The strategies and advances of mRNA translation booster

Yingying Shi , Kedong Sun , Yilong Hu , Zeliang Lou , Yi Wang , Jian You

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) : 101090

PDF (3389KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) :101090 DOI: 10.1016/j.ajps.2025.101090
Review articles
research-article

The strategies and advances of mRNA translation booster

Author information +
History +
PDF (3389KB)

Abstract

The therapeutic efficacy and safety of mRNA-based drugs in immunological and nonimmunological applications are critically dependent on the translated protein yield, which requires precise modulation of mRNA expression kinetics. Among the factors influencing mRNA translation, immunogenicity and stability are pivotal in determining the longevity of protein production. Current optimization strategies have integrated (1) molecular engineering (e.g., modified nucleotides), (2) advanced delivery systems (e.g., lipid nanoparticles), and (3) adjuvant drug synergy. This review focuses on co-delivered adjuvant drugs and introduces the concept of "mRNA translation boosters" for the first time. mRNA translation boosters are classified as small-molecule compounds and macromolecular agents that improve translational fidelity through mechanisms including blockade of pattern recognition receptors, modulation of inflammatory cascades, facilitation of endosomal escape, and protection against enzymatic degradation. As clinically validated with COVID-19 mRNA vaccines, these boosters have now demonstrated expanded utility in gene editing therapies and protein replacement applications. This review addresses the immunological challenges encountered during mRNA transfection and translation while summarizing existing mRNA translation boosters that optimize protein expression kinetics. By establishing a mechanistic framework for booster selection and employment, this work provides translational guidance for advancing nucleic acid therapeutics towards their maximum clinical potential.

Keywords

mRNA expression / Immunogenicity / Translation boosters / Nucleic acid therapeutics

Cite this article

Download citation ▾
Yingying Shi, Kedong Sun, Yilong Hu, Zeliang Lou, Yi Wang, Jian You. The strategies and advances of mRNA translation booster. Asian Journal of Pharmaceutical Sciences, 2025, 20(6): 101090 DOI:10.1016/j.ajps.2025.101090

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare that there is no conflicts of interest.

Acknowledgments

This work was supported by the National Key R&D Program of China (2023YFC340200), National Natural Science Foundation of China (No. 82404520, No. 82273862, No. 824B2106), the China Postdoctoral Science Foundation (2024M752834), the China National Postdoctoral Program for Innovative Talents (BX20230321), and Leading Goose + "X" R&D research and development programme (2024C03088).

References

[1]

Aldali J, Meo SA, Al-Khlaiwi T. Adverse effects of Pfizer (BioNTech), Oxford-AstraZeneca (ChAdOx1 CoV-19), and Moderna COVID-19 Vaccines among the adult population in Saudi Arabia: a cross-sectional study. Vaccines-Basel 2023; 11(2):231.

[2]

Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur Rev Med Pharmaco 2021; 25(3):1663-9.

[3]

Tobaiqy M, MacLure K, Elkout H, Stewart D. Thrombotic adverse events reported for Moderna, Pfizer and Oxford-AstraZeneca COVID-19 vaccines:comparison of occurrence and clinical outcomes in the eudraVigilance database. Vaccines-Basel 2021; 9(11):1326.

[4]

Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 2024; 403(10432):1192-204.

[5]

Pascolo S. Nonreplicating synthetic mRNA vaccines: a journey through the European (Journal of Immunology) history. Eur J Immunol 2023; 53(7):e2249941.

[6]

Dolgin E. The tangled history of mRNA vaccines. Nature 2021; 597(7876):318-24.

[7]

Sergeeva OV, Koteliansky VE, Zatsepin TS. mRNA-based therapeutics-advances and perspectives. Biochemistry (Mosc) 2016; 81(7):709-22.

[8]

Liao ML, Dong YW, Somero GN. Thermal adaptation of mRNA secondary structure: stability versus lability. P Natl Acad Sci USA 2021; 118(45):e2113324118.

[9]

Lee J, Woodruff MC, Kim EH, Nam JH. Knife's edge: balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med 2023; 55(7):1305-13.

[10]

Matsumura T, Takano T, Takahashi Y. Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines. Int Immunol 2023; 35(5):213-20.

[11]

Johnson R. Illuminating mRNA modifications. Nat Chem Biol 2024; 20(2):131.

[12]

Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís , Del Pozo-Rodríguez A. Nanomedicines to deliver mRNA: state of the art and future perspectives. Nanomaterials-Basel 2020; 10(2):364.

[13]

Weng Y, Li C, Yang T, Hu B, Zhang M, Guo S, et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020; 40:107534.

[14]

Ibba ML, Ciccone G, Esposito CL, Catuogno S, Giangrande PH. Advances in mRNA non-viral delivery approaches. Adv Drug Deliver Rev 2021; 177:113930.

[15]

Tian Y, Deng Z, Yang P. mRNA vaccines: a novel weapon to control infectious diseases. Front Microbiol 2022; 13:1008684.

[16]

Zhang M, Hussain A, Yang H, Zhang J, Liang XJ, Huang Y. mRNA-based modalities for infectious disease management. Nano Res 2022; 16(1):672-91.

[17]

Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine - tumor immune microenvironment. Int Immunopharmacol 2022;113(Pt A):109367.

[18]

Ur Rehman A, Wang Z, Qin Q, Zhang X, Akhtar A, Liu H, et al. Enhancing antitumor immunity and achieving tumor eradication with IL11RA mRNA immunotherapy. Int Immunopharmacol 2024; 134:112205.

[19]

Sayers EJ, Peel SE, Schantz A, England RM, Beano M, Bates SM, et al. Endocytic profiling of cancer cell models reveals critical factors influencing LNP-mediated mRNA delivery and protein expression. Mol Ther 2019; 27(11):1950-62.

[20]

Rohner E, Yang R, Foo KS, Goedel A, Chien KR. Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022; 10(11):1586-600.

[21]

Bollu A, Peters A, Rentmeister A. Chemo-enzymatic modification of the $5^{\prime}$ cap to study mRNAs. Acc Chem Res 2022; 55(9):1249-61.

[22]

Chan SH, Whipple JM, Dai N, Kelley TM, Withers K, Tzertzinis G, et al. RNase H-based analysis of synthetic mRNA $5^{\prime}$ cap incorporation. RNA 2022; 28(8):1144-55.

[23]

Mraz M. 5'-UTR mRNA splicing determines CD20 levels. Blood 2023; 142(20):1676-8.

[24]

Grayeski PJ, Weidmann CA, Kumar J, Lackey L, Mustoe AM, Busan S, et al. Global 5'-UTR RNA structure regulates translation of a SERPINA 1 mRNA. Nucleic Acids Res 2022; 50(17):9689-704.

[25]

Trepotec Z, Aneja MK, Geiger J, Hasenpusch G, Plank C, Rudolph C. Maximizing the translational yield of mRNA therapeutics by minimizing $5^{\prime}$ -UTRs. Tissue Eng Pt A 2018; 25(1-2):69-79.

[26]

Dodbele S, Wilusz JE. Ending on a high note: downstream ORFs enhance mRNA translational output. EMBO J. 2020; 39(17):e105959.

[27]

Iwai H, Kimura Y, Honma M, Nakamoto K, Motosawa K, Atago T, et al. Position-specific nucleoside sugar modifications in mRNA ORF: enhancing translational function through complete chemical synthesis of mRNA. ChemRxiv 2024. doi:10.26434/chemrxiv-2024-bwpx6.

[28]

Navarro E, Mallén A, Hueso M. Dynamic variations of 3'UTR length reprogram the mRNA regulatory landscape. Biomedicines 2021; 9(11):1560.

[29]

Rasekhian M, Roohvand F, Habtemariam S, Marzbany M, Kazemimanesh M. The role of 3'UTR of RNA viruses on mRNA stability and translation enhancement. Mini-Rev Med Chem 2021; 21(16):2389-98.

[30]

Mayr C.What are 3' UTRs doing? CSH Perspect Biol 2019; 11(10):a034728.

[31]

Morgan M, Much C, DiGiacomo M, Azzi C, Ivanova I, Vitsios DM, et al. mRNA 3' uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 2017; 548(7667):347-51.

[32]

Passmore LA, Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Bio 2021; 23(2):93-106.

[33]

Schmidt C, Schnierle BS. Self-amplifying RNA vaccine candidates: alternative platforms for mRNA vaccine development. Pathogens 2023; 12(1):138.

[34]

Lundstrom K. Self-amplifying RNA viruses as RNA vaccines. Int J Mol Sci 2020; 21(14):5130.

[35]

Pourseif MM, Masoudi-Sobhanzadeh Y, Azari E, Parvizpour S, Barar J, Ansari R, et al. design, Self-amplifying mRNA vaccines: mode of action, development and optimization. Drug Discov Today 2022; 27(11):103341.

[36]

Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-based vaccine technology and its mode of action. Curr Top Microbiol 2022; 440:31-70.

[37]

Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther 2017; 26(2):446-55.

[38]

Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development. Vaccines 2021; 9(2):97.

[39]

Papukashvili D, Rcheulishvili N, Liu C, Ji Y, He Y, Wang PG. Self-amplifying RNA approach for protein replacement therapy. Int J Mol Sci 2022; 23(21):12884.

[40]

Tregoning JS, Stirling DC, Wang Z, Flight KE, Brown JC, Blakney AK, et al. Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines. Mol Ther Nucl Acids 2022; 31:29-42.

[41]

Chang YH, Lin MW, Chien MC, Ke GM, Wu IE, Lin RL, et al. Polyplex nanomicelle delivery of self-amplifying RNA vaccine. J Control Release 2021; 338:694-704.

[42]

Yıldız A, Răileanu C, Beissert T. Trans-amplifying RNA: a journey from alphavirus research to future vaccines. Viruses 2024; 16(4):503.

[43]

Lundstrom K. Trans-amplifying RNA hitting new grounds: gene regulation by microRNA. Mol Ther Nucl Acids 2024; 35(2):102191.

[44]

Lundstrom K. Trans-amplifying RNA: translational application in gene therapy. Mol Ther 2023; 31(6):1507-8

[45]

Perkovic M, Gawletta S, Hempel T, Brill S, Nett E, Sahin U, et al. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol Ther 2023; 31(6):1636-46.

[46]

Beissert T, Perkovic M, Vogel A, Erbar S, Walzer KC, Hempel T, et al. A trans-amplifying RNA vaccine strategy for induction of potent protective immunity. Mol Ther 2019; 28(1):119-28.

[47]

Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell 2018; 71(3):428-42.

[48]

Prats AC, David F, Diallo LH, Roussel E, Tatin F, Garmy-Susini B, et al. Circular RNA, the key for translation. Int J Mol Sci 2020; 21(22):8591.

[49]

Yesharim L, Mojbafan M, Abiri M. Hints from the cellular functions to the practical outlook of circular RNAs. Front Genet 2021; 12:679446.

[50]

Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS, Chakraborty C. Recent progress of circular RNAs in different types of human cancer: technological landscape, clinical opportunities and challenges (Review). Int J Oncol 2022; 60(5):56.

[51]

Bai Y, Liu D, He Q, Liu J, Mao Q, Liang Z. Research progress on circular RNA vaccines. Front Immunol 2023; 13:1091797.

[52]

He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Tar 2021; 6(1):185.

[53]

Ni L. Advances in mRNA-based cancer vaccines. Vaccines 2023; 11(10):1599.

[54]

Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. Wires Nanomed Nanobi 2023; 15(5):e1894.

[55]

Su LJ, Xu MX, Ji ZH, Zhu JQ, Yu MZ, Wang Y, et al. Delivery of mRNA for cancer therapy: progress and prospects. Nano Today 2023; 53:102013.

[56]

Sahu I, Haque AKMA, Weidensee B, Weinmann P, Kormann MSD. Recent developments in mRNA-based protein supplementation therapy to target lung diseases. Mol Ther 2019; 27(4):803-23.

[57]

Popovitz J, Sharma R, Hoshyar R, Soo Kim B, Murthy N, Lee K. Gene editing therapeutics based on mRNA delivery. Adv Drug Deliver Rev 2023; 200:115026.

[58]

Zabaleta N, Torella L, Weber ND, Gonzalez Aseguinolaza G. mRNA and gene editing: late breaking therapies in liver diseases. Hepatology 2022; 76(3):869-87.

[59]

Chen Q Zhang Y, Yin H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv Drug Deliver Rev 2020; 168:246-58.

[60]

Mukai H, Ogawa K, Kato N, Kawakami S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metab Pharmacok 2022; 44:100450.

[61]

Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol 2022; 40(6):840-54.

[62]

Tang R, Liu X, Wang W, Hua J, Xu J, Liang C, et al. Identification of the roles of a stemness index based on mRNA expression in the prognosis and metabolic reprograming of pancreatic ductal adenocarcinoma. Front Oncol 2021; 12(11):643465.

[63]

Ji R, Wu C, Yao J, Xu J, Lin J, Gu H, et al. IGF2BP2-meidated m6A modification of CSF2 reprograms MSC to promote gastric cancer progression. Cell Death Dis 2023; 14(10):693.

[64]

Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, et al. Messenger RNA delivery for tissue engineering and regenerative medicine applications. Tissue Eng Pt A 2018; 25(1-2):91-112.

[65]

Zarghampoor F, Azarpira N, Khatami SR, Behzad-Behbahani A, Foroughmand AM. Improved translation efficiency of therapeutic mRNA. Gene 2019; 707:231-8.

[66]

Shah M, Jaan S, Shehroz M, Sarfraz A, Asad K, Wara TU, et al. Deciphering the immunogenicity of monkeypox proteins for designing the potential mRNA vaccine. ACS Omega 2023; 8(45):43341-55.

[67]

Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med 2023; 55(10):2085-96.

[68]

Hassett KJ, Higgins J, Woods A, Levy B, Xia Y, Hsiao CJ, et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J Control Release 2021; 335:237-46.

[69]

Han G, Noh D, Lee H, Lee S, Kim S, Yoon HY, et al. Advances in mRNA therapeutics for cancer immunotherapy: from modification to delivery. Adv Drug Deliver Rev 2023; 199:114973.

[70]

Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2018; 76(2):301-28.

[71]

Beck JD, Reidenbach D, Salomon N, Sahin U, Türeci Ö, Vormehr M, et al. mRNA therapeutics in cancer immunotherapy. Mol Cancer 2021; 20(1):69.

[72]

Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2019; 76(2):301-28.

[73]

Al-Dury S, Waldenström J, Ringlander J, Einarsdottir S, Andersson M, Hamah Saed H, et al. Catch-up antibody responses and hybrid immunity in mRNA vaccinated patients at risk of severe COVID-19. Infect Dis-nor 2023; 55(10):744-50.

[74]

Ju HJ, Lee JY, Han JH, Lee JH, Bae JM, Lee S. Risk of autoimmune skin and connective tissue disorders after mRNA-based COVID-19 vaccination. J Am Acad Dermatol 2023; 89(4):685-93.

[75]

Świerkot J, Madej M, Szmyrka M, Korman L, Sokolik R, Andrasiak I, et al. The risk of autoimmunity development following mRNA COVID-19 vaccination. Viruses 2022; 14(12):2655.

[76]

Vlatkovic I. Non-immunotherapy application of LNP-mRNA: maximizing efficacy and safety. Biomedicines 2021; 9(5):530.

[77]

Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, et al. The dual role of the innate immune system in the effectiveness of mRNA therapeutics. Int J Mol Sci 2023; 24(19):14820.

[78]

Baiersdörfer M, Boros G, Muramatsu H, Mahiny A, Vlatkovic I, Sahin U, et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucl Acids 2019; 15:26-35.

[79]

Coll De Peña A, Li N, Vaduva M, Bwanali L, Tripathi A. A microfluidic electrophoretic dual dynamic staining method for the identification and relative quantitation of dsRNA contaminants in mRNA vaccines. Analyst 2023; 148(16):3758-67.

[80]

Tatematsu M, Funami K, Seya T, Matsumoto M. Extracellular RNA sensing by pattern recognition receptors. J Innate Immun 2018; 10(5-6):398-406.

[81]

Zhu S, Wang G, Lei X, Flavell RA. Mex3B: a coreceptor to present dsRNA to TLR3. Cell Res 2001; 26(4):391-2.

[82]

Kim D, Chen R, Sheu M, Kim N, Kim S, Islam N, et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat Commun 2019; 10(1):2811.

[83]

Alexopoulou L, Czopik Holt A, Medzhitov R, Flavell RA.Recognition of double-stranded RNA and activation of NF- $\kappa$ B by Toll-like receptor 3. Nature 2001; 413:732738.

[84]

Suresh MV, Thomas B, Machado-Aranda D, Dolgachev VA, Kumar Ramakrishnan S, Talarico N, et al. Double-stranded RNA interacts with toll-like receptor 3 in driving the acute inflammatory response following lung contusion. Crit Care Med 2016; 44(11):e1054-e66.

[85]

Jovasevic V, Wood EM, Cicvaric A, Zhang H, Petrovic Z, Carboncino A, et al. Formation of memory assemblies through the DNA-sensing TLR9 pathway. Nature 2024; 628(8006):145-53.

[86]

Lee EY, Zhang C, Di Domizio J, Jin F, Connell W, Hung M, et al. Helical antimicrobial peptides assemble into protofibril scaffolds that present ordered dsDNA to TLR9. Nat Commun 2019; 10(1):1012.

[87]

Dempsey LA. New role for TLR9. Nat Immunol 2024; 25(5):719.

[88]

Kawai T, Ikegawa M, Ori D, Akira S. Decoding toll-like receptors: recent insights and perspectives in innate immunity. Immunity 2024; 57(4):649-73.

[89]

Zhang Z, Ohto U, Shimizu T. Toward a structural understanding of nucleic acid-sensing toll-like receptors in the innate immune system. FEBS Lett 2017; 591(20):3167-81.

[90]

Ke PY. Crosstalk between autophagy and RLR signaling. Cells 2023; 12(6):956.

[91]

Asdonk T, Steinmetz M, Krogmann A, Ströcker C, Lahrmann C, Motz I, et al. MDA-5 activation by cytoplasmic double-stranded RNA impairs endothelial function and aggravates atherosclerosis. J Cell Mol Med 2016; 20(9):1696-705.

[92]

Nakata M, Shimada M, Narita-Kinjo I, Nagawa D, Kitayama K, Hamadate M, et al. PolyIC induces retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5 and modulates inflammation in podocytes. In Vivo (Brooklyn) 2021; 35(1):147-53.

[93]

Batool M, Kim MS, Choi S. Structural insights into the distinctive RNA recognition and therapeutic potentials of RIG-I-like receptors. Med Res Rev 2021; 42(1):399-425.

[94]

Jia J, Fu J, Tang H. Activation and evasion of RLR signaling by DNA virus infection. Front Microbiol 2021; 12:804511.

[95]

Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Front Immunol 2022; 13:1065211.

[96]

Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23(10):635-54.

[97]

Lüdke D, Yan Q Rohmann PFW, Wiermer M. NLR we there yet? Nucleocytoplasmic coordination of NLR-mediated immunity. New Phytol 2022; 236(1):24-42.

[98]

Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S. TLRs/NLRs: shaping the landscape of host immunity. Int Rev Immunol 2017; 37(1):3-19.

[99]

Wicherska-Pawłowska K, Wróbel T, Rybka J. Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. Int J Mol Sci 2021; 22(24):13397.

[100]

Bracci L, La Sorsa V, Belardelli F, Proietti E. Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Rev Vaccines 2008; 7(3):373-81.

[101]

McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15(2):87-103.

[102]

Li XL, Hassel BA. Involvement of proteasomes in gene induction by interferon and double-stranded RNA. Cytokine 2001; 14(5):247-52.

[103]

Dodington DW, Desai HR, Woo M. JAK/STAT emerging players in metabolism. Trends Endocrin Met 2018; 29(1):55-65.

[104]

Koike A, Tsujinaka K, Fujimori K. Statins attenuate antiviral IFN- $\beta$ and ISG expression via inhibition of IRF3 and JAK/STAT signaling in poly(I:c)-treated hyperlipidemic mice and macrophages. FEBS J. 2021; 288(14):4249-66.

[105]

Gargan S, Ahmed S, Mahony R, Bannan C, Napoletano S, O'Farrelly C, et al. HIV-1 promotes the degradation of components of the type 1 IFN JAK/STAT pathway and blocks anti-viral ISG induction. EBioMedicine 2018; 30:203-16.

[106]

Alphonse N, Dickenson RE, Odendall C. Interferons: tug of war between bacteria and their host. Front Cell Infect Mi 2021; 11:624094.

[107]

Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14(4):778-809.

[108]

Okumura F, Okumura AJ, Uematsu K, Hatakeyama S, Zhang DE, Kamura T. Activation of double-stranded RNA-activated protein kinase (PKR) by interferon-stimulated gene 15 (ISG15) modification down-regulates protein translation. J Biol Chem 2013; 288(4):2839-47.

[109]

Chaumont L, Collet B, Boudinot P. Double-stranded RNA-dependent protein kinase (PKR) in antiviral defence in fish and mammals. Dev Comp Immunol 2023; 145:104732.

[110]

Dabo S, Meurs EF. dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection. Viruses 2012; 4(11):2598-635.

[111]

Balachandran, Roberts PC, Brown LE, Truong, et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 2000; 13(1):129-41.

[112]

Hu J, Wang X, Xing Y, Rong E, Ning M, Smith J, et al. Origin and development of oligoadenylate synthetase immune system. BMC Evol Evol 2018; 18(1):201.

[113]

Li Y, Banerjee S, Wang Y, Goldstein SA, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. P Natl Acad Sci USA 2016; 113(8):2241-6.

[114]

Wang Y, Holleufer A, Gad HH, Hartmann R. Length dependent activation of OAS proteins by dsRNA. Cytokine 2020; 126:154867.

[115]

Sarkar SN, Harioudh MK, Shao L, Perez J, Ghosh A. The many faces of oligoadenylate synthetases. J Interf Cytok Res 2023; 43(11):487-94.

[116]

Herbert A. ADAR and immune silencing in cancer. Trends Cancer 2019; 5(5):272-82.

[117]

Rajendren S, Manning AC, Al-Awadi H, Yamada K, Takagi Y, Hundley HA. A protein-protein interaction underlies the molecular basis for substrate recognition by an adenosine-to-inosine RNA-editing enzyme. Nucleic Acids Res 2018; 46(18):9647-59.

[118]

Mei Y, Wang X. RNA modification in mRNA cancer vaccines. Clin Exp Med 2023; 23(6):1917-31.

[119]

Nitika N, Wei J, Hui A-M. The delivery of mRNA vaccines for therapeutics. Life-Basel 2022; 12(8):1254.

[120]

Li X, Guo X, Hu M, Cai R, Chen C. Optimal delivery strategies for nanoparticle-mediated mRNA delivery. J Mater Chem B 2023; 11(10):2063-77.

[121]

Randall AM, Sarah YN, Jordan JG, Jose Luis S, Anthony DT. Targeting strategies for mRNA delivery. Bioconjug Chem 2022; 35(4):453-6.

[122]

Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol Ther 2017; 26(1):45-55.

[123]

Pan L, Zhang L, Deng W, Lou J, Gao X, Lou X, et al. Spleen-selective co-delivery of mRNA and TLR4 agonist-loaded LNPs for synergistic immunostimulation and Th1 immune responses. J Control Release 2023; 357:133-48.

[124]

Zhang H, Zhang L, Lin A, Xu C, Li Z, Liu K, et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 2023; 621(7978):396-403.

[125]

Gong H, Wen J, Luo R, Feng Y, Guo J, Fu H, et al. Integrated mRNA sequence optimization using deep learning. Brief Bioinf 2023; 24(1):bbad001.

[126]

Macmanes MD. On the optimal trimming of high-throughput mRNA sequence data. Front Genet 2014; 5:13.

[127]

Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 2008; 16(11):1833-40.

[128]

Moradian H, Roch T, Lendlein A, Gossen M. mRNA transfection-induced activation of primary human monocytes and macrophages: dependence on carrier system and nucleotide modification. Sci Rep-UK 2020; 10(1):4181.

[129]

Linder B, Jaffrey SR. Discovering and mapping the modified nucleotides that comprise the epitranscriptome of mRNA. CSH Perspect Biol 2019; 11(6):a032201.

[130]

Tardu M, Jones JD, Kennedy RT, Lin Q, Koutmou KS. Identification and quantification of modified nucleosides in saccharomyces cerevisiae mRNAs. ACS Chem Biol 2019; 14(7):1403-9.

[131]

Bajaj T. Introducing chemically modified nucleotides to improve mRNA-based therapeutics. Biophysical J 2021; 120(3):136a.

[132]

Freyn AW, Ramos da Silva J, Rosado VC, Bliss CM, Pine M, Mui BL, et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol Ther 2020; 28(7):1569-84.

[133]

Provine NM, Klenerman P. Adenovirus vector and mRNA vaccines: mechanisms regulating their immunogenicity. Eur J Immunol 2022; 53(6):e2250022.

[134]

Narasipura EA, Fenton OS. Advances in non-viral mRNA delivery to the spleen. Biomater Sci 2024; 12(12):3027-44.

[135]

Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 2017; 24(3):133-43.

[136]

Giuliani E, Piovan C, Bossi S, Corna S, Scavullo C, Pema M, et al. Purification of large scale mRNA encoding ZFN nucleases by dHPLC technology. Mol Ther 2016; 24:S53-4.

[137]

Linares-Fernández S, Moreno J, Lambert E, Mercier-Gouy P, Vachez L, Verrier B, et al. Combining an optimized mRNA template with a double purification process allows strong expression of in vitro transcribed mRNA. Mol Ther Nucl Acids 2021; 26:945-56.

[138]

Ross D, Altmann M. A fast protocol for purification of translating mRNAs. Methods 2016; 107:57-62.

[139]

Nestorova GG, Hasenstein K, Nguyen N, DeCoster MA, Crews ND. Lab-on-a-chip mRNA purification and reverse transcription via a solid-phase gene extraction technique. Lab Chip 2017; 17(6):1128-36.

[140]

Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 2011; 39(21):e142.

[141]

Sausen DG, Reed KM, Bhutta MS, Gallo ES, Borenstein R. Evasion of the host immune response by betaherpesviruses. Int J Mol Sci 2021; 22(14):7503.

[142]

Bhat R, Almajhdi FN. Induction of immune responses and immune evasion by human bocavirus. Int Arch Allergy Immunol 2021; 182(8):728-35.

[143]

Hahm B. Special issue "viral evasion or suppression of host immunity". Viruses 2020; 12(6):656.

[144]

Zhang Y, Ma R, Wang Y, Sun W, Yang Z, Han M, et al. Viruses run: the evasion mechanisms of the antiviral innate immunity by hantavirus. Front Microbiol 2021; 12:759198.

[145]

Devasthanam AS. Mechanisms underlying the inhibition of interferon signaling by viruses. Virulence 2014; 5(2):270-7.

[146]

Markiewicz L, Drazkowska K, Sikorski PJ. Tricks and threats of RNA viruses - towards understanding the fate of viral RNA. RNA Biol 2021; 18(5):669-87.

[147]

Gong SC, Lai CF, Esteban M. Vaccinia virus induces cell fusion at acid pH and this activity is mediated by the N -terminus of the $14-\mathrm{kDa}$ virus envelope protein. Virology 1990; 178(1):81-91.

[148]

Buller RM, Palumbo GJ. Poxvirus pathogenesis. Microbiol Rev 1991; 55(1):80-122.

[149]

Harrison SC, Alberts B, Ehrenfeld E, Enquist L, Fineberg H, McKnight SL, et al. Discovery of antivirals against smallpox. Proc Natl Acad Sci USA 2004; 101(31):11178-92.

[150]

Bednarczyk M, Peters JK, Kasprzyk R, Starek J, Warminski M, Spiewla T, et al. Fluorescence-based activity screening assay reveals small molecule inhibitors of vaccinia virus mRNA decapping enzyme D9. ACS Chem Biol 2022; 17(6):1460-71.

[151]

Maciej VD, Chakrabarti S. One enzyme, many substrates: how the vaccinia virus enzyme D9 decaps host and viral mRNAs alike. Structure 2022; 30(5):653-4.

[152]

Peters JK, Tibble RW, Warminski M, Jemielity J, Gross JD. Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis. Structure 2022; 30(5):721-32.

[153]

Valentine R, Smith GL. Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J Gen Virol 2010; 91(Pt 9): 2221-2229.

[154]

Haller SL, Park C, Bruneau RC, Megawati D, Zhang C, Vipat S, et al. Molecular basis for the host range function of the poxvirus PKR inhibitor E3. bioRxiv 2024 [Preprint]. doi:10.1101/2024.05.16.594589.

[155]

Szczerba M, Subramanian S, Trainor K, McCaughan M, Kibler KV, Jacobs BL. Small hero with great powers: vaccinia virus E3 protein and evasion of the ttype I IFN response. Biomedicines 2022; 10(2):235.

[156]

Park C, Peng C, Rahman MJ, Haller SL, Tazi L, Brennan G, et al. Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLoS Pathog 2021; 17(1):e1009183.

[157]

Cao J, Varga J, Deschambault Y. Poxvirus encoded eIF 2 a homolog, K 3 family proteins, is a key determinant of poxvirus host species specificity. Virology 2019; 541:101-12.

[158]

Bravo Cruz AG, Shisler JL. Vaccinia virus K 1 ankyrin repeat protein inhibits NF- $\kappa$ b activation by preventing RelA acetylation. J Gen Virol 2016; 97(10):2691-702.

[159]

Ember SWJ, Ren H, Ferguson BJ, Smith GL. Vaccinia virus protein C 4 inhibits NF- $\kappa$ b activation and promotes virus virulence. J Gen Virol 2012; 93(Pt 10):2098-108.

[160]

Lu Y, Stuart JH, Talbot-Cooper C, Agrawal-Singh S, Huntly B, Smid AI, et al. Histone deacetylase 4 promotes type I interferon signaling, restricts DNA viruses, and is degraded via vaccinia virus protein C6. Proc Natl Acad Sci USA 2019; 116(24):11997-2006.

[161]

Talbot-Cooper C, Lu Y, Stewart J, Smith G. Inhibition of IFN-gamma signalling by vaccinia virus protein C6: a multi-functional interferon antagonist. Access Microbio 2019; 1(1A).

[162]

Smith GL. Vaccinia virus protein C6: a multifunctional interferon antagonist. Adv Exp Med Biol 2018; 1052:1-7.

[163]

Ahmed CMI, Burkhart MA, Subramaniam PS, Mujtaba MG, Johnson HM. Peptide mimetics of gamma interferon possess antiviral properties against vaccinia virus and other viruses in the presence of poxvirus B8R protein. J Virol 2005; 79(9):5632-9.

[164]

Vancová I, La Bonnardiere C, Kontsek P. Vaccinia virus protein B18R inhibits the activity and cellular binding of the novel type interferon-delta. J Gen Virol 1998; 79(Pt 7):1647-9.

[165]

Kim YG, Baltabekova AZ, Zhiyenbay EE, Aksambayeva AS, Shagyrova ZS, Khannanov R, et al. Recombinant vaccinia virus-coded interferon inhibitor B18R: expression, refolding and a use in a mammalian expression system with a RNA-vector. PLoS ONE 2017; 12(12):e0189308.

[166]

Colamonici OR, Domanski P, Sweitzer SM, Larner A, Buller RM, et al. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 1995; 270(27):15974-8.

[167]

Michel T, Golombek S, Steinle H, Hann L, Velic A, Macek B, et al. Efficient reduction of synthetic mRNA induced immune activation by simultaneous delivery of B18R encoding mRNA. J Biol Eng 2019; 13:40.

[168]

Poleganov MA, Eminli S, Beissert T, Herz S, Moon JI, Goldmann J, et al. Efficient reprogramming of human fibroblasts and blood-derived endothelial progenitor cells using nonmodified RNA for reprogramming and immune evasion. Hum Gene Ther 2015; 26(11):751-66.

[169]

Drews K, Tavernier G, Demeester J, Lehrach H, De Smedt SC, Rejman J, et al. The cytotoxic and immunogenic hurdles associated with non-viral mRNA-mediated reprogramming of human fibroblasts. Biomaterials 2012; 33(16):4059-68.

[170]

Awe JP, Crespo AV, Li Y, Kiledjian M, Byrne JA. BAY 11 enhances OCT4 synthetic mRNA expression in adult human skin cells. Stem Cell Res Ther 2013; 4(1):15.

[171]

Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7(5):618-30.

[172]

Beissert T, Koste L, Perkovic M, Walzer KC, Erbar S, Selmi A, et al. Improvement of in vivo expression of genes delivered by self-amplifying RNA using vaccinia virus immune evasion proteins. Hum Gene Ther 2017; 28(12):1138-46.

[173]

Fu X, Rivera A, Tao L, Zhang X. Incorporation of the B18R gene of vaccinia virus into an oncolytic herpes simplex virus improves antitumor activity. Mol Ther 2012; 20(10):1871-81.

[174]

Fritz-French C, Shawahna R, Ward JE, Maroun LE, Tyor WR. The recombinant vaccinia virus gene product, B18R, neutralizes interferon alpha and alleviates histopathological complications in an HIV encephalitis mouse model. J Interf Cytok Res 2014; 34(7):510-17.

[175]

Xue Y, Zhang Y, Zhong Y, Du S, Hou X, Li W, et al. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat Commun 2024; 15(1):739.

[176]

Hao W, Wang L, Li S. Roles of the non-structural proteins of influenza A virus. Pathogens 2020; 9(10):812.

[177]

Murayama R, Harada Y, Shibata T, Kuroda K, Hayakawa S, Shimizu K, et al. Influenza A virus non-structural protein 1 (NS1) interacts with cellular multifunctional protein nucleolin during infection. Biochem Biophy Res Co 2007; 362(4):880-5.

[178]

Han CW, Jeong MS, Jang SB.Structure and function of the influenza A virus non-structural protein 1. J Microbiol Biotechn 2019; 29(8):1184-92.

[179]

Kim HJ, Han CW, Jeong MS, Jang SB. Cryo-EM structure of Influenza A virus NS1 and antiviral protein kinase PKR complex. Biochem Bioph Res Co 2024; 706:149728.

[180]

Lamotte LA, Tafforeau L. How Influenza A virus NS1 deals with the ubiquitin system to evade innate immunity. Viruses 2021; 13(11):2309.

[181]

Kyle KLP, Yi L, Shun Hui S. Non-linear enhancement of mRNA delivery efficiencies by influenza A derived NS1 protein engendering host gene inhibition property. Biomaterials 2017; 133:29-36.

[182]

Liu Y, Chia ZH, Liew JNMH, Or SM, Phua KKL.Modulation of mRNA translation and cell viability by Influenza A virus derived nonstructural protein 1. Nucleic Acid Ther 2018; 28(3):200-8.

[183]

Liu Y, Chin JM, Choo EL, Phua KKL. Messenger RNA translation enhancement by immune evasion proteins: a comparative study between EKB (vaccinia virus) and NS1 (influenza A virus). Sci Rep 2019; 9(1):11972.

[184]

Wang P, Logeart-Avramoglou D, Petite H, Goncalves C, Midoux P, Perche F, et al. Co-delivery of NS1 and BMP2 mRNAs to murine pluripotent stem cells leads to enhanced BMP-2 expression and osteogenic differentiation. Acta Biomater 2020; 108:337-46.

[185]

Nassar MS, Bakhrebah MA, Meo SA, Alsuabeyl MS, Zaher WA. Global seasonal occurrence of middle east respiratory syndrome coronavirus (MERS-CoV) infection. Eur Rev Med Pharmaco 2018; 22(12):3913-8.

[186]

Nassar MS, Bakhrebah MA, Meo SA, Alsuabeyl MS, Zaher WA. Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection: epidemiology, pathogenesis and clinical characteristics. Eur Rev Med Pharmaco 2018; 22(15):4956-61.

[187]

Li YH, Hu CY, Wu NP, Yao H-P, Li LJ. Molecular characteristics, functions, and related pathogenicity of MERS-CoV proteins. Engineering 2019; 5(5):940-7.

[188]

Blakney AK, McKay PF, Bouton CR, Hu K, Samnuan K, Shattock RJ. Innate inhibiting proteins enhance expression and immunogenicity of self-amplifying RNA. Mol Ther 2020; 29(3):1174-85.

[189]

Swamy MA, Malhotra B, Reddy PVJ, Kumar N, Tiwari JK, Gupta ML. Distribution and trends of human parainfluenza viruses in hospitalised children. Indian J Pediatr 2016; 83(10):1109-13.

[190]

Branche AR, Falsey AR. Parainfluenza virus infection. Semin Resp Crit Care 2016; 37(4):538-54.

[191]

Bose ME, Shrivastava S, He J, Nelson MI, Bera J, Fedorova N, et al. Sequencing and analysis of globally obtained human parainfluenza viruses 1 and 3 genomes. PLoS ONE 2019; 14(7):e0220057.

[192]

Yea C, Cheung R, Collins C, Adachi D, Nishikawa J, Tellier R. The complete sequence of a human parainfluenzavirus 4 genome. Viruses 2009; 1(1):26-41.

[193]

Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, Park GS, et al. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS 5 as an interferon antagonist. J Virol 2005; 79(20):12828-39.

[194]

Zhai A, Qian J, Kao W, Li A, Li Y, He J, et al. Borna disease virus encoded phosphoprotein inhibits host innate immunity by regulating miR-155. Antivir Res 2013; 98(1):66-75.

[195]

Zhu YY, Zou XQ, Bao HF, Sun P, Ma XQ, Liu ZX, et al. Insertion site of FLAG on foot-and-mouth disease virus VP1 G-H loop affects immunogenicity of FLAG. J Integr Agr 2018; 17(7):1655-66.

[196]

Breda L, Ghiaccio V, Tanaka N, Jarocha D, Ikawa Y, Abdulmalik O, et al. Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies. Mol Ther 2021; 29(4):1625-38.

[197]

Machida S, Depierre D, Chen HC, Thenin-Houssier S, Petitjean G, Doyen CM, et al. Exploring histone loading on HIV DNA reveals a dynamic nucleosome positioning between unintegrated and integrated viral genome. Proc Natl Acad Sci USA 2020; 117(12):6822-30.

[198]

Ryerson MR, Shisler JL. Characterizing the effects of insertion of a 5.2 kb region of a VACV genome, which contains known immune evasion genes, on MVA immunogenicity. Virus Res 2018; 246:55-64.

[199]

Zheng Y, Deng J, Han L, Zhuang MW, Xu Y, Zhang J, et al. SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules. Signal Transduct Tar 2022; 7(1):22.

[200]

Fung SY, Siu KL, Lin H, Yeung ML, Jin DY. SARS-CoV-2 main protease suppresses type I interferon production by preventing nuclear translocation of phosphorylated IRF3. Int J Biol Sci 2021; 17(6):1547-54.

[201]

Marco L, Beatrice M, Francesca M-M, Valeria S, Antonio M, Giulia M, et al. Inhibition of the SARS-CoV-2 non-structural protein 5 (NSP5) protease by nitrosocarbonyl-bases small molecules. ACS Omega 2024; 9(40):41599-615.

[202]

Davidson EA. RNA Interference Technology: From Basic Science to Drug Development. Shock; 2005.

[203]

Shan G. RNA interference as a gene knockdown technique. Int J Biochem Cell Biol 2009; 42(8):1243-51.

[204]

Wang Y. Delivery systems for RNA interference therapy: current technologies and limitations. Curr Gene Ther 2020; 20(5):356-72.

[205]

Angel M, Yanik MF. Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins. PLoS ONE 2010; 5(7):e11756.

[206]

Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 2012; 151(3):547-58.

[207]

Essandoh K, Li Y, Huo J, Fan GC. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock 2016; 46(2):122-31.

[208]

Korostynski M, Morga R, Piechota M, Hoinkis D, Golda S, Dziedzic T, et al. Inflammatory responses induced by the rupture of intracranial aneurysms are modulated by miRNAs. Mol Neurobiol 2019; 57(2):988-96.

[209]

Grogg MW, Braydich-Stolle LK, Maurer-Gardner EI, Hill NT, Sakaram S, Kadakia MP, et al. Modulation of miRNA-155 alters manganese nanoparticle-induced inflammatory response. Toxicol Res-UK 2016; 5(6):1733-43.

[210]

Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Bio 2016; 17:205-11.

[211]

Liu CX, Li X, Nan F, Jiang S, Gao X, Guo SK, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 2019; 177(4):865-80.

[212]

Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N, Anderson DG. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell 2019; 74(3):508-20.

[213]

Liu CX, Guo SK, Nan F, Xu YF, Yang L, Chen LL. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol Cell 2021; 82(2):420-34.

[214]

Guo SK, Liu CX, Xu YF, Wang X, Nan F, Huang Y, et al. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis. Nat Biotechnol 2024; 43(2):236-46.

[215]

Abrams MT, Koser ML, Seitzer J, Williams SC, DiPietro MA, Wang W, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther 2016; 18(1):171-80.

[216]

Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 2013; 369(9):819-29.

[217]

Elewa YHA, Masum MA, Mohamed SKA, Islam MR, Nakamura T, Ichii O, et al. The ameliorative effect of dexamethasone on the development of autoimmune lung injury and mediastinal fat-associated lymphoid clusters in an autoimmune disease mouse model. Int J Mol Sci 2022; 23(8):4449.

[218]

Huang C, Zhang Z, Gu J, Li D, Gao S, Zhang R, et al. Combined therapy of experimental autoimmune uveitis by a dual-drug nanocomposite formulation with berberine and dexamethasone. Int J Nanomed 2023; 18:4347-63.

[219]

Northrup L, Griffin JD, Christopher MA, Antunez LR, Hartwell BL, Pickens CJ, et al. Co-delivery of autoantigen and dexamethasone in incomplete Freund's adjuvant ameliorates experimental autoimmune encephalomyelitis. J Control Release 2017; 266:156-65.

[220]

Jeha S, Crews KR, Pei D, Peyton M, Panetta JC, Ribeiro RC, et al. Phase 1 study of bendamustine in combination with clofarabine, etoposide, and dexamethasone in pediatric patients with relapsed or refractory hematologic malignancies. Cancer 2021; 127(12):2074-82.

[221]

Sakaguchi H, Matsumoto K, Narita K, Hamada M, Kataoka S, Miyagawa N, et al. Dexamethasone palmitate for engraftment syndrome is associated with favorable transplant outcome for children with hematological malignancy. Bone Marrow Transpl 2015; 51(11):1540-2.

[222]

Lorusso V. Management of chemotherapy-induced nausea and vomiting by risk profile: role of netupitant/palonosetron. Ther Clin Risk Manag 2016; 12:917-25.

[223]

Ohto T, Konishi M, Tanaka H, Onomoto K, Yoneyama M, Nakai Y, et al. Inhibition of the inflammatory pathway enhances both the in vitro and in vivo transfection activity of exogenous in vitro-transcribed mRNAs delivered by lipid nanoparticles. Biol Pharm Bull 2019; 42(2):299-302.

[224]

Chen S, Zaifman J, Kulkarni JA, Zhigaltsev IV, Tam YK, Ciufolini MA, et al. Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids. J Control Release 2018; 286:46-54.

[225]

Davies N, Hovdal D, Edmunds N, Nordberg P, Dahlén A, Dabkowska A, et al. Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein. Mol Ther Nucl Acids 2021; 24:369-84.

[226]

Zhang H, Han X, Alameh M-G, Shepherd SJ, Padilla MS, Xue L, et al. Rational design of anti-inflammatory lipid nanoparticles for mRNA delivery. J Biomed Mater Res A 2022; 110(5):1101-8.

[227]

Antony JS, Birrer P, Bohnert C, Zimmerli S, Hillmann P, Schaffhauser H, et al. Local application of engineered insulin-like growth factor I mRNA demonstrates regenerative therapeutic potential in vivo. Mol Ther Nucl Acids 2023; 34:102055.

[228]

Hwang J, Seo Y, Jeong D, Ning X, Wiraja C, Yang L, et al. Monitoring wound healing with topically applied optical nanoFlare mRNA nanosensors. Adv Sci 2022; 9(18):e210483.

[229]

Zhong Z, McCafferty S, Opsomer L, Wang H, Huysmans H, De Temmerman J, et al. Corticosteroids and cellulose purification improve, respectively, the in vivo translation and vaccination efficacy of sa-mRNAs. Mol Ther 2021; 29(4):1370-81.

[230]

Stunz LL, Lenert P, Peckham D, Yi AK, Haxhinasto S, Chang M, et al. Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells. Eur J Immunol 2002; 32(5):1212-22.

[231]

Clark K, Plater L, Peggie M, Cohen P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates ser-172 phosphorylation and activation. J Biol Chem 2009; 284(21):14136-46.

[232]

Fan S, Popli S, Chakravarty S, Chakravarti R, Chattopadhyay S. Non-transcriptional IRF 7 interacts with NF- $\kappa$ b to inhibit viral inflammation. J Biol Chem 2024; 300(4):107200.

[233]

Popli S, Chakravarty S, Fan S, Glanz A, Aras S, Nagy LE, et al. IRF3 inhibits nuclear translocation of NF- $\kappa \mathrm{b}$ to prevent viral inflammation. Proc Natl Acad Sci USA 2022; 119(37):e2121385119.

[234]

Simons KH, Peters HAB, Jukema JW, de Vries MR, Quax PHA. A protective role of IRF3 and IRF7 signalling downstream TLRs in the development of vein graft disease via type I interferons. J Intern Med 2017; 282(6):522-36.

[235]

Wang Y, Liu S, Wang W, Liu L, Zhao Y, Qin Q, et al. SGIV VP82 inhibits the interferon response by degradation of IRF3 and IRF7. Fish Shellfish Immun 2024; 150:109611.

[236]

Zhao X, Yan X, Huo R, Xu T. IRF 3 enhances NF- $\kappa$ b activation by targeting 2',5' for degradation in teleost fish. Dev Comp Immunol 2020; 106:103632.

[237]

Yoshida Kijima, Akita Beppu. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990; 265(28):17174-9.

[238]

Gupta N, Kainthola A, Tiwari M, Agrawala PK. Gut microbiota response to ionizing radiation and its modulation by HDAC inhibitor TSA. Int J Radiat Biol 2020; 96(12):1560-70.

[239]

Van O, Elaut, Brecx, Papeleu, Iterbeke, Geerlings, et al. Amide analogues of TSA: synthesis, binding mode analysis and HDAC inhibition. Bioorg Med Chem Lett 2003; 13(11):1861-4.

[240]

Rowland TL, McHugh SM, Deighton J, Ewan PW, Dearman RJ, Kimber I. Differential effect of thalidomide and dexamethasone on the transcription factor NF-kappa B. Int Immunopharmacol 2001; 1(1):49-61.

[241]

Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 1995; 270(5234):286-90.

[242]

Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and non-canonical aspects of JAK-STAT signaling: lessons from Interferons for cytokine responses. Front Immunol 2017; 8:29.

[243]

Stark GR, Cheon H, Wang Y. Responses to cytokines and interferons that depend upon JAKs and STATs. CSH Perspect Biol 2018; 10(1):a028555.

[244]

Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010; 115(15):3109-17.

[245]

Elli EM, Baratè C, Mendicino F, Palandri F, Palumbo GA. Mechanisms underlying the anti-inflammatory and immunosuppressive activity of ruxolitinib. Front Oncol 2019; 9:1186.

[246]

Anand AA, Walter P. Structural insights into ISRIB, a memory-enhancing inhibitor of the integrated stress response. FEBS J. 2019; 287(2):239-45.

[247]

Dong J, Jin S, Guo J, Yang R, Tian D, Xue H, et al. Pharmacological inhibition of eIF2alpha phosphorylation by integrated stress response inhibitor (ISRIB) ameliorates vascular calcification in rats. Physiol Res 2022; 71(3):379-88.

[248]

Rabouw HH, Langereis MA, Anand AA, Visser LJ, de Groot RJ, Walter P, et al. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci USA 2019; 116(6):2097-102.

[249]

Zyryanova AF, Weis F, Faille A, Alard AA, Crespillo-Casado A, Sekine Y, et al. Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science 2018; 359(6383):1533-6.

[250]

Frias ES, Hoseini MS, Krukowski K, Paladini MS, Grue K, Ureta G, et al. Aberrant cortical spine dynamics after concussive injury are reversed by integrated stress response inhibition. Proc Natl Acad Sci USA 2022; 119(42):e2209427119.

[251]

Sekine Y, Zyryanova A, Crespillo-Casado A, Fischer PM, Harding HP, Ron D. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science 2015; 348(6238):1027-30.

[252]

Tsai JC, Miller-Vedam LE, Anand AA, Jaishankar P, Nguyen HC, Renslo AR, et al. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule. Science 2018; 359(6383):eaaq0939.

[253]

Liu Y, Krishnan MN, Phua KKL. Suppression of mRNA nanoparticle transfection in human fibroblasts by selected interferon inhibiting small molecule compounds. Biomolecules 2017; 7(3):56.

[254]

O'Sullivan MJ, Lindsay AJ. The endosomal recycling pathway-at the crossroads of the cell. Int J Mol Sci 2020; 21(17):6074.

[255]

Alquraini A, El Khoury J. Scavenger receptors. Curr Biol 2020; 30(14):R790-95.

[256]

Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: tumor support and tumor inhibition. Front Oncol 2023; 12:1096897.

[257]

Habrant D, Peuziat P, Colombani T, Dallet L, Gehin J, Goudeau E, et al. Design of ionizable lipids to overcome the limiting step of endosomal escape: application in the intracellular delivery of mRNA, DNA, and siRNA. J Med Chem 2016; 59(7):3046-62.

[258]

Zu Rehman, Zuhorn IS, Hoekstra D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: recent advances. J Control Release 2012; 166(1):46-56.

[259]

Cohen RN, van der Aa MAEM, Macaraeg N, Lee AP, Szoka FC. Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J Control Release 2009; 135(2):166-74.

[260]

Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng Transl Med 2021; 6(2):e10213.

[261]

Su YY, Li CY, Li D. Progress in membrane fusion and its application in drug delivery. Chinese J Anal Chem 2019; 47(12):1871-7.

[262]

Sun L, Gao Y, Wang Y, Wei Q, Shi J, Chen N, et al. Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem Sci 2018; 9(27):5967-75.

[263]

Wilschut J, Scholma J, Stegmann T. Molecular mechanisms of membrane fusion and applications of membrane fusion techniques. Adv Exp Med Biol 1988; 238:105-26.

[264]

Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 2013; 31(7):638-46.

[265]

Munson MJ, O’Driscoll G, Silva AM, Lázaro-Ibáñez E, Gallud A, Wilson JT, et al. A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Commun Biol 2021; 4(1):211.

[266]

Das RR, Jaiswal N, Dev N, Jaiswal N, Naik SS, Sankar J.Efficacy and safety of anti-malarial drugs (chloroquine and hydroxy-chloroquine) in treatment of COVID-19 infection: a systematic review and meta-analysis. Front Med 2020;7: 482.

[267]

Zhou W, Wang H, Yang Y, Chen ZS, Zou C, Zhang J. Chloroquine against malaria, cancers and viral diseases. Drug Discov Today 2020; 25(11):2012-22.

[268]

Michaud M, Catros F, Ancellin S, Gaches F. Treatment of systemic lupus erythematosus: don't forget hydroxychloroquine. Ann Rheum Dis 2019; 79(10):e133.

[269]

Iyer P, Gao Y, Jalal D, Girotra S, Singh N, Vaughan-Sarrazin M. Hydroxychloroquine use is associated with reduced mortality risk in older adults with rheumatoid arthritis. Clin Rheumatol 2023; 43(1):87-94.

[270]

Conan NJ. The treatment of hepatic amebiasis with chloroquine. Am J Med 1949; 6(3):309-20.

[271]

Pandey E, Harris EN. Chloroquine and cytosolic galectins affect endosomal escape of antisense oligonucleotides after Stabilin-mediated endocytosis. Mol Ther Nucl Acids 2023; 19(33):430-43.

[272]

Hajimolaali M, Mohammadian H, Torabi A, Shirini A, Khalife Shal M, Barazandeh Nezhad H, et al. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin Drug Del 2021; 18(7):877-89.

[273]

Tusup MFL, Guenova E, Kundig T, Pascolo S. Chloroquine enhances expression of lipofected ivt-mRNA. J Pharmacol Clin Toxicol 2018; 6(4):1117.

[274]

Zhang X, Sawyer GJ, Dong X, Qiu Y, Collins L, Fabre JW. The in vivo use of chloroquine to promote non-viral gene delivery to the liver via the portal vein and bile duct. J Gene Med 2003; 5(3):209-18.

[275]

Røise JJ, Han H, Li J, Kerr DL, Taing C, Behrouzi K, et al. Acid-sensitive surfactants enhance the delivery of nucleic acids. Mol Pharm 2021; 19(1):67-79.

[276]

Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 2018; 48(4):675-87.

[277]

Lv M, Chen M, Zhang R, Zhang W, Wang C, Zhang Y, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res 2020; 30(11):966-79.

[278]

Fan N, Chen K, Zhu R, Zhang Z, Huang H, Qin S, et al. Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Sci Adv 2022; 8(51):eabq3500.

[279]

Weber F. Noncovalent polyphenol-macromolecule interactions and their effects on the sensory properties of foods. J Agric Food Chem 2021; 70(1):72-8.

[280]

Kempf K, Capello Y, Melhem R, Lescoat C, Kempf O, Cornu A, et al. Systemic convergent multitarget interactions of plant polyphenols revealed by affinity-based protein profiling of bone cells using c-glucosidic vescal(ag)in-bearing chemoproteomic probes. ACS Chem Biol 2023; 18(12):2495-505.

[281]

Kumar N, Goel N. Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnology Reports 2019; 24:e00370.

[282]

Ma Y, Fenton OS. Tannic acid lipid nanoparticles can deliver messenger RNA payloads and improve their endosomal escape. Adv Ther 2023; 6(6):2200305.

[283]

He Y-T, Zhang Q-M, Kou Q-C, Tang B. In vitro generation of cytotoxic T lymphocyte response using dendritic cell immunotherapy in osteosarcoma. Oncol Lett 2016; 12(2):1101-6.

[284]

Nussenzweig MC, Steinman RM, Gutchinov B, Cohn ZA. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J Exp Med 1980; 152(4):1070-84.

[285]

Qian L, Tang Z, Yin S, Mo F, Yang X, Hou X, et al. Fusion of dendritic cells and cancer-associated fibroblasts for activation of anti-tumor cytotoxic T lymphocytes. J Biomed Nanotechnol 2018; 14(10):1826-35.

[286]

Tang X, Zhang J, Sui D, Yang Q, Wang T, Xu Z, et al. Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J Control Release 2023; 364:529-45.

[287]

Lou B, De Koker S, Lau CYJ, Hennink WE, Mastrobattista E. mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells. Bioconjugate Chem 2018; 30(2):461-75.

[288]

Dirisala A, Uchida S, Li J, Van Guyse JFR, Hayashi K, Vummaleti SVC, et al. Effective mRNA protection by poly(l-ornithine) synergizes with endosomal escape functionality of a charge-conversion polymer toward maximizing mRNA introduction efficiency. Macromol Rapid Commun 2022; 43(12):e2100754.

[289]

Shin J, Douglas CJ, Zhang S, Seath CP, Bao H. Targeting recycling endosomes to potentiate mRNA lipid nanoparticles. Nano Lett 2024; 24(17):5104-9.

[290]

Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2'-5 'oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 2007; 18(5-6):351-61.

[291]

Silverman RH. Viral encounters with -oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 2007; 81(23):12720-9.

[292]

Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008; 8(7):559-68.

[293]

Lee FS, Fox EA, Zhou HM, Strydom DJ, Vallee BL. Primary structure of human placental ribonuclease inhibitor. Biochem 1988; 27(23):8545-53.

[294]

Shapiro, Vallee BL. Interaction of human placental ribonuclease with placental ribonuclease inhibitor. Biochem 1991; 30(8):2246-55.

[295]

Rao KS, Sirdeshmukh R, Gupta PD. Modulation of cytosolic RNase activity by endogenous RNase inhibitor in rat vaginal epithelial cells on estradiol administration. FEBS Lett 1994; 343(1):11-14.

[296]

Dickson KA, Haigis MC, Raines RT. Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 2005; 80:349-74.

[297]

Huysmans H, De Temmerman J, Zhong Z, Mc Cafferty S, Combes F, Haesebrouck F, et al. Improving the repeatability and efficacy of intradermal electroporated self-replicating mRNA. Mol Ther Nucl Acids 2019; 17:388-95.

[298]

An K, Chai X, Xue F, Wang Y, Zhang T. Study on docking and molecular dynamics simulation between VEGFR-2 and the inhibitor sunitinib. Acta Chim Sinica 2012; 70(10):1232.

[299]

Schmid TA, Gore ME. Sunitinib in the treatment of metastatic renal cell carcinoma. Ther Adv Urol 2016; 8(6):348-71.

[300]

Jha BK, Polyakova I, Kessler P, Dong B, Dickerman B, Sen GC, et al. Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity. J Biol Chem 2011; 286(30):26319-26.

[301]

Tang J, Wang Y, Zhou H, Ye Y, Talukdar M, Fu Z, et al. Sunitinib inhibits RNase L by destabilizing its active dimer conformation. Biochem J 2020; 477(17):3387-99.

[302]

Jha BK, Dong B, Nguyen CT, Polyakova I, Silverman RH. Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy. Mol Ther 2013; 21(9):1749-57.

[303]

Hwang J, Haacke N, Borgelt L, Qiu X, Gasper R, Wu P. Rational design and evaluation of 2-((pyrrol-2-yl)methylene)thiophen-4-ones as RNase L inhibitors. Eur J Med Chem 2023; 256:115439.

[304]

Gupta A, Rath PC.Curcumin, a natural antioxidant, acts as a noncompetitive inhibitor of human RNase L in presence of its cofactor2-5 A in vitro. BioMed Res Int 2014; 2014:817024.

[305]

Daou S, Talukdar M, Tang J, Dong B, Banerjee S, Li Y, et al. A phenolic small molecule inhibitor of RNase L prevents cell death from ADAR1 deficiency. Proc Natl Acad Sci USA 2020; 117(40):24802-12.

[306]

Tang J, Dong B, Liu M, Liu S, Niu X, Gaughan C, et al. Identification of small molecule inhibitors of RNase L by fragment-based drug discovery. J Med Chem 2021; 65(2):1445-57.

[307]

Appeldoorn TYJ, Munnink THO, Morsink LM, Hooge MNL-d, Touw DJ. Pharmacokinetics and pharmacodynamics of ruxolitinib: a review. Clin Pharmacokinet 2023; 62(4):559-71.

PDF (3389KB)

185

Accesses

0

Citation

Detail

Sections
Recommended

/