A self-assembled nano-spray formulation for synergistic therapy of anti-inflammation and skin repair

Qi Pan , Shiwei Zhang , Xiaojie Yan , Jiajing Guo , Bowen Li , Yuan Ping

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (5) : 101067

PDF (3934KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (5) :101067 DOI: 10.1016/j.ajps.2025.101067
Research articles
research-article

A self-assembled nano-spray formulation for synergistic therapy of anti-inflammation and skin repair

Author information +
History +
PDF (3934KB)

Abstract

Inflammatory skin disorders (ISDs), characterized by severe inflammation and impaired skin barrier functions, often requires persistent treatment due to chronic and relapsing natures. To address these issues, we developed a small-molecular self-assembled nanodrug (ECN) that is composed of natural epigallocatechin-3-gallate (EGCG) self-assembled with tripeptide collagen (CTP). By formulating a transdermal enhancer (cationic dendrimer) with ECN, the resulted dendrimers/ECN nanocomplex (DECN) can effectively penetrate into the skin layer, resulting in effective anti-inflammatory response and repair of skin-barrier functions. In animal models of ISDs, including atopic dermatitis (AD) and psoriasis, DECN showed remarkable skin penetration, with high level of drug deposition in the epidermal-dermal layer. By using a commercially available spray pump, DECN nanoparticles can be further translated into a spray formulation, which contributes to alleviating visible symptoms, skin lesions, and inflammatory progression of psoriasis and AD. This all-in-one spray nano-formulation offers an effective, safe, and convenient way for ISDs treatment.

Keywords

Inflammatory skin disorder / Epigallocatechin-3-gallate / Collagen tripeptide / Self-assembly / Nano-spray

Cite this article

Download citation ▾
Qi Pan, Shiwei Zhang, Xiaojie Yan, Jiajing Guo, Bowen Li, Yuan Ping. A self-assembled nano-spray formulation for synergistic therapy of anti-inflammation and skin repair. Asian Journal of Pharmaceutical Sciences, 2025, 20(5): 101067 DOI:10.1016/j.ajps.2025.101067

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare that there is no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Acknowledgments

This work was supported by National Natural Science Foundation of China (32261143727, 82073779, 32000992), National Key Research and Development Program of China (2018YFA0901800), Natural Science Foundation of Zhejiang Province (Natural Science Foundation of Zhejiang Province Distinguished Young Scholar Program, LR21H300002). The authors acknowledge Dr. Tao Wan for the technical guidance of this work.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ajps.2025.101067. The figures and tables with " S " before the serial number are included in the Supplementary material.

References

[1]

Guttman-Yassky E, Krueger JG. Atopic dermatitis and psoriasis: two different immune diseases or one spectrum? Curr Opin Immunol 2017; 48:68-73.

[2]

Miyagaki T, Sugaya M. Recent advances in atopic dermatitis and psoriasis: genetic background, barrier function, and therapeutic targets. J Dermatol Sci 2015; 78(2):89-94.

[3]

Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med 2009; 361(5):496-509.

[4]

Ständer S. Atopic dermatitis. N Engl J Med 2021; 384(12):1136-43.

[5]

Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, et al. Psoriasis. Nat Rev Dis Primers 2016; 2:16082.

[6]

Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers 2018; 4(1):1.

[7]

Tandon YK, Yang MF, Baron ED. Role of photodynamic therapy in psoriasis: a brief review. Photodermatol Photoimmunol Photomed 2008; 24(5):222-30.

[8]

Choi YM, Adelzadeh L, Wu JJ. Photodynamic therapy for psoriasis. J Dermatolog Treat 2015; 26(3):202-7.

[9]

Krishnan V, Mitragotri S. Nanoparticles for topical drug delivery: potential for skin cancer treatment. Adv Drug Deliv Rev 2020; 153:87-108.

[10]

Kim JY, Ahn J, Kim J, Choi M, Jeon H, Choe K, et al. Nanoparticle-assisted transcutaneous delivery of a signal transducer and activator of transcription 3-inhibiting peptide ameliorates psoriasis-like skin inflammation. ACS Nano 2018; 12(7):6904-16.

[11]

Wan T, Pan Q, Ping Y.Microneedle-assisted genome editing: a transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv 2021; 7(11):eabe2888.

[12]

Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release 2022; 341:132-46.

[13]

Jia Yuanbo, Hu Jiahui, An Keli, Zhao Qiang, Dang Yang, Liu Hao, et al. Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat Commun 2023; 14(1):2478.

[14]

Musielak E, Krajka-ku V. Liposomes and ethosomes : comparative potential in enhancing skin permeability for therapeutic and cosmetic applications. Cosmetics 2024; 11(6):191.

[15]

Hänel KH, Cornelissen C, Lüscher B, Baron JM. Cytokines and the skin barrier. Int J Mol Sci 2013; 14(4):6720-45.

[16]

Lin TK, Zhong L, Santiago JL. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci 2017; 19(1):70.

[17]

Montero-Vilchez T, MV Segura-Fernández-nogueras, Pérez-Rodríguez I, Soler-Gongora M, Martinez-Lopez A, Fernández-González A, et al. Skin barrier function in psoriasis and atopic dermatitis: transepidermal water loss and temperature as useful tools to assess disease severity. J Clin Med 2021; 10(2):359.

[18]

Bangert C, Rindler K, Krausgruber T, Alkon N, Thaler FM, Kurz H, et al. Persistence of mature dendritic cells, TH2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4R a blockade. Sci Immunol 2021; 6(55):eabe2749.

[19]

Bangert C, Alkon N, Chennareddy S, Arnoldner T, Levine JP, Pilz M, et al. Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells. Nat Commun 2024; 15(1):2839.

[20]

Noh SU, Cho EA, Kim HO, Park YM. Epigallocatechin-3-gallate improves dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in nc/nga mice by suppressing macrophage migration inhibitory factor. Int Immunopharmacol 2008; 8(9):1172-82.

[21]

Chiu YH, Wu YW, Hung JI, MC Chen. Epigallocatechin gallate/L-ascorbic acid-loaded poly- $\gamma$ -glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater 2021; 130:223-33.

[22]

Hu Y, Miao Y, Zhang Y, Wang X, Liu X, Zhang W, et al. Co-assembled binary polyphenol natural products for the prevention and treatment of radiation-induced skin injury. ACS Nano 2024; 18(40):27557-69.

[23]

Zhang S, Liu X, Mei L, wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med 2016; 16(1):334.

[24]

Xu X, Dai Z, Zhang Z, Kou X, You X, Sun H, et al. Fabrication of oral nanovesicle in-situ gel based on epigallocatechin gallate phospholipid complex: application in dental anti-caries. Eur J Pharmacol 2021; 897:173951.

[25]

Cheng GW, Xie AH, Yan Z, Zhu XZ, Song YF, Chen TK. Nanomedicines for Alzheimer's disease: Therapies based on pathological mechanisms. Brain-X 2023; 1:e27.

[26]

Shen W, Wang Q, Shen Y, Gao X, Li L, Yan Y, et al. Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers. ACS Cent Sci 2018; 4(10):1326-33.

[27]

Liu C, Shen W, Li B, Li T, Chang H, Cheng Y. Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chem Mater 2019; 31(6):1956-65.

[28]

Hakuta A, Yamaguchi Y, Okawa T, Yamamoto S, Sakai Y, Aihara M. Anti-inflammatory effect of collagen tripeptide in atopic dermatitis. J Dermatol Sci 2017; 88(3):357-64.

[29]

Okawa T, Yamaguchi Y, Takada S, Sakai Y, Numata N, Nakamura F, et al. Oral administration of collagen tripeptide improves dryness and pruritus in the acetone-induced dry skin model. J Dermatol Sci 2012; 66(2):136-43.

[30]

Tomosugi N, Yamamoto S, Takeuchi M, Yonekura H, Ishigaki Y, Numata N, et al. Effect of collagen tripeptide on atherosclerosis in healthy humans. J Atheroscler Thromb 2017; 24(5):530-8.

[31]

Pyun HB, Kim M, Park J, Sakai Y, Numata N, Shin JY, et al. Effects of collagen tripeptide supplement on photoaging and epidermal skin barrier in UVB-exposed hairless mice. Prev Nutr Food Sci 2012; 17(4):245-53.

[32]

Chauhan AS. Dendrimers for drug delivery. Molecules 2018; 23:938.

[33]

Mutalik S, Shetty PK, Kumar A, Kalra R, Parekh HS. Enhancement in deposition and permeation of 5-fluorouracil through human epidermis assisted by peptide dendrimers. Drug Deliv 2014; 21(1):44-54.

[34]

Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, et al. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano 2022; 16(3):3506-21.

[35]

Ibrahim SA. Spray-on transdermal drug delivery systems. Expert Opin Drug Deliv 2015; 12(2):195-205.

[36]

Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv 2019; 5(6):eaaw8922.

[37]

Wan T, Pan J, Long Y, Yu K, Wang Y, Pan W, et al. Dual roles of TPGS based microemulsion for tacrolimus: enhancing the percutaneous delivery and anti-psoriatic efficacy. Int J Pharm 2017; 528(1-2):511-23.

[38]

Wan T, Xu T, Pan J, Qin M, Pan W, Zhang G, et al. Microemulsion based gel for topical dermal delivery of pseudolaric acid B : in vitro and in vivo evaluation. Int J Pharm 2015; 493(1-2):111-20.

[39]

Sivaranjani N, Venkata Rao S, Rajeev G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J Clin Diagnostic Res 2013; 7(12):2683-5.

[40]

Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF- $\kappa \mathrm{B}$ signaling. Cell Res 2011; 21(1):103-15.

[41]

Hu Z, Shan J, Jin X, Sun W, Cheng L, Chen XL, et al. Nanoarchitectonics of in situ antibiotic-releasing acicular nanozymes for targeting and inducing cuproptosis-like death to eliminate drug-resistant bacteria. ACS Nano 2024; 18:24327-49.

[42]

Brown MA, Hanifin JM. Atopic dermatitis. Curr Opin Immunol 1989; 2(4):531-4.

[43]

Bertino L, Guarneri F, Cannavò SP, Casciaro M, Pioggia G, Gangemi S. Oxidative stress and atopic dermatitis. Antioxidants 2020; 9(3):196.

[44]

Fan P, Yang Y, Liu T, Lu X, Huang H, Chen L, et al. Anti-atopic effect of Viola yedoensis ethanol extract against 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin dysfunction. J Ethnopharmacol 2021; 280:114474.

[45]

Sun L, Liu Z, Wang L, Cun D, Tong HHY, Yan R, et al. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release 2017; 254:44-54.

[46]

Dobrică EC, Cozma MA, Găman MA, Voiculescu VM, Găman AM. The involvement of oxidative stress in psoriasis: a systematic review. Antioxidants 2022; 11(2):282.

[47]

Cannavò SP, Riso G, Casciaro M, Di Salvo E, Gangemi S. Oxidative stress involvement in psoriasis: a systematic review. Free Radic Res 2019; 53(8):829-40.

[48]

Yi Y, Yang Z, Zhou C, Yang Y, Wu Y, Zhang Q, et al. Quercetin-encapsulated GelMa hydrogel microneedle reduces oxidative stress and facilitates wound healing. Nano TransMed 2024; 3:100030.

[49]

Yang G, Lee HE, Shin SW, Um SH, Lee JD, Kim KB, et al. Efficient transdermal delivery of DNA nanostructures alleviates atopic dermatitis symptoms in NC/Nga mice. Adv Funct Mater 2018; 28:1801980.

PDF (3934KB)

121

Accesses

0

Citation

Detail

Sections
Recommended

/