Integrating CRISPR/Cas technology with clinical trials: Principles, progress and challenges

Piao Yang , Mohadeseh Khoshandam , Iman Bhia , Sevil Raji , Hossein Soltaninejad , Saman Hosseinkhani , Mehdi Sani , Amir Ali Hamidieh , Mohsen Sheykhhasan

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) : 101068

PDF (2281KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (6) :101068 DOI: 10.1016/j.ajps.2025.101068
Review articles
research-article

Integrating CRISPR/Cas technology with clinical trials: Principles, progress and challenges

Author information +
History +
PDF (2281KB)

Abstract

CRISPR represent a groundbreaking genome-editing technology that has revolutionized genetic modification. This innovative tool offers an unparalleled revolution in the future treatment of genetic disorders, neurological diseases, infectious diseases and cancer. Despite the rapid expansion of CRISPR applications, its clinical use in humans is still relatively limited, with only 69 active clinical trials and 6 completed studies reported so far. This review examined current clinical trials and their processes in addressing various diseases via the CRISPR/Cas system. While earlier literatures have focused mainly on delivery methods and materials for CRISPR/Cas9, our review emphasized innovative targeting conditions and approaches for novel and functional therapeutic designs. In addition, we reviewed recent research to increase the efficiency of CRISPR editing in the management of genetic disorders and cancer, while exploring their future challenges and potential. This review provided a unique perspective on the advancement of CRISPR technology. By addressing these aspects, we aim to contribute to ongoing efforts to improve CRISPR-based therapies and expand their clinical applications, ultimately striving to transform the future of medical treatment.

Keywords

CRISPR/Cas systems / Gene editing / Genetic therapy / Genetic diseases / Clinical trials

Cite this article

Download citation ▾
Piao Yang, Mohadeseh Khoshandam, Iman Bhia, Sevil Raji, Hossein Soltaninejad, Saman Hosseinkhani, Mehdi Sani, Amir Ali Hamidieh, Mohsen Sheykhhasan. Integrating CRISPR/Cas technology with clinical trials: Principles, progress and challenges. Asian Journal of Pharmaceutical Sciences, 2025, 20(6): 101068 DOI:10.1016/j.ajps.2025.101068

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare no conflict of interest.

References

[1]

Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: delivery options and challenges in precision medicine. Genes Dis 2024; 11(1):268-82.

[2]

Gostimskaya I. CRISPR-Cas9: a history of its discovery and ethical considerations of its use in genome editing. Biochemistry 2022; 87(8):777-88.

[3]

Mojica FJ, Juez G, Rodriguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 1993; 9(3):613-21.

[4]

Shmakov SA, Sitnik V, Makarova KS, Wolf YI, Severinov KV, Koonin EV, et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. MBio 2017; 8(5):e01397-17.

[5]

Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 2019; 20(8):490-507.

[6]

Raguram A, Banskota S, Liu DR. Therapeutic delivery of gene editing agents. Cell 2022; 185(15):2806-27.

[7]

Boubakri H. Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Gene 2023; 866:147334.

[8]

Uslu M, Siyah P, Harvey AJ, Kocabas F. Modulating Cas 9 activity for precision gene editing. Prog Mol Biol Transl 2021; 181:89-127.

[9]

Li C, Du YW, Zhang TT, Wang HR, Hou ZY, Zhang YZ, et al. Genetic scissors" CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioact Mater 2023; 22:254-73.

[10]

Xue C, Greene EC. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet 2021; 37(7):639-56.

[11]

Khoshandam M, Soltaninejad H, Hamidieh AA, Hosseinkhani SCRISPR. CAR-T, and NK: current applications and future perspectives. Genes Dis 2024; 11(4):101121.

[12]

Hasanzadeh A, Noori H, Jahandideh A, Moghaddam NH, Mousavi SMK, Nourizadeh H, et al. Smart strategies for precise delivery of CRISPR/Cas 9 in genome editing. ACS Appl Bio Mater 2022; 5(2):413-37.

[13]

Donohoue PD, Barrangou R, May AP. Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 2018; 36(2):134-46.

[14]

Zhu H, Li C, Gao C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 2020; 21(11):661-77.

[15]

Ilahibaks NF, Hulsbos MJ, Lei Z, Vader P, Sluijter JPG. Enabling precision medicine with CRISPR-Cas genome editing technology: a translational perspective. Adv Exp Med Biol 2023; 1396:315-39.

[16]

Schmidt TJN, Berarducci B, Konstantinidou S, Raffa V. CRISPR/Cas 9 in the era of nanomedicine and synthetic biology. Drug Discov Today 2023; 28(1):9-14.

[17]

Hosseini SA, Jouneghani AS, Ghatrehsamani M, Yaghoobi H, Elahian F, Mirzaei SA. CRISPR/Cas 9 as precision and high-throughput genetic engineering tools in gastrointestinal cancer research and therapy. Int J Biol Macromol 2022; 223:732-54.

[18]

Ruan WM, Jiao MZ, Xu S, Ismail M, Xie X, An Y, et al. Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy. J Control Release 2022; 351:739751.

[19]

Gu L, Zhang R, Fan X, Wang Y, Ma K, Jiang J, et al. Development of CRISPR/Cas9-based genome editing tools for polyploid yeast Cyberlindnera jadinii and its application in engineering heterologous steroid-producing strains. ACS Synth Biol 2023; 12(10):2947-60.

[20]

van der Veer HJ, van Aalen EA, Michielsen CMS, Hanckmann ETL, Deckers J, et al. Glow-in-the-dark infectious disease diagnostics using CRISPR-Cas9-based split luciferase complementation. ACS Cent Sci 2023; 9(4):657-67.

[21]

Tao Y, Lamas V, Du W, Zhu WL, Li YR, Whittaker MN, et al. Treatment of monogenic and digenic dominant genetic hearing loss by CRISPR-Cas 9 ribonucleoprotein delivery in vivo. Nat Commun 2023; 14(1):e40476.

[22]

Liu X, Cao ZC, Wang WZ, Zou C, Wang YW, Pan LX, et al. Engineered extracellular vesicle-delivered CRISPR/Cas9 for radiotherapy sensitization of glioblastoma. ACS Nano 2023; 17(17):16432-47.

[23]

Moitra P, Skrodzki D, Molinaro M, Gunaseelan N, Sar D, Aditya T, et al. Context-responsive nanoparticle derived from synthetic zwitterionic ionizable phospholipids in targeted CRISPR/Cas9 therapy for basal-like breast cancer. ACS Nano 2024; 18(12):9199-220.

[24]

Wang T, Chen G, Zhang SS, Li DZ, Wei GJ, Zhao XM, et al. Steerable microneedles enabling deep delivery of photosensitizers and CRISPR/Cas9 systems for effective combination cancer therapy. Nano Lett 2023; 23(17):7990-9.

[25]

Dong MY, Liu JE, Liu CX, Wang H, Sun W, Liu B. CRISPR/CAS9: a promising approach for the research and treatment of cardiovascular diseases. Pharmacol Res 2022; 185:106480.

[26]

Zheng RX, Zhang LX, Parvin R, Su LH, Chi JJ, Shi KQ, et al. Progress and perspective of CRISPR-Cas9 technology in translational medicine. Adv Sci 2023; 10(25):e300195.

[27]

Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med 2020; 26(5):732-40.

[28]

Kerwash E, Johnston JD. Casgevy: innovative medicinal products require innovative approaches to regulatory assessment. Pharmaceutics 2024; 16(7):e906.

[29]

Singh A, Irfan H, Fatima E, Nazir Z, Verma A, Akilimali A. Revolutionary breakthrough: FDA approves CASGEVY, the first CRISPR/Cas9 gene therapy for sickle cell disease. Ann Med Surg 2024; 86(8):4555-9.

[30]

Hoy SM. Exagamglogene autotemcel: first approval. Mol Diagn Ther 2024; 28(2):133-9.

[31]

Patel ZV, Prajjwal P, Bethineedi LD, Patel DJ, Khullar K, Patel H, et al. Newer modalities and updates in the management of sickle cell disease: a systematic review. J Blood Med 2024; 15:435-47.

[32]

Adashi EY, Gruppuso PA, Cohen IG. CRISPR therapy of sickle cell disease: the dawning of the gene editing era. Am J Med 2024; 137(5):390-2.

[33]

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1):1.

[34]

Tang XF, Wang Z, Zhang Y, Mu W, Han XJ. Non-viral nanocarriers for CRISPR-Cas9 gene editing system delivery. Chem Eng J 2022; 435:135116.

[35]

Corsi GI, Qu KL, Alkan F, Pan XG, Luo YL, Gorodkin J. CRISPR/Cas 9 gRNA activity depends on free energy changes and on the target PAM context. Nat Commun 2022; 13(1):3006.

[36]

Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Insert Ignacimuthu S. remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta 2016; 1863(9):2333-44.

[37]

Raper AT, Stephenson AA, Suo Z. Sharpening the scissors: mechanistic details of CRISPR/Cas9 improve functional understanding and inspire future research. J Am Chem Soc 2018; 140(36):11142-52.

[38]

Ciciani M, Demozzi M, Pedrazzoli E, Visentin E, Pezzè L, Signorini LF, et al. Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data. Nat Commun 2022; 13(1):6474.

[39]

Collias D, Beisel CL. CRISPR technologies and the search for the PAM-free nuclease. Nat Commun 2021; 12(1):555.

[40]

Khoshandam M, Soltaninejad H, Bhia I, Goudarzi MTH, Hosseinkhani S. CRISPR challenges in clinical developments. Prog Mol Biol Transl Sci 2025; 210:263-79.

[41]

Corsi GI, Qu K, Alkan F, Pan X, Luo Y, Gorodkin J. CRISPR/Cas 9 gRNA activity depends on free energy changes and on the target PAM context. Nat Commun 2022; 13(1):3006.

[42]

Huang TP, Heins ZJ, Miller SM, Wong BG, Balivada PA, Wang T, et al. High-throughput continuous evolution of compact Cas 9 variants targeting single-nucleotide-pyrimidine PAMs. Nat Biotechnol 2023; 41(1):96-107.

[43]

Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP, Oliver ML, et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas 9 repressors. Nat Commun 2018; 9(1):1674.

[44]

Ma JX, He WY, Hua HM, Zhu Q, Zheng GS, Zimin AA, et al. Development of a CRISPR/Cas9D10A nickase (nCas9)-mediated genome editing tool in streptomyces. ACS Synth Biol 2023; 12(10):3114-23.

[45]

Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V. Dead Cas systems: types, principles, and applications. Int J Mol Sci 2019; 20(23):e6041.

[46]

Kantor A, McClements ME, MacLaren RE. CRISPR-Cas 9 DNA base-editing and prime-editing. Int J Mol Sci 2020; 21(17):e6240.

[47]

Eghbalsaied S, Lawler C, Petersen B, Hajiyev RA, Bischoff SR, Frankenberg S. CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Ther 2024; 31(5):209-23.

[48]

Kaya HB. Base editing and prime editing. In: Ricroch A, Eriksson D, Miladinović D, Sweet J, Van Laere K, Woźniak-Gientka E,editors. A roadmap for plant genome editing. Cham: Springer Nature Switzerland; 2024. p. 1739.

[49]

Lee J, Lim K, Kim A, Mok YG, Chung E, Cho SI, et al. Prime editing with genuine Cas 9 nickases minimizes unwanted indels. Nat Commun 2023; 14(1):1786.

[50]

Zhao Z, Shang P, Mohanraju P, Geijsen N. Prime editing: advances and therapeutic applications. Trends Biotechnol 2023; 41(8):1000-12.

[51]

Hillary VE, Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol 2023; 65(3):311-25.

[52]

Bharathkumar N, Sunil A, Meera P, Aksah S, Kannan M, Saravanan KM, et al. CRISPR/Cas-based modifications for therapeutic applications: a review. Mol Biotechnol 2022; 64(4):355-72.

[53]

Kordys M, Sen R, Warkocki Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. Wires RNA 2022; 13(3):e1694.

[54]

Hu XM, Zhang BB, Li XL, Li M, Wang YG, Dan HD, et al. The application and progression of CRISPR/Cas 9 technology in ophthalmological diseases. Eye 2023; 37(4):607-17.

[55]

TX Li, Yang YY, Qi HZ, Cui WG, Zhang L, Fu XX, et al. CRISPR/Cas 9 therapeutics: progress and prospects. Signal Transduct Tar 2023; 8(1):36.

[56]

Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, et al. Recent advances and applications of CRISPR-Cas 9 in cancer immunotherapy. Mol Cancer 2023; 22(1):35.

[57]

Li XS, Gui SM, Gui R, J Li, Huang R, Hu M, et al. Multifunctional clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-based nanobomb against carbapenem-resistant Acinetobacter baumannii infection through cascade reaction and amplification synergistic effect. ACS Nano 2023; 17(24):24632-53.

[58]

Guan L, Han Y, Yang C, Lu S, Du J, Li H, et al. CRISPR-Cas9-mediated gene therapy in neurological disorders. Mol Neurobiol 2022; 59(2):968-82.

[59]

Kong WR, Li X, Guo XY, Sun Y, Chai WY, Chang YW, et al. Ultrasound-assisted CRISPRi-exosome for epigenetic modification of a -synuclein gene in a mouse model of Parkinson's disease. ACS Nano 2024; 18(11):7837-51.

[60]

Mbakam CH, Tremblay G, Tremblay JP. Lamothe G, CRISPR-Cas 9 gene therapy for duchenne muscular dystrophy. Neurotherapeutics 2022; 19(3):931-41.

[61]

Yan S, Zheng X, Lin YQ, Li CJ, Liu ZM, Li JW, et al. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nat Biomed Eng 2023; 7(5):629-35.

[62]

Delbreil P, Dhondt S, El Rahbani RMK, Banquy X, Mitchell JJ, Brambilla D. Current advances and material innovations in the search for novel treatments of phenylketonuria. Adv Healthc Mater 2024:e2401353.

[63]

Khiabani A, Kohansal MH, Keshavarzi A, Shahraki H, Kooshesh M, Karimzade M, et al. CRISPR/Cas9, a promising approach for the treatment of β-thalassemia: a systematic review. Mol Genet Genomics 2023; 298(1):1-11.

[64]

Ma LL, Yang SL, Peng QY, Zhang JP, Zhang J. CRISPR/Cas9-based gene-editing technology for sickle cell disease. Gene 2023; 874:147480.

[65]

Zarghamian P, Klermund J, Cathomen T. Clinical genome editing to treat sickle cell disease-a brief update. Front Med 2023; 9:1065377.

[66]

Žoldáková M, Novotný M, Khakurel KP, Žoldák G. Hemoglobin variants as targets for stabilizing drugs. Molecules 2025; 30(2):385.

[67]

Brandow AM, Liem RI. Advances in the diagnosis and treatment of sickle cell disease. J Hematol Oncol 2022; 15(1):20.

[68]

Dimitrievska M, Bansal D, Vitale M, Strouboulis J, Miccio A, Nicolaides KH, et al. Revolutionising healing: gene editing's breakthrough against sickle cell disease. Blood Rev 2024; 65:101185.

[69]

Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 2021; 384(3):252-60.

[70]

Frangoul H, Locatelli F, Sharma A, Bhatia M, Mapara M, Molinari L, et al. Exagamglogene autotemcel for severe sickle cell disease. N Engl J Med 2024;390( 18):1649-62.

[71]

Sanchez-Villalobos M, Blanquer M, Moraleda JM, Salido EJ, Perez-Oliva AB. New insights into pathophysiology of β-thalassemia. Front Med 2022; 9:880752.

[72]

Musallam KM, Vitrano A, Meloni A, Addario Pollina S, Di Marco V, Hussain Ansari S, et al. Primary HBB gene mutation severity and long-term outcomes in a global cohort of β-thalassaemia. BrJ Haematol 2022; 196(2):414-23.

[73]

Katta V, O'Keefe K, Li Y, Mayuranathan T, Lazzarotto CR, Wood RK, et al. Development and IND-enabling studies of a novel Cas9 genome-edited autologous CD34+ cell therapy to induce fetal hemoglobin for sickle cell disease. Mol Ther 2024; 32(10):3433-52.

[74]

Cross N, van Steen C, Zegaoui Y, Satherley A, Angelillo L. Current and future treatment of retinitis pigmentosa. Clin Ophthalmol 2022; 16:2909-21.

[75]

Varela MD, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107(9):1223-30.

[76]

Sundaresan Y, Yacoub S, Kodati B, Amankwa CE, Raola A, Zode G. Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases. FEBS J 2023; 290(22):5248-69.

[77]

Liu FF, Li RT, Zhu ZL, Yang Y, Lu F. Current developments of gene therapy in human diseases. Medcomm 2024; 5(9):e645.

[78]

Varela MD, de Guimaraes TAC, Georgiou M, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: current management and clinical trials. Br J Ophthalmol 2022; 106(4):445-51.

[79]

Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol Ther 2017; 25(2):331-41.

[80]

Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 2019; 25(2):229-33.

[81]

ClinicalTrials. Gov. Safety and efficacy of EDIT-101 in LCA 10 2018:NCT03872479.

[82]

Steinebrei M, Baur J, Pradhan A, Kupfer N, Wiese S, Hegenbart U, et al. Common transthyretin-derived amyloid fibril structures in patients with hereditary ATTR amyloidosis. Nat Commun 2023; 14(1):7623.

[83]

Maurer MS, Bokhari S, Damy T, Dorbala S, Drachman BM, Fontana M, et al. Expert consensus recommendations for the suspicion and diagnosis of transthyretin cardiac amyloidosis. Circ Heart Fail 2019; 12(9):e006075.

[84]

Merlini G, Coelho T, Waddington Cruz M, H Li, Stewart M, Ebede B. Evaluation of mortality during long-term treatment with tafamidis for transthyretin amyloidosis with polyneuropathy: clinical trial results up to 8.5 years. Neurol Ther 2020; 9(1):105-15.

[85]

Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021; 385(6):493-502.

[86]

Castaman G, Matino D. Hemophilia A and B: molecular and clinical similarities and differences. Haematologica 2019; 104(9):1702-9.

[87]

Mannucci PM. Hemophilia therapy: the future has begun. Haematologica 2020; 105(3):545-53.

[88]

Weyand AC, Pipe SW. New therapies for hemophilia. Blood 2019; 133(5):389-98.

[89]

Lee JH, Han JP. In vivo LNP-CRISPR approaches for the treatment of hemophilia. Mol Diagn Ther 2024; 28(3):239248.

[90]

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1):1.

[91]

Khoshandam M, Bhia I, Soltaninejad H, Sani M, Hosseinkhani S, Hamidieh AA. CRISPR/Cas 9 from discovery to clinical impact: a comprehensive review of history, mechanisms, applications, and future challenges [Preprint]. Authorea 2024. DOI: 10.22541/au.172479318.85664954/v1

[92]

Castaman G, Pinotti M. Could targeted gene insertion of factor 9 be a potential durable treatment for hemophilia B ? Expert Rev Hematol 2025 In press.

[93]

Jiang D, Wang M, Wheeler AP, Croteau SE. 2025 clinical trials update on hemophilia, VWD, and rare inherited bleeding disorders. Am J Hematol 2025 In press.

[94]

Lee JH, Han JP. In vivo LNP-CRISPR approaches for the treatment of hemophilia. Mol Diagn Ther 2024; 28(3):239-48.

[95]

van de Vrugt HJ, Harmsen T, Riepsaame J, Alexantya G, van Mil SE, de Vries Y, et al. Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair. Sci Rep 2019; 9(1):768.

[96]

Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, et al. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343:703-23.

[97]

Román-Rodríguez FJ, Ugalde L, Álvarez L, Díez B, Ramírez MJ, Risueño C, et al. NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaks efficiently corrects mutations in HSPCs from patients with fanconi anemia. Cell Stem Cell 2019; 25(5):607-21.

[98]

Tascini G, Dell'Isola GB, Mencaroni E, Di Cara G, Striano P, Verrotti A. Sleep disorders in Rett syndrome and Rett-related disorders: a narrative review. Front Neurol 2022; 13:817195.

[99]

Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2021; 121:201-19.

[100]

Percy AK, Neul JL, Benke TA, Marsh ED, Glaze DG. A review of the Rett Syndrome Behaviour Questionnaire and its utilization in the assessment of symptoms associated with Rett syndrome. Front Pediatr 2023; 11:1229553.

[101]

Le TTH, Tran NT, Dao TML, Nguyen DD, Do HD, Ha TL, et al. Efficient and precise CRISPR/Cas9-mediated MECP2 modifications in human-induced pluripotent stem cells. Front Genet 2019; 10:625.

[102]

Cho HY, Yoo M, Pongkulapa T, Rabie H, Muotri AR, Yin PT, et al. Magnetic nanoparticle-assisted non-viral CRISPR-Cas9 for enhanced genome editing to treat Rett syndrome. Adv Sci 2024; 11(24):e2306432.

[103]

Cavazza A, Molina-Estévez FJ, Reyes ÁP, Ronco V, Naseem A, Malenšek Š, et al. Advanced delivery systems for gene editing: a comprehensive review from the GenE-HumDi COST Action Working Group. Mol Ther Nucleic Acids 2025; 36:e102457.

[104]

Donaldson J, Powell S, Rickards N, Holmans P, Jones L. What is the pathogenic CAG expansion length in Huntington's disease? J Huntingtons Dis 2021; 10(1):175-202.

[105]

Qin Y, Li S, Li XJ, Yang S. CRISPR-based genome-editing tools for Huntington's disease research and therapy. Neurosci Bull 2022; 38(11):1397-408.

[106]

Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington's disease mouse model. Mol Ther Nucleic Acids 2019; 17:829-39.

[107]

Gan SY, Liu SL, Yang HY, Wu LW. Clinical and genetic characteristics of Chinese Duchenne/Becker muscular dystrophy patients with small mutations. Front Neurosci 2022; 16:992546.

[108]

Chang MY, Cai Y, Gao ZH, Chen X, Liu BY, Zhang C, et al. Duchenne muscular dystrophy: pathogenesis and promising therapies. J Neurol 2023; 270(8):3733-49.

[109]

Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 2015; 36(4):395-402.

[110]

Zhang T, Kong X. Recent advances of glucocorticoids in the treatment of Duchenne muscular dystrophy. Exp Ther Med 2021; 21(5):447.

[111]

Chemello F, Olson EN, Bassel-Duby R. CRISPR-editing therapy for duchenne muscular dystrophy. Hum Gene Ther 2023; 34(9-10):379-87.

[112]

Binnie A, Fernandes E, Almeida-Lousada H, De Mello RA, Castelo-Branco P. CRISPR-based strategies in infectious disease diagnosis and therapy. Infection 2021; 49:377385.

[113]

Lim JM, Kim HH. Basic principles and clinical applications of CRISPR-based genome editing. Yonsei Med J 2022; 63(2): 105.

[114]

Li S, Holguin L, Burnett JC. CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice. Mol Ther Methods Clin Dev 2022; 24:321-31.

[115]

Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med 2019; 381(13):1240-7.

[116]

Vhora I, Khatri N. Gene delivery using nanocarriers:toxicity and safety aspects. In: Nanotechnology in medicine: toxicity and safety; 2021. p. 195-232.

[117]

Cheng X, Fan S, Wen C, Du X. CRISPR/Cas 9 for cancer treatment: technology, clinical applications and challenges. Brief Funct Genomics 2020; 19(3):209-14.

[118]

Gu MZ, Ren B, Fang Y, Ren J, Liu XH, Wang X, et al. Epigenetic regulation in cancer. Medcomm 2024; 5(2):e495.

[119]

Ghosh A, Himaja A, Biswas S, Kulkarni O, Ghosh B. Advances in the delivery and development of epigenetic therapeutics for the treatment of cancer. Mol Pharm 2023; 20(12):5981-6009.

[120]

Almajidi YQ, Kadhim MM, Alsaikhan F, Jalil AT, Sayyid NH, Ramírez-Coronel AA, et al. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. Environ Res 2023; 227:115722.

[121]

Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, et al. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metast Rev 2024; 43(1):457-79.

[122]

Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, et al. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022; 237(5):2309-44.

[123]

Wang Z, Pang S, Liu XL, Dong Z, Tian Y, Ashrafizadeh M, et al. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579.

[124]

Khoshandam M, Soheili ZS, Hosseinkhani S, Samiee S, Latifi-Navid H, Ahmadieh H, et al. In vivo inhibition of angiogenesis by htsFLT01/MiRGD nano complex. Transl Oncol 2025; 56:102400.

[125]

Khoshandam M, Sideris N, Ahmadieh-Yazdi A, Sheykhhasan M, Manoochehri H, Tanzadehpanah H, et al. The functional role of LncRNA HOXA-AS 2 in multiple human cancers. Pathol Res Pract 2025; 266:155795.

[126]

Liu K, Chen HJ, Li YH, Wang B, Li Q, Zhang L, et al. Autophagy flux in bladder cancer: cell death crosstalk, drug and nanotherapeutics. Cancer Lett 2024; 591:216867.

[127]

Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857.

[128]

Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: advances, limitations, and applications for precision cancer research. Front Med 2021; 8:649896.

[129]

Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 2021; 20(1):126.

[130]

Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, et al. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun 2020; 11(1):5060.

[131]

Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res 2020; 40(11):6009-15.

[132]

Ravichandran M, Maddalo D. Applications of CRISPR-Cas9 for advancing precision medicine in oncology: from target discovery to disease modeling. Front Genet 2023; 14:1273994.

[133]

Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, et al. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022; 27(1):49.

[134]

Zhang Z, Wang H, Yan Q, Cui J, Chen Y, Ruan S, et al. Genome-wide CRISPR/Cas9 screening for drug resistance in tumors. Front Pharmacol 2023; 14:1284610.

[135]

Vimal S, Madar IH, Thirumani L, Thangavelu L, Sivalingam AM. CRISPR/Cas9: role of genome editing in cancer immunotherapy. Oral Oncol Rep 2024; 10:100251.

[136]

Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Razavi ZS, Mardi A. Molecular landscape of LncRNAs in bladder cancer: from drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother 2023; 165:115242.

[137]

Zhang SY, Lin TH, Xiong XY, Chen C, Tan P, Wei Q. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat Rev Urol 2024; 21(8):495511.

[138]

Jang G, Kweon J, Kim Y. CRISPR prime editing for unconstrained correction of oncogenic KRAS variants. Commun Biol 2023; 6(1):681.

[139]

Sayed S, Sidorova OA, Hennig A, Augsburg M, Cortés Vesga CP, Abohawya M, et al. Efficient correction of oncogenic KRAS and TP53 mutations through CRISPR base editing. Cancer Res 2022; 82(17):3002-15.

[140]

Mirgayazova R, Khadiullina R, Chasov V, Mingaleeva R, Miftakhova R, Rizvanov A, et al. Therapeutic editing of the TP53 gene: is CRISPR/Cas9 an option? Genes (Basel) 2020; 11(6):e704.

[141]

Begagić E, Bečulić H, Đuzić N, Džidić-Krivić A, Pugonja R, Muharemović A, et al. CRISPR/Cas9-mediated gene therapy for glioblastoma: a scoping review. Biomedicines 2024; 12(1):e238.

[142]

Witz A, Dardare J, Francois A, Husson M, Rouyer M, Demange J, et al. CRISPR/Cas9-mediated knock-in of BRCA1/2 mutations restores response to olaparib in pancreatic cancer cell lines. Sci Rep 2023; 13(1):18741.

[143]

Ahmed M, Daoud GH, Mohamed A, Harati R. New insights into the therapeutic applications of CRISPR/Cas9 genome editing in breast cancer. Genes (Basel) 2021; 12(5):723.

[144]

Hu Y, Liu L, Jiang Q, Fang W, Chen Y, Hong Y, et al. CRISPR/Cas9: a powerful tool in colorectal cancer research. J Exp Clin Cancer Res 2023; 42(1):308.

[145]

Sharma AK, Giri AK. Engineering CRISPR/Cas9 therapeutics for cancer precision medicine. Front Genet 2024;15: 1309175.

[146]

Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24(4):955-70.

[147]

Afolabi LO, Afolabi MO, Sani MM, Okunowo WO, Yan D, Chen L, et al. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clin Transl Immunol 2021; 10(6):e1286.

[148]

Hou J, He Z, Liu T, Chen D, Wang B, Wen Q et al. Evolution of molecular targeted cancer therapy: mechanisms of drug resistance and novel opportunities identified by CRISPR-Cas 9 screening. Front Oncol 2022; 12:755053.

[149]

He C, Han S, Chang Y, Wu M, Zhao Y, Chen C, et al. CRISPR screen in cancer: status quo and future perspectives. Am J Cancer Res 2021; 11(4):1031.

[150]

Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, et al. Innovative strategies of reprogramming immune system cells by targeting CRISPR/Cas9-based genome-editing tools: a new era of cancer management. Int J Nanomed 2023; 18:5531-59.

[151]

Baumann M. CRISPR/Cas 9 genome editing-new and old ethical issues arising from a revolutionary technology. Nanoethics 2016; 10:139-59.

[152]

van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat Biotechnol 2020; 38(7):845-55.

[153]

Wang JY, Doudna JA. CRISPR technology: a decade of genome editing is only the beginning. Science 2023; 379(6629):eadd8643.

[154]

Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, et al. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnol 2023; 21(1):370.

[155]

Stranford DM, Simons LM, Berman KE, Cheng L, DiBiase BN, Hung ME, et al. Genetically encoding multiple functionalities into extracellular vesicles for the targeted delivery of biologics to T cells. Nat Biomed Eng 2023; 7:1-18.

[156]

Hosseini ES, Nikkhah M, Hosseinkhani S. Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9. Int J Nanomed 2019; 14:4353-66.

[157]

Hosseini ES, Nikkhah M, Hamidieh AA, Fearnhead HO, Concordet JP, Hosseinkhani S. The lumiptosome, an engineered luminescent form of the apoptosome can report cell death by using the same Apaf-1 dependent pathway. J Cell Sci 2020; 133(10):jcs242636.

[158]

Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022; 352:970-93.

[159]

Giulimondi F, Digiacomo L, Renzi S, Cassone C, Pirrottina A, Molfetta R, et al. Optimizing transfection efficiency in CAR-T cell manufacturing through multiple administrations of lipid-based nanoparticles. ACS Appl Bio Mater 2024; 7(6):3746-57.

[160]

Zhu X, Gao M, Yang Y, W Li, Bao J, Li Y. The CRISPR/Cas9 system delivered by extracellular vesicles. Pharmaceutics 2023; 15(3):984.

[161]

Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020; 234:119711.

[162]

Dai JY, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today 2024; 29(7):103981.

[163]

Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, et al. Nanoliposomes for doxorubicin delivery: reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2023; 80:104112.

[164]

Nosrati H, Salehiabar M, Mozafari F, Charmi J, Erdogan N, Ghaffarlou M, et al. Preparation and evaluation of bismuth sulfide and magnetite-based theranostic nanohybrid as drug carrier and dual MRI/CT contrast agent. Appl Organomet Chem 2022; 36(11):e6861.

[165]

Entezari M, Abad GGY, Sedghi B, Ettehadi R, Asadi S, Beiranvand R, et al. Gold nanostructure-mediated delivery of anticancer agents: biomedical applications, reversing drug resistance, and stimuli-responsive nanocarriers. Environ Res 2023; 225:115673.

[166]

Mengstie MA. Viral vectors for the delivery of CRISPR components: advances and challenges. Front Bioeng Biotechnol 2022; 10:895713.

[167]

Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21(4):255-72.

[168]

Kim DY, Lee JM, Moon SB, Chin HJ, Park S, Lim Y, et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol 2022; 40(1):94-102.

[169]

Rostami N, Gomari MM, Choupani E, Abkhiz S, Fadaie M, Eslami SS, et al. Exploring advanced CRISPR delivery technologies for therapeutic genome editing. Small Sci 2024; 4:e2400192.

[170]

Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao GP. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9(1):78.

[171]

Cho HY, Yoo M, Pongkulapa T, Rabie H, Muotri AR, Yin PT, et al. Magnetic nanoparticle-assisted non-viral CRISPR-Cas9 for enhanced genome editing to treat Rett syndrome. Adv Sci 2024; 11(24):e2306432.

[172]

Rani V, Prabhu A. CRISPR-Cas 9 based non-viral approaches in nanoparticle elicited therapeutic delivery. J Drug Deliv Sci Technol 2022; 76:103737.

[173]

Chen SX, Jiao Y, Pan F, Guan ZY, Cheng SH, Sun D. Knock-in of a large reporter gene via the high-throughput microinjection of the CRISPR/Cas9 system. IEEE Trans Biomed Eng 2022; 69(8):2524-32.

[174]

Fletcher RB, Stokes LD, Kelly I, Henderson KM, Vallecillo-Viejo IC, Colazo JM, et al. Nonviral delivery of CRISPR-Cas 9 using protein-agnostic, high-loading porous silicon and polymer nanoparticles. ACS Nano 2023; 17(17):16412-31.

[175]

Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol Pharm 2022; 19(6):1669-86.

[176]

Madhi ZS, Shallan MA, Almaamuri AM, Alhussainy AA, SSS Al-Salih, Raheem AK, et al. Lipids and lipid derivatives for delivery of the CRISPR/Cas9 system. J Drug Deliv Sci Technol 2022; 78:103948.

[177]

Pathak N, Patino CA, Ramani N, Mukherjee P, Samanta D, Ebrahimi SB, et al. Cellular delivery of large functional proteins and protein-nucleic acid constructs via localized electroporation. Nano Lett 2023; 23(8):3653-60.

[178]

Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J 2021; 23(4):78.

[179]

Aziz A, Rehman U, Sheikh A, Abourehab MA, Kesharwani P. Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy. J Biomater Sci Polym Ed 2023; 34(3):398-418.

[180]

Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, et al. Nanoparticle delivery of CRISPR/Cas 9 for genome editing. Front Genet 2021; 12:673286.

[181]

Cruz LJ, van Dijk T, Vepris O, Li TMWY, Schomann T, Baldazzi F, et al. PLGA-nanoparticles for intracellular delivery of the CRISPR-complex to elevate fetal globin expression in erythroid cells. Biomaterials 2021; 268:120580.

[182]

Rahimi H, Zaboli KA, Thekkiniath J, Mousavi SH, Johari B, Hashemi MR, et al. BSA-PEI nanoparticle mediated efficient delivery of CRISPR/Cas 9 into MDA-MB-231 cells. Mol Biotechnol 2022; 64(12):1376-87.

[183]

Behr M, Zhou J, Xu B, Zhang H. In vivo delivery of CRISPR-Cas9 therapeutics: progress and challenges. Acta Pharm Sin B 2021; 11(8):2150-71.

[184]

Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, et al. Overcoming the delivery problem for therapeutic genome editing: current status and perspective of non-viral methods. Biomaterials 2020; 258:120282.

[185]

Almeida MJ, Matos A. Designer nucleases: gene-editing therapies using CCR5 as an emerging target in HIV. Curr HIV Res 2019; 17(5):306-23.

[186]

Khan A, Paneerselvam N, Lawson BR. Antiretrovirals to CCR5 CRISPR/Cas9 gene editing-a paradigm shift chasing an HIV cure. Clin Immunol 2023; 248:109741.

[187]

Meisel R. CRISPR-Cas 9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 2021; 384(23):e91.

[188]

Guo C, Ma X, Gao F, Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 2023; 11:1143157.

[189]

Tsai HH, Kao HJ, Kuo MW, Lin CH, Chang CM, Chen YY, et al. Whole genomic analysis reveals atypical non-homologous off-target large structural variants induced by CRISPR-Cas9-mediated genome editing. Nat Commun 2023; 14(1):5183.

[190]

Panda G, Ray A. Decrypting the mechanistic basis of CRISPR/Cas9 protein. Prog Biophys Mol Biol 2022; 172:60-76.

[191]

Doudna JA. The promise and challenge of therapeutic genome editing. Nature 2020; 578(7794):229-36

[192]

Kohn DB, Chen YY, Spencer MJ. Successes andchallenges in clinical gene therapy. Gene Ther 2023; 30:1-9.

[193]

Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16(1):97.

[194]

RF D'souza, Mathew M, Surapaneni KM. A scoping review on the ethical issues in the use of CRISPR-Cas9 in the creation of human disease models. J Clin Diagn Res 2023; 17(12):1-10.

[195]

Lorenzo D, Esquerda M, Palau F, Cambra FJ. Ethics and genomic editing using the CRISPR-Cas9 technique: challenges and conflicts. Nanoethics 2022; 16(3):313-21.

[196]

Plaza Reyes A, Lanner F. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development 2017; 144(1):3-7.

[197]

Naeem M, Alkhnbashi OS. Current bioinformatics tools to optimize CRISPR/Cas9 experiments to reduce off-target effects. Int J Mol Sci 2023; 24(7):6261.

[198]

Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci 2020; 7(6):1902312.

[199]

Corsi GI, Qu K, Alkan F, Pan X, Luo Y, Gorodkin J. CRISPR/Cas 9 gRNA activity depends on free energy changes and on the target PAM context. Nat Commun 2022; 13(1):3006.

[200]

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096):816-21.

[201]

Konstantakos V, Nentidis A, Krithara A, Paliouras G. CRISPR-Cas 9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res 2022; 50(7):3616-37.

[202]

Guo CT, Ma XT, Gao F, Guo YX. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 2023; 11:1143157.

[203]

Chan YT, Lu Y, Wu J, Zhang C, Tan HY, Bian ZX, et al. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics 2022; 12(7):3329-44.

[204]

Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021; 11(2):614-48.

[205]

Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 2022; 10(5):1166-92.

[206]

Sahel DK, Vora LK, Saraswat A, Sharma S, Monpara J, D'Souza AA, et al. CRISPR/Cas9 genome editing for tissue-specific in vivo targeting: nanomaterials and translational perspective. Adv Sci 2023; 10(19):2207512.

[207]

Urrutia-Cabrera D, Liou RHC, Lin J, Shi Y, Liu K, Hung SSC, et al. Combinatorial approach of binary colloidal crystals and CRISPR activation to improve induced pluripotent stem cell differentiation into neurons. ACS Appl Mater Interfaces 2022; 14(7):86698679.

[208]

Zhou H, Ye P, Xiong W, Duan XX, Jing SL, He Y, et al. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges. Stem Cell Res Ther 2024; 15(1):218.

[209]

Yang P, Condrich A, Lu L, Scranton S, Hebner C, Sheykhhasan M, et al. Genetic engineering in bacteria, fungi, and oomycetes, taking advantage of CRISPR. DNA 2024; 4(4):427-54.

[210]

Seyedebrahimi R, Yang P, Azimzadeh M, Farsani ME, Ababzadeh S, Kalhor N, et al. Introduction to neurodegenerative diseases. In: Deep learning approaches for early diagnosis of neurodegenerative diseases. Hershey: IGI Global; 2024. p. 25-58.

[211]

Sheykhhasan M, Yang P, Poondla N. Critical developments in cancer immunotherapy. Hershey: IGI Global; 2024.

[212]

Yang P, Sheykhhasan M, Heidari R, Chamanara M, Dama P, Ahmadieh-Yazdi A, et al. FOXR2 in cancer development: emerging player and therapeutic opportunities. Oncol Res 2024; 30:1-15.

[213]

Sheykhhasan M, La'ah AS, Ahmadieh-Yazdi A, Yang P, Tanzadehpanah H, Mahaki H, et al. Advancement in "off-the-shelf" CAR T-cell therapy for cancer immunotherapy. In: Sheykhhasan M, Yang P, Poondla N, Critical developments in cancer immunotherapy. Hershey: IGI Global; 2024. p. 33-92.

[214]

Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, et al. CRISPR technology in human diseases. MedComm 2024; 5(8):e672.

[215]

Song X, Liu J, Chen T, Zheng T, Wang X, Guo X. Gene therapy and gene editing strategies in inherited blood disorders. J Genet Genomics 2024; 51:1-12.

[216]

Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 2022; 21(1):78.

[217]

Tian Y, Fan Z, Xu L, Cao Y, Chen S, Pan Z, et al. CRISPR/Cas13a-assisted rapid and portable HBV DNA detection for low-level viremia patients. Emerg Microbes Infect 2023; 12(1):e2177088.

[218]

Hołubowicz R, Du SW, Felgner J, Smidak R, Choi EH, Palczewska G, et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng 2024; 8:1-15.

[219]

Brokowski C, Adli M. CRISPR ethics: moral considerations for applications of a powerful tool. J Mol Biol 2019; 431(1):88-101.

PDF (2281KB)

226

Accesses

0

Citation

Detail

Sections
Recommended

/