Extracellular vesicles in cancer immunotherapy: Therapeutic, challenges and clinical progress

Hamed Manoochehri , Anita S. La'ah , Ali Babaeizad , Mohsen Sheykhhasan , Mohadeseh Rostamipoor , Mahdiyeh Abbaspoor , Fariba Nikravesh , Samira Mozaffari Khosravi , Hanie Mahaki , Hamid Tanzadehpanah , Piao Yang

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (5) : 101065

PDF (3385KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (5) :101065 DOI: 10.1016/j.ajps.2025.101065
Review artices
research-article

Extracellular vesicles in cancer immunotherapy: Therapeutic, challenges and clinical progress

Author information +
History +
PDF (3385KB)

Abstract

Cancer is a major global concern due to its high mortality rate. Tumor immunotherapy has revolutionized cancer treatment. However, low response rates and immune-related complications remain challenges. Extracellular vesicles (EVs), including exosomes, have emerged as promising therapeutic tools for various pathological conditions, especially cancer. Evidence indicates that changes in the quantity and composition of EVs can influence the immunosuppressive tumor microenvironment, potentially affecting the effectiveness of immunotherapy. Exploiting EVs for immune sensitization has generated significant clinical interest. This review provides an in-depth understanding of the origin of EVs, their therapeutic applications (such as drug delivery nanoplatforms and cancer immunotherapies, including vaccines), diagnostic potential as tumor biomarkers, ongoing EV-based clinical trials, and the challenges encountered in EV-based cancer immunotherapy.

Keywords

Extracellular vesicles / Exosomes / Immunotherapy / Cancer vaccines / Tumor biomarkers / Therapeutic

Cite this article

Download citation ▾
Hamed Manoochehri, Anita S. La'ah, Ali Babaeizad, Mohsen Sheykhhasan, Mohadeseh Rostamipoor, Mahdiyeh Abbaspoor, Fariba Nikravesh, Samira Mozaffari Khosravi, Hanie Mahaki, Hamid Tanzadehpanah, Piao Yang. Extracellular vesicles in cancer immunotherapy: Therapeutic, challenges and clinical progress. Asian Journal of Pharmaceutical Sciences, 2025, 20(5): 101065 DOI:10.1016/j.ajps.2025.101065

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

References

[1]

Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021; 127(16):3029-30.

[2]

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74( 3):229-63.

[3]

Najafi S, Majidpoor J, Mortezaee K. Extracellular vesicle-based drug delivery in cancer immunotherapy. Drug Deliv Transl Res 2023; 13(11):2790-806.

[4]

Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, et al. Immunotherapy: reshape the tumor immune microenvironment. Front Immunol 2022; 13:844142.

[5]

Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks. Front Immunol 2023; 14:1212476.

[6]

Cao Y, Xu P, Shen Y, Wu W, Chen M, Wang F, et al. Exosomes and cancer immunotherapy: a review of recent cancer research. Front Oncol 2022; 12:1118101.

[7]

Ahmadi M, Abbasi R, Rezaie J. Tumor immune escape: extracellular vesicles roles and therapeutics application. Cell Commun Signal 2024; 22(1):9.

[8]

Gurunathan S, Kang MH, Qasim M, Khan K, Kim JH. Biogenesis, membrane trafficking, functions, and next generation nanotherapeutics medicine of extracellular vesicles. Int J Nanomed 2021; 16:3357-83.

[9]

Mokhtari K, Sheykhhasan M, Shahnazari M, Ahmadieh-Yazdi A, Shokrollah N, Samadi P, et al. Extracellular vesicles in reproductive medicines. In: Anand K, Vadivalagan C, Gangadaran P, Muthu S, Peacock B, Extracellular vesicles for therapeutic and diagnostic applications. Elsevier; 2025. p. 243-81.

[10]

Samadi P, Sheykhhasan M, Mokhtari K, Yang P, Maghool F, Kalhor N. Extracellular vesicles: unlocking therapeutic potential in regenerative medicine. In: Anand K, Vadivalagan C, Gangadaran P, Muthu S, Peacock B,Extracellular vesicles for therapeutic and diagnostic applications. Elsevier; 2025. p. 397-435.

[11]

Khoei SG, Dermani FK, Malih S, Fayazi N, Sheykhhasan M. The use of mesenchymal stem cells and their derived extracellular vesicles in cardiovascular disease treatment. Curr Stem Cell Res Ther 2020; 15(7):623-38.

[12]

Sheikholeslami A, Davoodi Asl F, Fazaeli H, Sheykhhasan M, Kalhor N, Naserpour L. Exosomes of mesenchymal stem cells and PRP restore spermatogenesis in the rat model of non-obstructive azoospermia. Reproduction 2024; 168(3): e230474.

[13]

Liu C, Wang Y, Li L, He D, Chi J, Li Q et al. Engineered extracellular vesicles and their mimetics for cancer immunotherapy. J Control Release 2022; 349:679-98.

[14]

Huang L, Wang F, Wang X, Su C, Wu S, Yang C, et al. M2-like macrophage-derived exosomes facilitate metastasis in non-small-cell lung cancer by delivering integrin $\alpha \mathrm{V} \beta 3$. MedComm 2023; 4(1):e191.

[15]

Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles 2024; 13(2): e12404.

[16]

Sheykhhasan M, Kalhor N, Sheikholeslami A, Dolati M, Amini E, Fazaeli H. Exosomes of mesenchymal stem cells as a proper vehicle for transfecting mir-145 into the breast cancer cell line and its effect on metastasis. Biomed Res Int 2021; 2021:5516078.

[17]

Sheykhhasan M, Heidari F, Farsani ME, Azimzadeh M, Kalhor N, Ababzadeh S, et al. Dual role of exosome in neurodegenerative diseases: a review study. Curr Stem Cell Res Ther 2024; 19(6):852-64.

[18]

Wang J, Ma P, Kim DH, Liu BF, Demirci U. Towards microfluidic-based exosome isolation and detection for tumor therapy. Nano Today 2021; 37:101066.

[19]

Heidari F, Seyedebrahimi R, Yang P, Farsani ME, Ababzadeh S, Kalhor N, et al. Exosomes in viral infection: effects for pathogenesis and treatment strategies. Biocell 2023; 47(12):2597-608.

[20]

Ababzadeh S, Davoodi Asl F, Fazaeli H, Sheykhhasan M, Naserpour L, Farsani ME, et al. Effects of exosomes from menstrual blood-derived stem cells and ginger on endometriotic stem cells. Curr Med Sci 2024; 44(6):1293-302.

[21]

Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30:255-89.

[22]

van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4):213-28.

[23]

Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol 2018; 28(8):R435-44.

[24]

Giacobino C, Canta M, Fornaguera C, Borrós S, Cauda V. Extracellular vesicles and their current role in cancer immunotherapy. Cancers (Basel) 2021; 13(9):2280.

[25]

Sheykhhasan M, Amini R, Soleimani Asl S, Saidijam M, Hashemi SM, Najafi R. Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer's disease. Biomed Pharmacother 2022; 152:113224.

[26]

Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24(7):454-76.

[27]

Ahmadieh-Yazdi A, Karimi M, Afkhami E, Hajizadeh-Tafti F, Kuchakzadeh F, Yang P, et al. Unveiling therapeutic potential: adipose tissue-derived mesenchymal stem cells and their exosomes in the management of diabetes mellitus, wound healing, and chronic ulcers. Biochem Pharmacol 2024; 226:116399.

[28]

Lee YJ, Shin KJ, Jang HJ, Ryu JS, Lee CY, Yoon JH, et al. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Dev Cell 2023; 58(4):320-34.

[29]

D'Souza-Schorey C, Schorey JS. Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem 2018; 62(2):125-33.

[30]

Zubkova E, Kalinin A, Bolotskaya A, Beloglazova I, Menshikov M. Autophagy-dependent secretion: crosstalk between autophagy and exosome biogenesis. Curr Issues Mol Biol 2024; 46(3):2209-35.

[31]

Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 2016; 36(3):301-12.

[32]

Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev 2013; 27(1):31-9.

[33]

Clemmens H, Lambert DW. Extracellular vesicles: translational challenges and opportunities. Biochem Soc Trans 2018; 46(5):1073-82.

[34]

Sheykhhassan M, La'ah AS, Ahmadieh-Yazdi A, Yang P, Tanzadehpanah H, Mahaki H, et al. Advancement in "off-the-shelf" CAR T-cell therapy for cancer immunotherapy. In: Sheykhhasan M, Yang P, Poondla N, Critical developments in cancer immunotherapy. Pennsylvania, USA: IGI Global Scientific Publishing; 2024. p. 33-92.

[35]

EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5):347-57.

[36]

Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S, Borràs FE. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell Mol Life Sci 2019; 76(12):2369-82.

[37]

Couch Y, Buzás EI, Di Vizio D, Gho YS, Harrison P, Hill AF, et al. A brief history of nearly EV-erything-the rise and rise of extracellular vesicles. J Extracell Vesicles 2021; 10(14):e12144.

[38]

Holcar M, Kandušer M, Lenassi M. Blood nanoparticlesinfluence on extracellular vesicle isolation and characterization. Front Pharmacol 2021; 12:773844.

[39]

Yang Q, Xu J, Gu J, Shi H, Zhang J, Zhang J, et al. Extracellular vesicles in cancer drug resistance: roles, mechanisms, and implications. Adv Sci 2022; 9(34):2201609.

[40]

Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018; 2018:8545347.

[41]

Talebjedi B, Tasnim N, Hoorfar M, Mastromonaco GF, De Almeida Monteiro Melo Ferraz M. Exploiting microfluidics for extracellular vesicle isolation and characterization: potential use for standardized embryo quality assessment. Front Vet Sci 2020; 7:620809.

[42]

Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic approaches and methods enabling extracellular vesicle isolation for cancer diagnostics. Micromachines (Basel) 2022; 13(1):139.

[43]

Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles 2020; 9(1):1697028.

[44]

Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 2014; 3:24858.

[45]

Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics 2024; 227(4):iyae088.

[46]

Stam J, Bartel S, Bischoff R, Wolters JC. Isolation of extracellular vesicles with combined enrichment methods. J Chromatogr B 2021; 1169:122604.

[47]

Robinson SD, Samuels M, Jones W, Gilbert D, Critchley G, Giamas G. Shooting the messenger: a systematic review investigating extracellular vesicle isolation and characterisation methods and their influence on understanding extracellular vesicles-radiotherapy interactions in glioblastoma. BMC Cancer 2023; 23(1):939

[48]

Bachurski D, Schuldner M, Nguyen PH, Malz A, Reiners KS, Grenzi PC, et al. Extracellular vesicle measurements with nanoparticle tracking analysis- an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles 2019; 8(1):1596016.

[49]

Veziroglu EM, Mias GI. Characterizing extracellular vesicles and their diverse RNA contents. Front Genet 2020; 11:700.

[50]

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6):1420-8.

[51]

Jabalee J, Towle R, Garnis C. The role of extracellular vesicles in cancer: cargo, function, and therapeutic implications. Cells 2018; 7(8):93.

[52]

Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L.Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol 2014; 292(1-2):65-9.

[53]

Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 2007; 178(11):6867-75.

[54]

Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2014; 5(14):5439-52.

[55]

Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 2002; 195(10):1303-16.

[56]

Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 2007; 67(15):7458-66.

[57]

Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 2008; 180(11):7249-58.

[58]

Kim DH, Kim H, Choi YJ, Kim SY, Lee JE, Sung KJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med 2019; 51(8):1-13.

[59]

Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H, et al. Immune evasion mediated by PD-L 1 on glioblastoma-derived extracellular vesicles. Sci Adv 2018; 4(3):eaar2766.

[60]

Li C, Qiu S, Jin K, Zheng X, Zhou X, Jin D, et al. Tumor-derived microparticles promote the progression of triple-negative breast cancer via PD-L1-associated immune suppression. Cancer Lett 2021; 523:43-56.

[61]

Ye L, Zhang Q, Cheng Y, Chen X, Wang G, Shi M, et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1(+) regulatory B cell expansion. J Immunother Cancer 2018; 6(1):145.

[62]

Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis 2018; 9(4):422.

[63]

Wang X, Jiang X, Li J, Wang J, Binang H, Shi S, et al. Serum exosomal miR-1269a serves as a diagnostic marker and plays an oncogenic role in non-small cell lung cancer. Thorac Cancer 2020; 11(12):3436-47.

[64]

Morrissey SM, Zhang F, Ding C, Montoya-Durango DE, Hu X, Yang C, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab 2021; 33(10):2040-58.

[65]

Shen S, Song Y, Zhao B, Xu Y, Ren X, Zhou Y, et al. Cancer-derived exosomal miR-7641 promotes breast cancer progression and metastasis. Cell Commun Signal 2021; 19(1):20.

[66]

Wang M, Cai Y, Peng Y, Xu B, Hui W, Jiang Y, et al. Exosomal LGALS9 in the cerebrospinal fluid of glioblastoma patients suppressed dendritic cell antigen presentation and cytotoxic T-cell immunity. Cell Death Dis 2020; 11(10):896.

[67]

Huang M, Huang X, Huang N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells. Cancer Sci 2022; 113(6):1968-83.

[68]

Yin C, Han Q Xu D, Zheng B, Zhao X, Zhang J. SALL4-mediated upregulation of exosomal miR-146a-5p drives T-cell exhaustion by M2 tumor-associated macrophages in HCC. Oncoimmunology 2019; 8(7):1601479.

[69]

Wang X, Shen H, Zhangyuan G, Huang R, Zhang W, He Q, et al. 14-3-3 $\zeta$ delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis 2018; 9(2):159.

[70]

Lundholm M, Schröder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD 8 +T cells: mechanism of immune evasion. PLoS One 2014; 9(9):e108925.

[71]

Ren W, Zhang X, Li W, Feng Q, Feng Y, Tong Y, et al. Exosomal miRNA-107 induces myeloid-derived suppressor cell expansion in gastric cancer. Cancer Manag Res 2019; 11:4023-40.

[72]

Jabbari N, Feghhi M, Esnaashari O, Soraya H, Rezaie J. Inhibitory effects of gallic acid on the activity of exosomal secretory pathway in breast cancer cell lines: a possible anticancer impact. BioImpacts 2022; 12(6):549-59.

[73]

Soraya H, Sani NA, Jabbari N, Rezaie J. Metformin increases exosome biogenesis and secretion in u87 mg human glioblastoma cells: a possible mechanism of therapeutic resistance. Arch Med Res 2021; 52(2):151-62.

[74]

Wang X, Xing L, Yang R, Chen H, Wang M, Jiang R, et al. The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC. Mol Cancer 2021; 20(1):91.

[75]

Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 2016; 5(4):e1071008.

[76]

He Z, Wang J, Zhu C, Xu J, Chen P, Jiang X, et al. Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Lett 2022; 548:215751.

[77]

Zhou W, Zhou Y, Chen X, Ning T, Chen H, Guo Q, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials 2021; 268:120546.

[78]

Chen H, Jiang S, Zhang P, Ren Z, Wen J. Exosomes synergized with PIONs@E6 enhance their immunity against hepatocellular carcinoma via promoting M1 macrophages polarization. Int Immunopharmacol 2021;99: 107960.

[79]

Su MJ, Aldawsari H, Amiji M. Pancreatic cancer Cell exosome-mediated macrophage reprogramming and the role of microRNAs 155 and 125b2 transfection using nanoparticle delivery systems. Sci Rep 2016; 6:30110.

[80]

Tian T, Liang R, Erel-Akbaba G, Saad L, Obeid PJ, Gao J, et al. Immune checkpoint inhibition in GBM primed with radiation by engineered extracellular vesicles. ACS Nano 2022; 16(2):1940-53.

[81]

Talebi S, Abadi AJ, Kazemioula G, Hosseini N, Taheri F, Pourali S, et al. Expression analysis of five different long non-coding ribonucleic acids in nonsmall-cell lung cancer tumor and tumor-derived exosomes. Diagnostics 2022; 12(12):3209.

[82]

Gunassekaran GR, Poongkavithai Vadevoo SM, Baek MC, Lee B. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials 2021;278: 121137.

[83]

Liu M, Hu S, Yan N, Popowski KD, Cheng K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat Nanotechnol 2024; 19(4):565-75.

[84]

de Miguel-Perez D, Russo A, Gunasekaran M, Buemi F, Hester L, Fan X, et al. Baseline extracellular vesicle TGF- $\beta$ is a predictive biomarker for response to immune checkpoint inhibitors and survival in non-small cell lung cancer. Cancer 2023; 129(4):521-30.

[85]

Genova C, Tasso R, Rosa A, Rossi G, Reverberi D, Fontana V, et al. Prognostic role of soluble and extracellular vesicle-associated PD-L1, B7-H3 and B7-H4 in non-small cell lung cancer patients treated with immune checkpoint inhibitors. Cells 2023; 12(6):832.

[86]

Santoro J, Carrese B, Peluso MS, Coppola L, D'Aiuto M, Mossetti G, et al. Influence of breast cancer extracellular vesicles on immune cell activation: a pilot study. Biology (Basel) 2023; 12(12):1531.

[87]

Graham R, Gazinska P, Zhang B, Khiabany A, Sinha S, Alaguthurai T, et al. Serum-derived extracellular vesicles from breast cancer patients contribute to differential regulation of T-cell-mediated immune-escape mechanisms in breast cancer subtypes. Front Immunol 2023; 14:1204224.

[88]

Du R, You Q, Liu J, Wang C, Zhu L, Yang Y. Dual-functional extracellular vesicles enable synergistic treatment via m6A reader YTHDF1-targeting epigenetic regulation and chemotherapy. Nano Res 2023; 16(12):13309-21.

[89]

You Q, Wang F, Du R, Pi J, Wang H, Huo Y, et al. m6A reader YTHDF1-targeting engineered small extracellular vesicles for gastric cancer therapy via epigenetic and immune regulation. Adv Mater 2023; 35(8):e2204910.

[90]

Ji P, Yang Z, Li H, Wei M, Yang G, Xing H, et al. Smart exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast cancer. Mol Ther Nucleic Acids 2021; 26:987-96.

[91]

Cheng Q, Dai Z, Smbatyan G, Epstein AL, Lenz HJ, Zhang Y. Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes. Mol Ther 2022; 30(9):3066-77.

[92]

McAndrews KM, Che SPY, LeBleu VS, Kalluri R. Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances antitumor immunity. J Biol Chem 2021; 296:100523.

[93]

Nakazawa Y, Nishiyama N, Koizumi H, Kanemaru K, Nakahashi-Oda C, Shibuya A. Tumor-derived extracellular vesicles regulate tumor-infiltrating regulatory T cells via the inhibitory immunoreceptor CD300a. Elife 2021; 10:e61999.

[94]

Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018; 560(7718):382-6.

[95]

Xie M, Xiong W, She Z, Wen Z, Abdirahman AS, Wan W, et al. Immunoregulatory effects of stem cell-derived extracellular vesicles on immune cells. Front Immunol 2020; 11:13.

[96]

Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep 2018; 8(1):6065.

[97]

Phillips W, Willms E, Hill AF. Understanding extracellular vesicle and nanoparticle heterogeneity: novel methods and considerations. Proteomics 2021; 21(13-14):e2000118.

[98]

Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 2018; 9:738.

[99]

Keerthikumar S, Gangoda L, Liem M, Fonseka P, Atukorala I, Ozcitti C, et al. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget 2015; 6(17):15375-96.

[100]

Laulagnier K, Javalet C, Hemming FJ, Chivet M, Lachenal G, Blot B, et al. Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol Life Sci 2018; 75(4):757-73.

[101]

Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KE, Sadik M, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 2016; 6:22519.

[102]

Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123(9):3678-84.

[103]

Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527(7578):329-35.

[104]

Muhsin-Sharafaldine MR, Saunderson SC, Dunn AC, Faed JM, Kleffmann T, McLellan AD. Procoagulant and immunogenic properties of melanoma exosomes, microvesicles and apoptotic vesicles. Oncotarget 2016; 7(35):56279-94.

[105]

Zhou X, Jia Y, Mao C, Liu S. Small extracellular vesicles: non-negligible vesicles in tumor progression, diagnosis, and therapy. Cancer Lett 2024; 580:216481.

[106]

Yao C, Zhang H, Wang C. Recent advances in therapeutic engineered extracellular vesicles. Nanoscale 2024; 16(16):7825-40.

[107]

Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9(1):27.

[108]

Kouwaki T, Okamoto M, Tsukamoto H, Fukushima Y, Oshiumi H. Extracellular vesicles deliver host and virus RNA and regulate innate immune response. Int J Mol Sci 2017; 18(3):666.

[109]

Yang F, Xiong WQ, Li CZ, Wu MJ, Zhang XZ, Ran CX, et al. Extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis through the transport of microRNA-29a. World J Stem Cells 2024; 16(2):191-206.

[110]

Manzoor T, Saleem A, Farooq N, Dar LA, Nazir J, Saleem S, et al. Extracellular vesicles derived from mesenchymal stem cells-A novel therapeutic tool in infectious diseases. Inflamm Regen 2023; 43(1):17.

[111]

Qin J, Xu Q. Functions and application of exosomes. Acta Pol Pharm 2014; 71(4):537-43.

[112]

Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun Signal 2022; 20(1):145.

[113]

Nedaeinia R, Manian M, Jazayeri M, Ranjbar M, Salehi R, Sharifi M, et al. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther 2017; 24(2):48-56.

[114]

Li Q, Cai S, Li M, Salma KI, Zhou X, Han F, et al. Tumor-derived extracellular vesicles: their role in immune cells and immunotherapy. Int J Nanomedicine 2021;16: 5395-5409.

[115]

Wiklander OP, Brennan, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019; 11(492):eaav8521.

[116]

Abraham DJ. Exosomes and immunotherapy in nonhodgkin b-cell lymphomas (ExoReBLy). Available from: https://clinicaltrials.gov/study/NCT03985696.

[117]

Zhao ZCH. A companion diagnostic study to develop circulating exosomes as predictive biomarkers for the response to immunotherapy in renal cell carcinoma. Available from: https://clinicaltrials.gov/study/NCT05705583.

[118]

Wang DF, Zhang Y. Clinical study for combined analysis of CTC and exosomes on predicting the efficacy of immunotherapy in patients with hepatocellular carcinoma. Available from: https://clinicaltrials.gov/study/NCT05575622.

[119]

Wu K, Xing F, Wu SY, Watabe K. Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside. Biochim Biophys Acta Rev Cancer 2017; 1868(2):538-63.

[120]

Tang M, Chen Y, Li B, Sugimoto H, Yang S, Yang C, et al. Therapeutic targeting of STAT3 employing small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis. FASEB J 2021; 35(5):e21557.

[121]

Bao Q, Gong L, Wang J, Wen J, Shen Y, Zhang W. Extracellular vesicle RNA sequencing reveals dramatic transcriptomic alterations between metastatic and primary osteosarcoma in a liquid biopsy approach. Ann Surg Oncol 2018; 25:2642-51.

[122]

Ge X, Tang L, Wang Y, Wang N, Zhou J, Deng X, et al. The diagnostic value of exosomal miRNAs in human bile of malignant biliary obstructions. Dig Liver Dis 2021; 53(6):760-5.

[123]

Pazo-Cid RA Circulating exosomes as potential prognostic and predictive biomarkers in advanced gastric cancer patients ("EXO-PPP Study"). Available from: https://clinicaltrials.gov/study/NCT01779583.

[124]

Corsi PF. Characterization of extracellular vesicles in breast cancer patients. Available from: https://clinicaltrials.gov/study/NCT05798338.

[125]

Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci 2019; 6(24):1901779.

[126]

Reale A, Khong T, Spencer A. Extracellular vesicles and their roles in the tumor immune microenvironment. J Clin Med 2022; 11(23):6892.

[127]

Vulpis E, Loconte L, Peri A, Molfetta R, Caracciolo G, Masuelli L, et al. Impact on NK cell functions of acute versus chronic exposure to extracellular vesicle-associated MICA: dual role in cancer immunosurveillance. J Extracell Vesicles 2022; 11(1):e12176.

[128]

Pirisinu M, Pham TC, Zhang DX, Hong TN, Nguyen LT, Le MTN. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2022; 80:340-55.

[129]

Wang K, Zhang X, Ye H, Wang X, Fan Z, Lu Q, et al. Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy. Nat Commun 2023; 14(1):6748.

[130]

Ji G, Feng S, Ren H, Chen W, Chen R. Exosomes released from macrophages infected with Talaromyces marneffei activate the innate immune responses and decrease the replication. Immun Inflamm Dis 2023; 11(6):e881.

[131]

Shyu KG, Wang BW, Fang WJ, Pan CM, Lin CM. Exosomal MALAT1 derived from high glucose-treated macrophages up-regulates resistin expression via miR-150-5p downregulation. Int J Mol Sci 2022; 23(3):1095.

[132]

Philipp JH, Julia M, Julia K, Julia KP, Barbara T, Christoph K, et al. Alternative activation of human macrophages enhances tissue factor expression and production of extracellular vesicles. Haematologica 2021; 106(2):454-63.

[133]

Youn YJ, Shrestha S, Lee YB, Kim JK, Lee JH, Hur K, et al. Neutrophil-derived trail is a proinflammatory subtype of neutrophil-derived extracellular vesicles. Theranostics 2021; 11(6):2770-87.

[134]

Yang P, Peng Y, Feng Y, Xu Z, Feng P, Cao J, et al. Immune cell-derived extracellular vesicles-new strategies in cancer immunotherapy. Front Immunol 2021; 12:771551.

[135]

Karami Fath M, Azami J, Jaafari N, Oryani MA, Jafari N, poor AK, et al. Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett 2022; 27(1): 74.

[136]

Saunderson SC, McLellan AD. Role of lymphocyte subsets in the immune response to primary b cell-derived exosomes. J Immunol 2017; 199(7):2225-35.

[137]

Wang X, Zhang Y, Chung Y, Tu CR, Zhang W, Mu X, et al. Tumor vaccine based on extracellular vesicles derived from $\gamma \delta$ -T cells exerts dual antitumor activities. J Extracell Vesicles 2023; 12(9):e12360.

[138]

Linder M, von Strandmann EP.The role of extracellular HSP70 in the function of tumor-associated immune cells. Cancers (Basel) 2021; 13(18):4721.

[139]

Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 2008; 16(4):782-90.

[140]

Santos P, Almeida F. Exosome-based vaccines: history, current state, and clinical trials. Front Immunol 2021; 12:711565.

[141]

Han J, Kim S, Hwang YH, Kim SA, Lee Y, Kim J, et al. Novel personalized cancer vaccine using tumor extracellular vesicles with attenuated tumorigenicity and enhanced immunogenicity. Adv Sci 2024; 11(25):e2308662.

[142]

Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 2016; 126(4):1224-32.

[143]

Viaud S, Théry C, Ploix S, Tursz T, Lapierre V, Lantz O, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res 2010; 70(4):1281-5.

[144]

Wahlund CJ, Güclüler G, Hiltbrunner S, Veerman RE, Näslund TI, Gabrielsson S. Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo. Sci Rep 2017; 7(1): 17095.

[145]

Nikfarjam S, Rezaie J, Kashanchi F, Jafari R. Dexosomes as a cell-free vaccine for cancer immunotherapy. J Exp Clin Cancer Res 2020; 39(1):258.

[146]

Morse MA, GarstJ, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 2005; 3(1):9.

[147]

Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 2012; 1(7):1074-83.

[148]

Wu M, Wang M, Jia H, Wu P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv 2022; 29(1):2513-38.

[149]

Gonzalez-Melero L, Hernandez RM, Santos-Vizcaino E, Igartua M. Tumour-derived extracellular vesicle based vaccines for melanoma treatment. Drug Deliv Transl Res 2023; 13(5):1520-42.

[150]

Zhang M, Ono M, Kawaguchi S, Iida M, Chattrairat K, Zhu Z, et al. On-site stimulation of dendritic cells by cancer-derived extracellular vesicles on a core-shell nanowire platform. ACS Appl Mater Interfaces 2024; 16(23):29570-80.

[151]

Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 2010; 120(2):457-71.

[152]

Deng ZB, Zhuang X, Ju S, Xiang X, Mu J, Liu Y, et al. Exosome-like nanoparticles from intestinal mucosal cells carry prostaglandin E2 and suppress activation of liver NKT cells. J Immunol 2013; 190(7):3579-89.

[153]

Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3K $\gamma$ to promote pancreatic cancer metastasis. Cancer Res 2018; 78(16):4586-98.

[154]

Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 2016; 74:103-41.

[155]

Wang L, Sun Z, Wang H. Extracellular vesicles and the regulation of tumor immunity: current progress and future directions. J Cell Biochem 2021; 122(7):760-9.

[156]

Yaddanapudi K, Meng S, Whitt AG, Al Rayyan N, Richie J, Tu A, et al. Exosomes from GM-CSF expressing embryonic stem cells are an effective prophylactic vaccine for cancer prevention. Oncoimmunology 2019; 8(3):1561119.

[157]

Qiu Y, Yang Y, Yang R, Liu C, Hsu JM, Jiang Z, et al. Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene 2021; 40(31):4992-5001.

[158]

Shoae-Hassani A, Hamidieh AA, Behfar M, Mohseni R, Mortazavi-Tabatabaei SA, Asgharzadeh S. NK cell-derived exosomes from nk cells previously exposed to neuroblastoma cells augment the antitumor activity of cytokine-activated nk cells. J Immunother 2017; 40(7):265-76.

[159]

Zhu L, Dong D, Yu ZL, Zhao YF, Pang DW, Zhang ZL. Folate-engineered microvesicles for enhanced target and synergistic therapy toward breast cancer. ACS Appl Mater Interfaces 2017; 9(6):5100-8.

[160]

Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, et al. M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors. ACS nano 2018; 12(9):8977-93.

[161]

Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120.

[162]

Wang S, Guo J, Bai Y, Sun C, Wu Y, Liu Z, et al. Bacterial outer membrane vesicles as a candidate tumor vaccine platform. Front Immunol 2022; 13:987419.

[163]

Grandi A, Fantappiè L, Irene C, Valensin S, Tomasi M, Stupia S, et al. Vaccination with a FAT1-derived B cell epitope combined with tumor-specific B and T cell epitopes elicits additive protection in cancer mouse models. Front Oncol 2018; 8:481.

[164]

Gener P, Gonzalez Callejo P, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, et al. The potential of nanomedicine to alter cancer stem cell dynamics: the impact of extracellular vesicles. Nanomed: Nanotechnol, biol, Med 2020; 15(29):2785-800.

[165]

Sun Z, Wang L, Dong L, Wang X. Emerging role of exosome signalling in maintaining cancer stem cell dynamic equilibrium. J Cell Mol Med 2018; 22(8):3719-28.

[166]

Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106:148-56.

[167]

Wang X, Ning S, Tao W, Wang K, Li J, Huang L, et al. Cytomembrane-targeted photodynamic priming triggers extracellular vesicle storm for deep penetration and complete destruction of bladder cancer. Nano Today 2024; 56:102311.

[168]

de Jong OG, Kooijmans SAA, Murphy DE, Jiang L, Evers MJW, Sluijter JPG, et al. Drug delivery with extracellular vesicles: from imagination to innovation. Acc Chem Res 2019; 52(7):1761-70.

[169]

Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics 2019; 9(26):8001-17.

[170]

Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials-an ISEV position paper. J Extracell Vesicles 2015; 4(1):30087.

[171]

Gonzalez MJ, Kweh MF, Biava PM, Olalde J, Toro AP, Goldschmidt-Clermont PJ, et al. Evaluation of exosome derivatives as bio-informational reprogramming therapy for cancer. J Transl Med 2021; 19(1):103.

[172]

Manoochehri H, Sheykhhasan M, Pourjafar M, Saidijam M. Exosomes and their role in cancer development, diagnosis and therapy. Res Mol Med (RMM) 2018; 6(1):1-4.

[173]

Ulpiano C, da Silva CL, Monteiro GA. Bioengineered mesenchymal-stromal-cell-derived extracellular vesicles as an improved drug delivery system: methods and applications. Biomedicines 2023; 11(4):1231.

[174]

Cordani N, Lisini D, Coccè V, Paglia G, Meanti R, Cerrito MG, et al. Conditioned medium of mesenchymal stromal cells loaded with paclitaxel is effective in preclinical models of triple-negative breast cancer (TNBC). Int J Mol Sci 2023; 24(6):5864.

[175]

O'Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, Rani S, et al. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget 2015; 6(32):32774-89.

[176]

Zeng H, Guo S, Ren X, Wu Z, Liu S, Yao X. Current strategies for exosome cargo loading and targeting delivery. Cells 2023; 12(10):1416.

[177]

Hernandez-Oller L, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, et al. Extracellular vesicles as drug delivery systems in cancer. Pharmaceutics 2020; 12(12): 1146.

[178]

García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell Vesicles 2018; 7(1):1422676.

[179]

Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed: Nanotechnol, Biol Med 2016; 12(3):655-64.

[180]

Bahmani L, Ullah M. Different sourced extracellular vesicles and their potential applications in clinical treatments. Cells 2022; 11(13):1989.

[181]

Burnouf T, Agrahari V, Agrahari V. Extracellular vesicles as nanomedicine: hopes and hurdles in clinical translation. Int J Nanomed 2019; 14:8847-59.

[182]

Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SEL, et al. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev 2020; 159:332-43.

[183]

Gilligan KE, Dwyer RM. Extracellular vesicles for cancer therapy: impact of host immune response. Cells 2020; 9(1):224.

[184]

Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv 2020; 27(1):585-98.

[185]

Sil S, Dagur RS, Liao K, Peeples ES, Hu G, Periyasamy P, et al. Strategies for the use of extracellular vesicles for the delivery of therapeutics. J Neuroimmune Pharmacol 2020; 15(3):422-42.

[186]

Li YJ, Wu JY, Hu XB, Wang JM, Xiang DX. Autologous cancer cell-derived extracellular vesicles as drug-delivery systems: a systematic review of preclinical and clinical findings and translational implications. Nanomedicine (Lond) 2019; 14(4):493-509.

[187]

Wang CK, Tsai TH, Lee CH. Regulation of exosomes as biologic medicines: regulatory challenges faced in exosome development and manufacturing processes. Clin Transl Sci 2024; 17(8):e13904.

[188]

Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Physiol-Cell Physiol 2019:C29-39.

[189]

Shi R, Wang PY, Li XY, Chen JX, Li Y, Zhang XZ, et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 2015; 6(29):26971.

[190]

Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular vesicles in liquid biopsies as biomarkers for solid tumors. Cancers (Basel) 2023; 15(4):1307.

[191]

Stevic I, Buescher G, Ricklefs FL. Monitoring therapy efficiency in cancer through extracellular vesicles. Cells 2020; 9(1):130.

[192]

Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer. Cell 2023; 186(8):1610-26.

[193]

Yang S, Che SP, Kurywchak P, Tavormina JL, Gansmo LB, Correa de Sampaio P, et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer biol Ther 2017; 18(3):158-65.

[194]

Silva J, Garcia V, Rodriguez M, Compte M, Cisneros E, Veguillas P, et al. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer 2012; 51(4):409-18.

[195]

König L, Kasimir-Bauer S, Bittner AK, Hoffmann O, Wagner B, Santos Manvailer LF, et al. Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. Oncoimmunology 2018; 7(1):e1376153.

[196]

Sun B, Li Y, Zhou Y, Ng TK, Zhao C, Gan Q, et al. Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J Cell Physiol 2019; 234(2):1416-25.

[197]

Aubertin K, Silva AK, Luciani N, Espinosa A, Djemat A, Charue D, et al. Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci Rep 2016; 6(1):35376.

[198]

Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, et al. Exosomes derived from squamous head and neck cancer promote cell survival after ionizing radiation. PLoS one 2016; 11(3):e0152213.

[199]

Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH, et al. Serum exosome microRNA as a minimally-invasive early biomarker of AML. Sci Rep 2015; 5(1):11295.

[200]

Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523(7559):177-82.

[201]

Jeon H, Seo SM, Kim TW, Ryu J, Kong H, Jang SH, et al. Circulating exosomal miR-1290 for diagnosis of epithelial ovarian cancer. Curr Issues Mol Biol 2022; 44(1): 288-300.

[202]

Jang JW, Kim JM, Kim HS, Kim JS, Han JW, Lee SK, et al. Diagnostic performance of serum exosomal miRNA-720 in hepatocellular carcinoma. J Liver Cancer 2022; 22(1):30-9.

[203]

Zhu Z, Chen Z, Wang M, Zhang M, Chen Y, Yang X, et al. Detection of plasma exosomal miRNA-205 as a biomarker for early diagnosis and an adjuvant indicator of ovarian cancer staging. J Ovarian Res 2022; 15(1):27.

[204]

Zhang ZJ, Song XG, Xie L, Wang KY, Tang YY, Yu M, et al. Circulating serum exosomal miR-20b-5p and miR-3187-5p as efficient diagnostic biomarkers for early-stage non-small cell lung cancer. Exp Biol Med (Maywood) 2020; 245(16):1428-36.

[205]

Shi E, Ye J, Zhang R, Ye S, Zhang S, Wang Y, et al. A combination of circRNAs as a diagnostic tool for discrimination of papillary thyroid cancer. OncoTargets Ther 2020; 13:4365-72.

[206]

Luo R, Liu H, Chen J. Reduced circulating exosomal miR-382 predicts unfavorable outcome in non-small cell lung cancer. Int J Clin Exp Pathol 2021; 14(4):469-74.

[207]

Qiao D, Gu C, Wang W, Yan W, Jiang C, Hu J, et al. Tumor-originated exosomal hsa-miR-3937 as a minimally invasive early biomarker for liquid biopsy of colorectal cancer. J Oncol 2022; 2022:6990955.

[208]

Kan JY, Shih SL, Yang SF, Chu PY, Chen FM, Li CL, et al. Exosomal microRNA-92b is a diagnostic biomarker in breast cancer and targets survival-related MTSS1L to promote tumorigenesis. Int J Mol Sci 2024; 25(2):1295.

[209]

Wu Y, Zhang J, Lin F, Zhao Y, Zheng B, Zhou N, et al. Exosomal miR-1470 is a diagnostic biomarker and promotes cell proliferation and metastasis in colorectal cancer. Cancer Med 2024; 13(7):e7117.

[210]

Liu J, Yoo J, Ho JY, Jung Y, Lee S, Hur SY, et al. Plasma-derived exosomal miR-4732-5p is a promising noninvasive diagnostic biomarker for epithelial ovarian cancer. J Ovarian Res 2021; 14(1):59.

[211]

Zhao W, Zhang Y, Zhang W, Sun Y, Zheng B, Wang J, et al. Exosomal LINC00355 promotes the malignant progression of gastric cancer through histone deacetylase HDAC3-mediated TP53INP1 transcriptional inhibition. Life Sci 2023; 315:121387.

[212]

Yin H, Hu J, Ye Z, Chen S, Chen Y. Serum long non-coding RNA NNT-AS1 protected by exosome is a potential biomarker and functions as an oncogene via the miR-496/RAP2C axis in colorectal cancer. Mol Med Rep 2021; 24(2):585.

[213]

Zhou X, Kong X, Lu J, Wang H, Liu M, Zhao S, et al. Circulating tumor cell-derived exosome-transmitted long non-coding RNA TTN-AS1 can promote the proliferation and migration of cholangiocarcinoma cells. J Nanobiotechnol 2024; 22(1):191.

[214]

Sharma D, Singh A, Wilson C, Swaroop P, Kumar S, Yadav DK, et al. Exosomal long non-coding RNA MALAT1: a candidate of liquid biopsy in monitoring of Wilms' tumor. Pediatr Surg Int 2024; 40(1):57.

[215]

Yu M, Song XG, Zhao YJ, Dong XH, Niu LM, Zhang ZJ, et al. Circulating serum exosomal long non-coding RNAs FOXD2-AS1, NRIR, and XLOC_ 009459 as diagnostic biomarkers for colorectal cancer. Front Oncol 2021; 11:618967.

[216]

Cui Y, Zhang W, Lu W, Feng Y, Wu X, Zhuo Z, et al. An exosome-derived lncRNA signature identified by machine learning associated with prognosis and biomarkers for immunotherapy in ovarian cancer. Front Immunol 2024; 15:1228235.

[217]

Min L, Zhu T, Lv B, An T, Zhang Q, Shang Y, et al. Exosomal LncRNA RP5-977 B1 as a novel minimally invasive biomarker for diagnosis and prognosis in non-small cell lung cancer. Int J Clin Oncol 2022; 27(6):1013-24.

[218]

Yao J, Hua X, Shi J, Hu X, Lui K, He K, Mai J, et al. LncRNA THEMIS2-211, a tumor-originated circulating exosomal biomarker, promotes the growth and metastasis of hepatocellular carcinoma by functioning as a competing endogenous RNA. FASEB J 2022; 36(4):e22238.

[219]

Bian B, Li L, Ke X, Chen H, Liu Y, Zheng N, et al. Urinary exosomal long non-coding RNAs as noninvasive biomarkers for diagnosis of bladder cancer by RNA sequencing. Front Oncol 2022; 12:976329.

[220]

Chen Q, Wang H, Li Z, Li F, Liang L, Zou Y, et al. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD 7 transcription. J Hepatol 2022; 76(1):135-47.

[221]

Liu S, Wu X, Wang Y, Chen Y. Exosomal circ_0000735 contributes to non-small lung cancer malignant progression. J Biochem Mol Toxicol 2024; 38(4):e23700.

[222]

Deng C, Huo M, Chu H, Zhuang X, Deng G, Li W, et al. Exosome circATP8A1 induces macrophage M2 polarization by regulating the miR-1-3p/STAT6 axis to promote gastric cancer progression. Mol Cancer 2024; 23(1):49.

[223]

Roy S, Kanda M, Nomura S, Zhu Z, Toiyama Y, Taketomi A, et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol Cancer 2022; 21(1):42.

[224]

Yu J, Ding WB, Wang MC, Guo XG, Xu J, Xu QG, et al. Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma: a large-scale, multicenter study. Int J Cancer 2020; 146(6):1754-63.

[225]

Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, et al. IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP 3 axis. J Exp Clin Cancer Res 2022; 41(1): 347.

[226]

Zheng R, Zhang K, Tan S, Gao F, Zhang Y, Xu W, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD 4 via METTL3-eIF3h interaction. Mol Cancer 2022; 21(1):49.

[227]

Liu D, Li C, Trojanowicz B, Li X, Shi D, Zhan C, et al. CD97 promotion of gastric carcinoma lymphatic metastasis is exosome dependent. Gastric Cancer 2016; 19(3):754-66.

[228]

Fujii N, Yashiro M, Hatano T, Fujikawa H, Motomura H. CD9-positive exosomes derived from cancer-associated fibroblasts might inhibit the proliferation of malignant melanoma cells. Anticancer Res 2023; 43(1):25-33.

[229]

Nambara S, Masuda T, Hirose K, Hu Q, Tobo T, Ozato Y, et al. Rab27b, a regulator of exosome secretion, is associated with peritoneal metastases in gastric cancer. Cancer Genomics Proteomics 2023; 20(1):30-9.

[230]

Tian Y, Liu C, Li Z, Ai M, Wang B, Du K, et al. Exosomal B7-H 4 from irradiated glioblastoma cells contributes to increase FoxP3 expression of differentiating Th1 cells and promotes tumor growth. Redox Biol 2022; 56:102454.

[231]

Qin X, Niu R, Tan Y, Huang Y, Ren W, Zhou W, et al. Exosomal PSM-E inhibits macrophage M2 polarization to suppress prostate cancer metastasis through the RACK 1 signaling axis. Biomarker Res 2024; 12(1):138.

[232]

Li K, Xue W, Lu Z, Wang S, Zheng J, Lu K, et al. Tumor-derived exosomal ADAM17 promotes pre-metastatic niche formation by enhancing vascular permeability in colorectal cancer. J Exp Clin Cancer Res 2024; 43(1):59.

[233]

Feng X, Liu X, Xiang J, Xu J, Yin N, Wang L, et al. Exosomal ITGB6 from dormant lung adenocarcinoma cells activates cancer-associated fibroblasts by KLF10 positive feedback loop and the TGF- $\beta$ pathway. Transl Lung Cancer Res 2023; 12(12):2520-37.

[234]

Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, Li H, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 2014; 147(2):423-31.

[235]

Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012; 227(2):658-67.

[236]

Del Re M, Marconcini R, Pasquini G, Rofi E, Vivaldi C, Bloise F, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. BrJ Cancer 2018; 118(6):820-4.

[237]

Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 2015; 6(1):6999.

[238]

Yu Q, Li P, Weng M, Wu S, Zhang Y, Chen X, et al. Nano-vesicles are a potential tool to monitor therapeutic efficacy of carbon ion radiotherapy in prostate cancer. J Biomed Nanotechnol 2018; 14(1):168-78.

[239]

Biggs CN, Siddiqui KM, Al-Zahrani AA, Pardhan S, Brett SI, Guo QQ, et al. Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget 2016; 7 (8):8839-49.

[240]

Stevic I, Müller V, Weber K, Fasching PA, Karn T, Marmé F, et al. Specific microRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the GeparSixto trial. BMC Med 2018; 16(1):1-16.

[241]

Tang S, Zheng K, Tang Y, Li Z, Zou T, Liu D. Overexpression of serum exosomal HOTAIR is correlated with poor survival and poor response to chemotherapy in breast cancer patients. J Biosci 2019; 44(1):1-8.

[242]

Giampieri R, Piva F, Occhipinti G, Bittoni A, Righetti A, Pagliaretta S, et al. Clinical impact of different exosomes' protein expression in pancreatic ductal carcinoma patients treated with standard first line palliative chemotherapy. PLoS One 2019; 14(5):e0215990.

[243]

Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun 2020; 11(1):3801.

[244]

Fu F, Jiang W, Zhou L, Chen Z. Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol 2018; 11(2):221-32.

[245]

Yamamoto H, Watanabe Y, Oikawa R, Morita R, Yoshida Y, Maehata T, et al. BARHL2 methylation using gastric wash DNA or gastric juice exosomal DNA is a useful marker for early detection of gastric cancer in an h. pylori-independent manner. Clin Transl Gastroenterol 2016; 7(7):e184.

[246]

McKiernan J, Donovan MJ, O'Neill V, Bentink S, Noerholm M, Belzer S, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2016; 2(7):882-9.

[247]

Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, Pingle S, et al. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 2013; 8(10):e78115.

[248]

Ikeda C, Haga H, Makino N, Inuzuka T, Kurimoto A, Ueda T, et al. Utility of Claudin-3 in extracellular vesicles from human bile as biomarkers of cholangiocarcinoma. Sci Rep 2021; 11(1):1195.

[249]

Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V, et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol 2017; 28(4):741-7.

[250]

Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, et al. Isolation and characterization of exosomes for cancer research. J Hematol Oncol 2020; 13:1-24.

[251]

Li X, Li C, Zhang L, Wu M, Cao K, Jiang F, et al. The significance of exosomes in the development and treatment of hepatocellular carcinoma. Mol Cancer 2020; 19:1-11.

[252]

Sun F, Wang JZ, Luo JJ, Wang YQ, Pan Q. Exosomes in the oncobiology, diagnosis, and therapy of hepatic carcinoma: a new player of an old game. BioMed Res Int 2018; 2018:1-15.

[253]

Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019; 8(7):727.

[254]

Ruan S, Greenberg Z, Pan X, Zhuang P, Erwin N, He M. Extracellular vesicles as an advanced delivery biomaterial for precision cancer immunotherapy. Adv Healthc Mater 2022; 11(5):2100650.

[255]

Syn NL, Wang L, Chow EKH, Lim CT, Goh BC. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol 2017; 35(7):665-76.

[256]

Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J 2018; 20(1):1-7.

[257]

Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, et al. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther 2023; 8(1):124.

PDF (3385KB)

115

Accesses

0

Citation

Detail

Sections
Recommended

/