoriasis: rigors and vigors. Indian J Dermatol Venereol Leprol 2010; 76:612.

[51]

Wissing SA, Müller RH. Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm 2003; 254(1):65-8.

[52]

Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 2010; 27(7):247-59.

[53]

Alvarez-Román R, Naik A, Kalia Y, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Controll Rel 2004; 99(1):53-62.

[54]

Di J, Du Z, Wu K, Jin S, Wang X, Li T, et al. Biodistribution and non-linear gene expression of mRNA LNPs affected by delivery route and particle size. Pharm Res 2022; 39(1):105-14.

[55]

Zeng C, Zhang C, Walker PG, Dong Y. Formulation and delivery technologies for mRNA vaccines. Curr Top Microbiol Immunol 2022; 440:71-110.

[56]

Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Delivery Rev 2021; 170:83-112.

[57]

Rohner E, Yang R, Foo KS, Goedel A, Chien KR. Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022; 40(11):1586-600.

[58]

Erasmus JH, Archer J, Fuerte-Stone J, Khandhar AP, Voigt E, Granger B, et al. Intramuscular delivery of replicon RNA encoding ZIKV-117 human monoclonal antibody protects against Zika virus infection. Molecul Therapy-Meth Clin Development 2020; 18:402-14.

[59]

Patel S, Ryals RC, Weller KK, Pennesi ME, Sahay G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J Controlled Release 2019; 303:91-100.

[60]

Oussoren C, Zuidema J, Crommelin D, Storm G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection.: II. Influence of liposomal size, lipid composition and lipid dose. Biochim Biophys Acta 1997; 1328(2):261-72.

[61]

Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 2007; 46(30):5754-6.

[62]

Liu D, Mori A, Huang L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1992; 1104(1):95-101.

[63]

Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceutics 2008; 5(4):505-15.

[64]

He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010; 31(13):3657-66.

[65]

Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011; 32(13):3435-46.

[66]

Moghimi SM, Muir I, Illum L, Davis SS, Kolb-Bachofen V. Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1993; 1179(2):157-65.

[67]

Mahmoudi M, Landry MP, Moore A, Coreas R. The protein corona from nanomedicine to environmental science. Nat Rev Mater 2023:1-17.

[68]

Gessner A, Lieske A, Paulke BR, Müller RH. Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res 2003; 65A(3):319-26.

[69]

Camner P, Lundborg M, Låstbom L, Gerde P, Gross N, Jarstrand C. Experimental and calculated parameters on particle phagocytosis by alveolar macrophages. J Appl Physiol 2002; 92(6):2608-16.

[70]

Leroux J-C, De Jaeghere F, Anner B, Doelker E, Gurny R. An investigation on the role of plasma and serum opsonins on the evternalization of biodegradable poly (D, L-lactic acid) nanoparticles by human monocytes. Life Sci 1995; 57(7):695-703.

[71]

Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307(1):93-102.

[72]

Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Controlled Rel 2013; 172(3):782-94.

[73]

Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. IntJ Pharm 2002; 240(1-2):95-102.

[74]

Zhang JS, Liu F, Huang L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Delivery Rev 2005; 57(5):689-98.

[75]

Göppert TM, Müller RH. Plasma protein adsorption of tween 80-and poloxamer 188-stabilized solid lipid nanoparticles. J Drug Targeting 2003; 11(4):225-31.

[76]

Labarre D, Vauthier C, Chauvierre C, Petri B, Müller R, Chehimi MM. Interactions of blood proteins with poly (isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 2005; 26(24): 5075-5084.

[77]

Mueller RH, Wallis KH, Troester SD, Kreuter J. In vitro characterization of poly (methyl-methaerylate) nanoparticles and correlation to their in vivo fate. J Controlled Rel 1992; 20(3):237-46.

[78]

Norman M, Williams P, Illum L. Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer-coated microspheres. Biomaterials 1992; 13(12):841-9.

[79]

Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochimica et Biophys Acta (BBA)-Rev Biomembr 1992; 1113(2):171-99.

[80]

Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Controlled Rel 2000; 63(1-2):19-30.

[81]

Lu WL, Qi XR, Zhang Q, Li RY, Wang GL, Zhang R-J, et al. A PEGylated liposomal platform: pharmacokinetics, pharmacodynamics, and toxicity in mice using doxorubicin as a model drug. J Pharmacol Sci 2004; 95(3):381-9.

[82]

Bourdon O, Laville I, Carrez D, Croisy A, Fedel P, Kasselouri A, et al. Biodistribution of meta-tetra (hydroxyphenyl) chlorin incorporated into surface-modified nanocapsules in tumor-bearing mice. Photochem Photobiol Sci 2002; 1:709-14.

[83]

Müller R, Maaben S, Weyhers H, Mehnert W.Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Targeting 1996; 4(3):161-70.

[84]

Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 2008; 319(5863):627-30.

[85]

Dos Santos N, Allen C, Doppen A-M, Anantha M, Cox KA, Gallagher RC, et al. Influence of poly (ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta, Biomembr 2007; 1768(6):1367-77.

[86]

Heyes J, Hall K, Tailor V, Lenz R, MacLachlan I. Synthesis and characterization of novel poly (ethylene glycol)-lipid conjugates suitable for use in drug delivery. J Controlled Release 2006; 112(2):280-90.

[87]

Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, Van der Meer JW, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 2000; 292(3):1071-9.

[88]

Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Controlled Release 2006; 112(1):15-25.

[89]

Judge A, McClintock K, Phelps JR, MacLachlan I. Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol Ther 2006; 13(2):328-37.

[90]

Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007; 2(4):249-55.

[91]

Geng Y, Discher DE. Hydrolytic degradation of poly (ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc 2005; 127(37):12780-1.

[92]

Abdellatif AA, Alsowinea AF. Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnol Rev 2021; 10(1):1941-77.

[93]

Huang Y, Wang J, Jiang K, Chung EJ. Improving kidney targeting: the influence of nanoparticle physicochemical properties on kidney interactions. J Controlled Release 2021; 334:127-37.

[94]

Wu X, Guy RH. Applications of nanoparticles in topical drug delivery and in cosmetics. J Drug Deliv Sci Technol 2009; 19(6):371-84.

[95]

Rajendran L, Knölker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discovery 2010; 9(1):29-42.

[96]

Paunovska K, Da Silva Sanchez AJ, Sago CD, Gan Z, Lokugamage MP, Islam FZ, et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv Mater 2019; 31(14):1807748.

[97]

Xu X, Xia T. Recent advances in site-specific lipid nanoparticles for mRNA delivery. ACS Nanosci Au 2023; 3(3):192-203.

[98]

Kim M, Jeong M, Hur S, Cho Y, Park J, Jung H, et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci Adv 2021; 7(9):eabf4398.

[99]

Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem 2012; 124(34):8657-61.

[100]

Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proceed Nat Acad Sci 2007; 104(39):15549-54.

[101]

Di J, Xie F, Xu Y. When liposomes met antibodies: drug delivery and beyond. Adv Drug Delivery Rev 2020; 154:151-62.

[102]

Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, et al.Anti-HER2 immunoliposomes:enhanced efficacy attributable to targeted delivery. Clin Cancer Res 2002; 8(4):1172-81.

[103]

Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al.Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006; 66(13):6732-40.

[104]

Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005; 44(1):68-97.

[105]

Harding JA, Engbers CM, Newman MS, Goldstein NI, Zalipsky S. Immunogenicity and pharmacokinetic attributes of poly (ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta, Biomembr 1997; 1327(2):181-92.

[106]

Koning GA, Kamps JA, Scherphof GL. Interference of macrophages with immunotargeting of liposomes. J Liposome Res 2002; 12(1-2):107-19.

[107]

Anchordoquy T, Artzi N, Balyasnikova IV, Barenholz Y, La-Beck NM, Brenner JS, et al. Mechanisms and barriers in nanomedicine: progress in the field and future directions. ACS Nano 2024; 18(22):13983-99.

[108]

Wang T, Zhang D, Sun D, Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J Pharm Anal 2020; 10(3):221-32.

[109]

Helbok A, Decristoforo C, Dobrozemsky G, Rangger C, Diederen E, Stark B, et al. Radiolabeling of lipid-based nanoparticles for diagnostics and therapeutic applications: a comparison using different radiomsetals. J Liposome Res 2010; 20(3):219-27.

[110]

Cai Y, Ji X, Zhang Y, Liu C, Zhang Z, Lv Y, et al. Near-infrared fluorophores with absolute aggregation-caused quenching and negligible fluorescence re-illumination for in vivo bioimaging of nanocarriers. Aggregate 2023; 4(2):e277.

AI Summary AI Mindmap
PDF (1503KB)

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/