Macrophage-centered therapy strategies: A promising weapon in cancer immunotherapy

Simiao Wang , Jiayi Liu , Yaxin Cui , Man Sun , Wei Wang , Jiayi Chen , Jingkai Gu , Zhaogang Yang

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (5) : 101063

PDF (4007KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (5) :101063 DOI: 10.1016/j.ajps.2025.101063
Review artices
research-article

Macrophage-centered therapy strategies: A promising weapon in cancer immunotherapy

Author information +
History +
PDF (4007KB)

Abstract

Macrophages are critical phagocytes in the immune system, and tumor-infiltrating macrophages can substantially influence the efficacy and prognosis of immunotherapy. Therefore, macrophages may serve as therapeutic targets for modulating the tumor immune microenvironment. Macrophage-based drug delivery systems have been extensively evaluated owing to their excellent biocompatibility, long half-life, and inherent ability to migrate and accumulate at sites of inflammation, such as tumors. Live macrophages and their membrane coatings contain abundant receptor proteins that facilitate payload transport across physiological barriers. In this review, we discuss strategies that utilize macrophages as targets and delivery carriers for cancer immunotherapy. Here, we summarize the different macrophage phenotypes, tumor-associated macrophagetargeting strategies, and biomimetic delivery carriers derived from macrophages used in immunotherapy. Overall, macrophage-centered strategies for cancer therapy hold considerable promise for clinical applications.

Keywords

Macrophages / Immunotherapy / Drug delivery system / Membrane coatings / Extracellular vesicles

Cite this article

Download citation ▾
Simiao Wang, Jiayi Liu, Yaxin Cui, Man Sun, Wei Wang, Jiayi Chen, Jingkai Gu, Zhaogang Yang. Macrophage-centered therapy strategies: A promising weapon in cancer immunotherapy. Asian Journal of Pharmaceutical Sciences, 2025, 20(5): 101063 DOI:10.1016/j.ajps.2025.101063

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Acknowledgments

This manuscript was partially supported by the Foundation of Jilin Science-Technology Committee [20250206003ZP; 20230402042GH, Z.Y.], National Natural Science of China [21HAA01203, Z.Y.; Grant No 82030107, J.G.], and Graduate Innovation Fund of Jilin University (2024CX203, M.S.; 2025CX129, J.C.). The authors would like to thank Yujin Chen, Hainan Overseas Chinese Middle School, Class 29, for assisting with the drawing of the figures. We further acknowledge the support of BioRender.com, which was used to create all the artwork in this manuscript.

References

[1]

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024;74( 1):12-49.

[2]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71( 3):209-49.

[3]

Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin 2020;70( 2):86104.

[4]

Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 2017; 3(10):250-61.

[5]

Chen J, Hu S, Liu J, Jiang H, Wang S, Yang Z. Exosomes: a double-edged sword in cancer immunotherapy. MedComm 2025; 6(3):e70095.

[6]

Gao F, Liu X, Ma Z, Tang M, Tang Z, Wu J, et al. An integrated modular vaccination system for spatiotemporally separated perioperative cancer immunotherapy. Adv Mater 2025; 37(11):e2418322.

[7]

Lu Y, Huntoon K, Lee D, Wang Y, Ha J, Qie Y, et al. Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy. Nat Nanotechnol 2022; 17(12):1332-41.

[8]

Lai J, Mardiana S, House IG, Sek K, Henderson MA, Giuffrida L, et al. Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nat Immunol 2020; 21(8):914-26.

[9]

Finck A, Gill SI, June CH. Cancer immunotherapy comes of age and looks for maturity. Nat Commun 2020; 11(1):3325.

[10]

Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480(7378):480-9.

[11]

Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater 2019; 4(6):398-414.

[12]

Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, et al. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci 2024;193: 106688.

[13]

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 2018; 16(1):71.

[14]

Pombo Garcia K, Zarschler K, Barbaro L, Barreto JA, O'Malley W, Spiccia L, et al. Zwitterionic-coated stealth nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 2014; 10(13):2516-29.

[15]

Chen S, Saeed A, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8(1):207.

[16]

Fidler IJ. Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages. Cancer Res 1974; 34(5):1074-8.

[17]

Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446):445-55.

[18]

Guo Q Jin Z, Yuan Y, Liu R, Xu T, Wei H, et al. New mechanisms of tumor-associated macrophages on promoting tumor progression: recent research advances and potential targets for tumor immunotherapy. J Immunol Res 2016; 2016:9720912.

[19]

Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG, et al. Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: a new approach to cancer immunotherapy. Cancer Res 1990; 50(23):7450-6.

[20]

Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108(27):10980-5.

[21]

Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8(1):61-8.

[22]

Chen C, Song M, Du Y, Yu Y, Li C, Han Y, et al. Tumor-associated-macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Lett 2021; 21(13):5522-31.

[23]

Snyder CM, Gill SI. Good CARMA: turning bad tumor-resident myeloid cells good with chimeric antigen receptor macrophages. Immunol Rev 2023; 320(1):236-49.

[24]

Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer 2011; 12(1):58-67.

[25]

Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017; 14(7):399-416.

[26]

Lazarov T, Juarez-Carreno S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618(7966):698-707.

[27]

Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12):958-69.

[28]

DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 2019; 19(6):369-82.

[29]

Kelly A, Grabiec AM, Travis MA. Culture of human monocyte-derived macrophages. Methods Mol Biol 2018; 1784:1-11.

[30]

Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater 2020; 32(40):e2002054.

[31]

Pei Y, Yeo Y. Drug delivery to macrophages: challenges and opportunities. J Control Release 2016; 240:202-11.

[32]

Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021; 9(1):e001341.

[33]

Weigert A, Brüne B. Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 2008; 19(2):95-102.

[34]

Wroblewska A, Szczygiel A, Szermer-Olearnik B, Pajtasz-Piasecka E. Macrophages as promising carriers for nanoparticle delivery in anticancer therapy. Int J Nanomed 2023; 18:4521-39.

[35]

Qin H, Holdbrooks AT, Liu Y, Reynolds SL, Yanagisawa LL, Benveniste EN. SOCS 3 deficiency promotes M1 macrophage polarization and inflammation. J Immunol 2012; 189(7):3439-48.

[36]

Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877:173090.

[37]

Wang P, Geng J, Gao J, Zhao H, Li J, Shi Y, et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf 2 axis. Nat Commun 2019; 10(1):755.

[38]

Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 2019; 5(12):822-34.

[39]

Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19(10):1079-101.

[40]

Tang L, Yin Y, Cao Y, Fu C, Liu H, Feng J, et al. Extracellular vesicles-derived hybrid nanoplatforms for amplified CD 47 blockade-based cancer immunotherapy. Adv Mater 2023; 35(35):e2303835.

[41]

Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25(12):677-86.

[42]

Yao Y, Xu X, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol 2019; 10:792.

[43]

Wang L, Zhang S, Wu H, Rong X, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol 2019; 106(2):345-58.

[44]

Xue Y, Yan X, Li D, Dong S, Ping Y. Proinflammatory polarization of engineered heat-inducible macrophages reprogram the tumor immune microenvironment during cancer immunotherapy. Nat Commun 2024; 15(1): 2270.

[45]

Laskarin G, Cupurdija K, Tokmadzic V, Dorcic D, Dupor J, Juretic K, et al. The presence of functional mannose receptor on macrophages at the maternal-fetal interface. Hum Reprod 2005; 20(4):1057-66.

[46]

Boskovic J, Arnold JN, Stilion R, Gordon S, Sim RB, Rivera-Calzada A, et al. Structural model for the mannose receptor family uncovered by electron microscopy of Endo180 and the mannose receptor. J Biol Chem 2006; 281(13):8780-7.

[47]

Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011; 11(11):750-61.

[48]

Shabo I, Olsson H, Elkarim R, Sun X, Svanvik J. Macrophage infiltration in tumor stroma is related to tumor cell expression of CD163 in colorectal cancer. Cancer Microenviron 2014; 7(1-2):61-9.

[49]

Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol 2022; 19(6):424.

[50]

Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov 2022; 21(11):799-820.

[51]

Kielbassa K, Vegna S, Ramirez C, Akkari L. Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front Immunol 2019; 10:2215.

[52]

Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164(12):6166-73.

[53]

Singhal S, Stadanlick J, Annunziata MJ, Rao AS, Bhojnagarwala PS, O'Brien S, et al. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med 2019; 11(479):eaat1500.

[54]

Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, et al. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol 2024; 8(1):31.

[55]

Gocheva V, Wang H, Gadea B, Shree T, Hunter K, Garfall A, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 2010; 24(3):241-55.

[56]

Xu W, Wu Y, Liu W, Anwaier A, Tian X, Su J, et al. Tumor-associated macrophage-derived chemokine CCL5 facilitates the progression and immunosuppressive tumor microenvironment of clear cell renal cell carcinoma. Int J Biol Sci 2022; 18(13):4884-900.

[57]

Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, et al. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF- $\beta$ signaling pathway. J Exp Clin Cancer Res 2019; 38(1):310.

[58]

Krstic J, Santibanez JF. Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. ScientificWorldJ 2014; 2014:521754.

[59]

Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 2017; 9(389):eaal3604.

[60]

Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, et al. Roles of tumor-associated macrophages in anti-PD-1/PD-L 1 immunotherapy for solid cancers. Mol Cancer 2023; 22(1):58.

[61]

Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol 2016; 17(1):2-8.

[62]

Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol 2013; 14(10):986-95.

[63]

Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol 2009; 9(4):259-70.

[64]

London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 2013; 7:34.

[65]

Byrne AJ, Mathie SA, Gregory LG, Lloyd CM. Pulmonary macrophages: key players in the innate defence of the airways. Thorax 2015; 70(12):1189-96.

[66]

Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 2014; 14(2):81-93.

[67]

Del Prete A, Wu Q. Editorial: tissue-resident immune cells in tumor immunity and immunotherapy. Front Cell Dev Biol 2022; 10:1068720.

[68]

Mu X, Li Y, Fan G. Tissue-resident macrophages in the control of infection and resolution of inflammation. Shock 2021; 55(1):14-23.

[69]

Li L, Sun F, Han L, Liu X, Xiao Y, Gregory A, et al. PDLIM2 repression by ROS in alveolar macrophages promotes lung tumorigenesis. JCI Insight 2021; 6(5):e144394.

[70]

Taniguchi S, Matsui T, Kimura K, Funaki S, Miyamoto Y, Uchida Y, et al. In vivo induction of activin A -producing alveolar macrophages supports the progression of lung cell carcinoma. Nat Commun 2023; 14(1):143.

[71]

Shang C, Sun Y, Wang Y, Shi H, Han X, Mo Y, et al. CXCL10 conditions alveolar macrophages within the premetastatic niche to promote metastasis. Cancer Lett 2022; 537:215667.

[72]

Wen S, Ager E, Christophi C. Bimodal role of Kupffer cells during colorectal cancer liver metastasis. Cancer Biol Ther 2013; 14(7):606-13.

[73]

Wamhoff E, Schulze J, Bellmann L, Rentzsch M, Bachem G, Fuchsberger F, et al. A specific, glycomimetic langerin ligand for human langerhans cell targeting. ACS Cent Sci 2019; 5(5):808-20.

[74]

Muraoka D, Seo N, Hayashi T, Tahara Y, Fujii K, Tawara I, et al. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Invest 2019; 129(3):1278-94.

[75]

Logtenberg M, Scheeren F, Schumacher T. The CD47-sirp a immune checkpoint. Immunity 2020; 52(5):742-52.

[76]

Baldanzi G. Immune checkpoint receptors signaling in T cells. Int J Mol Sci 2022; 23(7):3529.

[77]

Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841.

[78]

Matlung H, Szilagyi K, Barclay N, van den Berg T. The CD47-sirp a signaling axis as an innate immune checkpoint in cancer. Immunol Rev 2017; 276(1):145-64.

[79]

Morrissey M, Kern N, Vale R. CD 47 ligation repositions the inhibitory receptor SIRPA to suppress integrin activation and phagocytosis. Immunity 2023; 56(9):2172.

[80]

Uger R, Johnson L. Blockade of the CD47-sirp a axis: a promising approach for cancer immunotherapy. Expert Opin Biol Ther 2020; 20(1):5-8.

[81]

Chen Q Wang C, Zhang X, Chen G, Hu Q, Li H, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol 2019; 14(1):89-97.

[82]

Rao L, Zhao S, Wen C, Tian R, Lin L, Cai B, et al. Activating macrophage-mediated cancer immunotherapy by genetically edited nanoparticles. Adv Mater 2020; 32(47):e2004853.

[83]

Lakhani N, Chow L, Gainor J, LoRusso P, Lee K, Chung H, et al. Evorpacept alone and in combination with pembrolizumab or trastuzumab in patients with advanced solid tumours ( ASPEN-01): a first-in-human, open-label, multicentre, phase 1 dose-escalation and dose-expansion study. Lancet Oncol 2021; 22(12):1740-51.

[84]

Kuo T, Chen A, Harrabi O, Sockolosky J, Zhang A, Sangalang E, et al. Targeting the myeloid checkpoint receptor SIRP a potentiates innate and adaptive immune responses to promote anti-tumor activity. J Hematol Oncol 2020; 13(1):160.

[85]

Gauttier V, Pengam S, Durand J, Biteau K, Mary C, Morello A, et al. Selective SIRP a blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance. J Clin Invest 2020; 130(11):6109-23.

[86]

Petrova P, Viller N, Wong M, Pang X, Lin G, Dodge K, et al. TTI-621 (SIRP a Fc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res 2017; 23(4):1068-79.

[87]

Russ A, Hua A, Montfort W, Rahman B, Riaz I, Khalid M, et al. Blocking "don't eat me" signal of CD47-sirp a in hematological malignancies, an in-depth review. Blood Rev 2018; 32(6):480-9.

[88]

Yu J, Song Y, Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol 2020; 13(1):45.

[89]

Advani R, Flinn I, Popplewell L, Forero A, Bartlett N, Ghosh N, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's lymphoma. N Engl J Med 2018; 379(18):1711-21.

[90]

Wang Y, Ni H, Zhou S, He K, Gao Y, Wu W, et al. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother 2021; 70(2):365-76.

[91]

Mantovani A, Longo D. Macrophage checkpoint blockade in cancer - back to the future. N Engl J Med 2018; 379(18):1777-9.

[92]

Herbst R, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios C, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med 2020; 383(14):1328-39.

[93]

Shen S, Hong Y, Huang J, Qu X, Sooranna S, Lu S, et al. Targeting PD-1/PD-L1 in tumor immunotherapy: mechanisms and interactions with host growth regulatory pathways. Cytokine Growth Factor Rev 2024; 79:16-28.

[94]

Li C, Lim S, Chung E, Kim Y, Park A, Yao J, et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 2018; 33(2):187-201.

[95]

Zocchi M, Tosetti F, Benelli R, Poggi A. Cancer nanomedicine special issue review anticancer drug delivery with nanoparticles: extracellular vesicles or synthetic nanobeads as therapeutic tools for conventional treatment or immunotherapy. Cancers (Basel) 2020; 12(7):1886.

[96]

Fan Y, Zhou Y, Lu M, Si H, Li L, Tang B. Responsive dual-targeting exosome as a drug carrier for combination cancer immunotherapy. Research 2021; 2021:9862876.

[97]

Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, et al. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnol 2024; 22(1):41.

[98]

Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A 2018; 115(17):E4041-50.

[99]

Pathria P, Louis T, Varner J. Targeting tumor-associated macrophages in cancer. Trends Immunol 2019; 40(4):310-27.

[100]

Maeda T, Hiraki M, Jin C, Rajabi H, Tagde A, Alam M, et al. MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer Res 2018; 78(1):205-15.

[101]

Liu Y, Liang S, Jiang D, Gao T, Fang Y, Fu S, et al. Manipulation of TAMs functions to facilitate the immune therapy effects of immune checkpoint antibodies. J Control Release 2021; 336:621-34.

[102]

Gordon S, Maute R, Dulken B, Hutter G, George B, McCracken M, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017; 545(7655):495-9.

[103]

Festenstein H, Garrido F. MHC antigens and malignancy. Nature 1986; 322(6079):502-3.

[104]

Barkal A, Weiskopf K, Kao K, Gordon S, Rosental B, Yiu Y, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 2018; 19(1):76-84.

[105]

van der Touw W, Chen H, Pan P, Chen S. LILRB receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol Immunother 2017; 66(8):1079-87.

[106]

Chen H, van der Touw W, Wang Y, Kang K, Mai S, Zhang J, et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest 2018; 128(12):5647-62.

[107]

Umiker B, Hashambhoy-Ramsay Y, Smith J, Rahman T, Mueller A, Davidson R, et al. Inhibition of LILRB2 by a novel blocking antibody designed to reprogram immunosuppressive macrophages to drive T-cell activation in tumors. Mol Cancer Ther 2023; 22(4):471-84.

[108]

Siu L, Wang D, Hilton J, Geva R, Rasco D, Perets R, et al. Correction: first-in-class anti-immunoglobulin-like transcript 4 myeloid-specific antibody MK-4830 abrogates a PD-1 resistance mechanism in patients with advanced solid tumors. Clin Cancer Res 2022; 28(18):4158.

[109]

Dhatchinamoorthy K, Colbert J, Rock K. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol 2021; 12:636568.

[110]

Yin S, Gao F.Molecular mechanism of tumor cell immune escape mediated by CD24/Siglec-10. Front Immunol 2020; 11:1324.

[111]

Shapira S, Kazanov D, Weisblatt S, Starr A, Arber N, Kraus S. The CD 24 protein inducible expression system is an ideal tool to explore the potential of CD24 as an oncogene and a target for immunotherapy in vitro and in vivo. J Biol Chem 2011; 286(47):40548-55.

[112]

Barkal A, Brewer R, Markovic M, Kowarsky M, Barkal S, Zaro B, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019; 572(7769):392-6.

[113]

Sun Z, Sun Z, Liu J, Gao X, Jiao L, Zhao Q, et al. Engineered extracellular vesicles expressing Siglec-10 camouflaged AIE photosensitizer to reprogram macrophages to active M1 phenotype and present tumor-associated antigens for photodynamic immunotherapy. Small 2024; 20(12):e2307147.

[114]

Xiao N, Zhu X, Li K, Chen Y, Liu X, Xu B, et al. Blocking siglec-10(hi) tumor-associated macrophages improves anti-tumor immunity and enhances immunotherapy for hepatocellular carcinoma. Exp Hematol Oncol 2021; 10(1):36.

[115]

He L, Wang T, Gao Q, Zhao G, Huang Y, Yu L, et al. Stanniocalcin-1 promotes tumor angiogenesis through up-regulation of VEGF in gastric cancer cells. J Biomed Sci 2011; 18(1):39.

[116]

Crocker P, Paulson J, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7(4):255-66.

[117]

Pluvinage J, Haney M, Smith B, Sun J, Iram T, Bonanno L, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 2019; 568(7751):187-92.

[118]

Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 2020; 15:123-47.

[119]

Laviron M, Boissonnas A. Ontogeny of tumor-associated macrophages. Front Immunol 2019; 10:1799.

[120]

Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, Ghezzi P, et al. Regulation of the macrophage content of neoplasms by chemoattractants. Science 1983; 220(4593):210-12.

[121]

Shen S, Zhang Y, Chen K, Luo Y, Wang J. Cationic polymeric nanoparticle delivering CCR2 siRNA to inflammatory monocytes for tumor microenvironment modification and cancer therapy. Mol Pharm 2018; 15(9):3642-53.

[122]

Qian B, Li J, Zhang H, Kitamura T, Zhang J, Campion L, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475(7355):222-5.

[123]

Zhang X, Detering L, Sultan D, Luehmann H, Li L, Heo G, et al. CC chemokine receptor 2-targeting copper nanoparticles for positron emission tomography-guided delivery of gemcitabine for pancreatic ductal adenocarcinoma. ACS Nano 2021; 15(1):1186-98.

[124]

Lim S, Yuzhalin A, Gordon-Weeks A, Muschel R. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 2016; 7(19):28697-710.

[125]

Bonapace L, Coissieux M, Wyckoff J, Mertz K, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 2014; 515(7525):130-3.

[126]

Chen L, Xu G, Song X, Zhang L, Chen C, Xiang G, et al. A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer by CCR5-YAP 1 regulation. Cancer Lett 2024; 583:216635.

[127]

Li X, Ma Q, Xu Q, Liu H, Lei J, Duan W, et al. SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway. Cancer Lett 2012; 322(2):169-76.

[128]

Lapenna A, De Palma M, Lewis C. Perivascular macrophages in health and disease. Nat Rev Immunol 2018; 18(11):689-702.

[129]

Conde J, Bao C, Tan Y, Cui D, Edelman E, Azevedo H, et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv Funct Mater 2015; 25(27):4183-94.

[130]

Peterson T, Kirkpatrick N, Huang Y, Farrar C, Marijt K, Kloepper J, et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci U S A 2016; 113(16):4470-5.

[131]

Shiraishi D, Fujiwara Y, Horlad H, Saito Y, Iriki T, Tsuboki J, et al. CD163 is required for protumoral activation of macrophages in human and murine sarcoma. Cancer Res 2018; 78(12):3255-66.

[132]

Etzerodt A, Tsalkitzi K, Maniecki M, Damsky W, Delfini M, Baudoin E, et al. Specific targeting of CD163(+) TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression. J Exp Med 2019; 216(10):2394-411.

[133]

Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 2017; 11(9):9536-49.

[134]

Webb M, Sun J, Sheard M, Liu W, Wu H, Jackson J, et al. Colony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes. Int J Cancer 2018; 143(6):1483-93.

[135]

Wang Y, Luan Z, Zhao C, Bai C, Yang K. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur J Pharm Sci 2020; 142:105136.

[136]

Smeester B, Slipek N, Pomeroy E, Laoharawee K, Osum S, Larsson A, et al. PLX3397 treatment inhibits constitutive CSF1R-induced oncogenic ERK signaling, reduces tumor growth, and metastatic burden in osteosarcoma. Bone 2020; 136:115353.

[137]

Fujiwara T, Yakoub M, Chandler A, Christ A, Yang G, Ouerfelli O, et al. CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther 2021; 20(8):13881399.

[138]

Neubert N, Schmittnaegel M, Bordry N, Nassiri S, Wald N, Martignier C, et al. T cell-induced CSF 1 promotes melanoma resistance to PD1 blockade. Sci Transl Med 2018; 10(436):eaan3311.

[139]

Rogers T, Holen I. Tumour macrophages as potential targets of bisphosphonates. J Transl Med 2011; 9:177.

[140]

La-Beck N, Liu X, Shmeeda H, Shudde C, Gabizon A. Repurposing amino-bisphosphonates by liposome formulation for a new role in cancer treatment. Semin Cancer Biol 2021; 68:175-85.

[141]

Jian H, Wang X, Song P, Wu X, Zheng R, Wang Y, et al. Tumor microcalcification-mediated relay drug delivery for photodynamic immunotherapy of breast cancer. Acta Biomater 2022; 140:518-29.

[142]

Rodriguez-Garcia A, Lynn R, Poussin M, Eiva M, Shaw L, O'Connor R, et al. CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat Commun 2021; 12(1):877.

[143]

Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol 2021; 10(1): 60.

[144]

Cassetta L, Pollard J. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 2018; 17(12):887-904.

[145]

Seclì L, Infante L, Nocchi L, De Lucia M, Cotugno G, Leoni G, et al. Vector aided microenvironment programming (VAMP): reprogramming the TME with MVA virus expressing IL-12 for effective antitumor activity. J Immunother Cancer 2023; 11(4):e006718.

[146]

Vonderheide R. CD 40 agonist antibodies in cancer immunotherapy. Annu Rev Med 2020; 71:47-58.

[147]

Diggs L, Ruf B, Ma C, Heinrich B, Cui L, Zhang Q et al. CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma. J Hepatol 2021; 74(5):1145-54.

[148]

Wiehagen K, Girgis N, Yamada D, Smith A, Chan S, Grewal I, et al. Combination of CD40 agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunol Res 2017; 5(12):1109-21.

[149]

Dacoba T, Anfray C, Mainini F, Allavena P, Alonso M, Torres Andón F, et al. Arginine-based poly(I:c)-loaded nanocomplexes for the polarization of macrophages toward M1-antitumoral effectors. Front Immunol 2020; 11:1412.

[150]

Zhang Y, Feng Z, Liu J, Li H, Su Q, Zhang J, et al. Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioact Mater 2022; 16:359-71.

[151]

Zhang F, Parayath N, Ene C, Stephan S, Koehne A, Coon M, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun 2019; 10(1):3974.

[152]

Yang Z, Liu Y, Zhao K, Jing W, Gao L, Dong X, et al. Dual mRNA co-delivery for in situ generation of phagocytosis-enhanced CAR macrophages augments hepatocellular carcinoma immunotherapy. J Control Release 2023; 360:718-32.

[153]

Curtale G, Rubino M, Locati M. MicroRNAs as molecular switches in macrophage activation. Front Immunol 2019; 10:799.

[154]

Zang X, Zhang X, Zhao X, Hu H, Qiao M, Deng Y, et al. Targeted delivery of miRNA 155 to tumor associated macrophages for tumor immunotherapy. Mol Pharm 2019; 16(4):1714-22.

[155]

Liang G, Zhu Y, Ali D, Tian T, Xu H, Si K, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnol 2020; 18(1):10.

[156]

Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, et al. Hollow MnO(2) as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 2017; 8(1):902.

[157]

Chang C, Dinh T, Lee Y, Wang F, Sung Y, Yu P, et al. Nanoparticle delivery of $\mathrm{MnO}_{2}$ and antiangiogenic therapy to overcome hypoxia-driven tumor escape and suppress hepatocellular carcinoma. ACS Appl Mater Interfaces 2020; 12(40):44407-19.

[158]

Song M, Liu T, Shi C, Zhang X, Chen X. Correction to bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 2016; 10(3):3872.

[159]

Zhang J, Zhu W, Wang M, Zhai R, Wang Q Shen W, et al. Cancer-associated fibroblasts promote oral squamous cell carcinoma progression through LOX-mediated matrix stiffness. J Transl Med 2021; 19(1):513.

[160]

Simões F, Cahill T, Kenyon A, Gavriouchkina D, Vieira J, Sun X, et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun 2020; 11(1):600.

[161]

Zhang C, Xu M, Zeng Z, Wei X, He S, Huang J, et al. A polymeric extracellular matrix nanoremodeler for activatable cancer photo-immunotherapy. Angew Chem Int Ed Engl 2023; 62(12):e202217339.

[162]

Zhang H, Grippin A, Sun M, Ma Y, Kim B, Teng L, et al. New avenues for cancer immunotherapy: cell-mediated drug delivery systems. J Control Release 2024; 375:712-32.

[163]

Liang T, Zhang R, Liu X, Ding Q, Wu S, Li C, et al. Recent advances in macrophage-mediated drug delivery systems. IntJ Nanomed 2021; 16:2703-14.

[164]

Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, et al. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 2015; 204:11-19.

[165]

Guo L, Zhang Y, Yang Z, Peng H, Wei R, Wang C, et al. Tunneling nanotubular expressways for ultrafast and accurate M1 macrophage delivery of anticancer drugs to metastatic ovarian carcinoma. ACS Nano 2019; 13(2):1078-96.

[166]

Pardridge W. Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol Med 2023; 29(5):343-53.

[167]

Wang Y, Zhang L, Liu Y, Tang L, He J, Sun X, et al. Engineering CpG-ASO-Pt-loaded macrophages (CAP@M) for synergistic chemo-/gene-/immuno-therapy. Adv Healthc Mater 2022; 11(15):e2201178.

[168]

Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11):991-1003.

[169]

Nguyen V, Min H, Kim D, Kim C, Han J, Park J, et al. Macrophage-mediated delivery of multifunctional nanotherapeutics for synergistic chemo-photothermal therapy of solid tumors. ACS Appl Mater Interfaces 2020; 12(9):10130-41.

[170]

Das R, Hardie J, Joshi B, Zhang X, Gupta A, Luther D, et al. Macrophage-encapsulated bioorthogonal nanozymes for targeting cancer cells. JACS Au 2022; 2(7):1679-85.

[171]

Tanei T, Leonard F, Liu X, Alexander J, Saito Y, Ferrari M, et al. Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases. Cancer Res 2016; 76(2):429-39.

[172]

Ikehara Y, Niwa T, Biao L, Ikehara S, Ohashi N, Kobayashi T, et al. A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res 2006; 66(17):8740-8.

[173]

Meng X, Wang M, Zhang K, Sui D, Chen M, Xu Z, et al. An application of tumor-associated macrophages as immunotherapy targets: sialic acid-modified EPI-loaded liposomes inhibit breast cancer metastasis. AAPS PharmSciTech 2022; 23(8):285.

[174]

Zhu S, Li X, Luo Z, Ding M, Shi S, Zhang T. Combined immunochemotherapy achieving targeted co-delivery of chlorogenic acid and doxorubicin by sialic acid-modified liposomes enhances anti-cancer efficacy. Drug Deliv Transl Res 2024; 14(3):718-29.

[175]

Li F, Ulrich M, Jonas M, Stone I, Linares G, Zhang X, et al. Tumor-associated macrophages can contribute to antitumor activity through fc $\gamma$ r-mediated processing of antibody-drug conjugates. Mol Cancer Ther 2017; 16(7):1347-54.

[176]

Ning P, Du F, Wang H, Gong X, Xia Y, Zhang X, et al. Genetically engineered macrophages as living cell drug carriers for targeted cancer therapy. J Control Release 2024; 367:697-707.

[177]

Doshi N, Swiston A, Gilbert J, Alcaraz M, Cohen R, Rubner M, et al. Cell-based drug delivery devices using phagocytosis-resistant backpacks. Adv Mater 2011; 23(12):H105-9.

[178]

Qian H, Fu Y, Guo M, Chen Y, Zhang D, Wei Y, et al. Dual-aptamer-engineered M1 macrophage with enhanced specific targeting and checkpoint blocking for solid-tumor immunotherapy. Mol Ther 2022; 30(8):2817-27.

[179]

Holden C, Yuan Q, Yeudall W, Lebman D, Yang H. Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery. Int J Nanomed 2010; 5:25-36.

[180]

De Palma M, Mazzieri R, Politi L, Pucci F, Zonari E, Sitia G, et al. Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 2008; 14(4):299-311.

[181]

Ray M, Lee Y, Hardie J, Mout R, Yeşilbag Tonga G, Farkas M, et al. CRISPRed macrophages for cell-based cancer immunotherapy. Bioconjug Chem 2018; 29(2):445-50.

[182]

Muthana M, Kennerley A, Hughes R, Fagnano E, Richardson J, Paul M, et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 2015; 6:8009.

[183]

Jahromi L, Shahbazi M, Maleki A, Azadi A, Santos H. Chemically engineered immune cell-derived microrobots and biomimetic nanoparticles: emerging biodiagnostic and therapeutic tools. Adv Sci 2021; 8(8):2002499.

[184]

Molinaro R, Martinez J, Zinger A, De Vita A, Storci G, Arrighetti N, et al. Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomater Sci 2020; 8(1):333-41.

[185]

Liu X, Dong X, Yang S, Lai X, Liu H, Gao Y, et al. Biomimetic liposomal nanoplatinum for targeted cancer chemophototherapy. Adv Sci 2021; 8(8):2003679.

[186]

He H, Guo C, Wang J, Korzun W, Wang X, Ghosh S, et al. Leutusome: a biomimetic nanoplatform integrating plasma membrane components of leukocytes and tumor cells for remarkably enhanced solid tumor homing. Nano Lett 2018; 18(10):6164-74.

[187]

Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin M, et al. Macrophage cell membrane-cloaked nanoplatforms for biomedical applications. Small Methods 2022; 6(8):e2200289.

[188]

Chen Q, Zhang X, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 2011; 20(4):538-49.

[189]

Gong P, Wang Y, Zhang P, Yang Z, Deng W, Sun Z, et al. Immunocyte membrane-coated nanoparticles for cancer immunotherapy. Cancers (Basel) 2020; 13(1):77.

[190]

Hu C, Lei T, Wang Y, Cao J, Yang X, Qin L, et al. Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 2020; 255:120159.

[191]

Zheng J, Jiang J, Pu Y, Xu T, Sun J, Zhang Q, et al. Tumor-associated macrophages in nanomaterial-based anti-tumor therapy: as target spots or delivery platforms. Front Bioeng Biotechnol 2023; 11:1248421.

[192]

Zhang J, Sun X, Xu M, Zhao X, Yang C, Li K, et al. A self-amplifying ROS-sensitive prodrug-based nanodecoy for circumventing immune resistance in chemotherapy-sensitized immunotherapy. Acta Biomater 2022; 149:307-20.

[193]

Gong C, Yu X, You B, Wu Y, Wang R, Han L, et al. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J Nanobiotechnol 2020; 18(1):92.

[194]

Hu C, Fang R, Wang K, Luk B, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015; 526(7571):118-21.

[195]

Vijayan V, Uthaman S, Park I. Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer theragnostics. Polymers (Basel) 2018; 10(9):983.

[196]

Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett 2018; 18(3):1908-15.

[197]

Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 2017; 7(10):2575-92.

[198]

Pereverzeva E, Treschalin I, Treschalin M, Arantseva D, Ermolenko Y, Kumskova N, et al. Toxicological study of doxorubicin-loaded PLGA nanoparticles for the treatment of glioblastoma. Int J Pharm 2019; 554:161-78.

[199]

Xuan M, Shao J, Dai L, He Q, Li J. Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthc Mater 2015; 4(11):1645-52.

[200]

Ren X, Zheng R, Fang X, Wang X, Zhang X, Yang W, et al. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 2016; 92:13-24.

[201]

Xu Q, Wan J, Bie N, Song X, Yang X, Yong T, et al. A biomimetic gold nanocages-based nanoplatform for efficient tumor ablation and reduced inflammation. Theranostics 2018; 8(19):5362-78.

[202]

Zeng Y, Li S, Zhang S, Wang L, Yuan H, Hu F. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm Sin B 2022; 12(8):3233-54.

[203]

Liu Y, Luo J, Chen X, Liu W, Chen T. Cell membrane coating technology: a promising strategy for biomedical applications. Nanomicro Lett 2019; 11(1):100.

[204]

Ying K, Zhu Y, Wan J, Zhan C, Wang Y, Xie B, et al. Macrophage membrane-biomimetic adhesive polycaprolactone nanocamptothecin for improving cancer-targeting efficiency and impairing metastasis. Bioact Mater 2023; 20:449-62.

[205]

Lai J, Deng G, Sun Z, Peng X, Li J, Gong P, et al. Scaffolds biomimicking macrophages for a glioblastoma NIR-ib imaging guided photothermal therapeutic strategy by crossing blood-Brain Barrier. Biomaterials 2019;211: 48-56.

[206]

Rao L, He Z, Meng Q, Zhou Z, Bu L, Guo S, et al. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J Biomed Mater Res A 2017; 105(2):521-30.

[207]

Xia W, Li C, Chen Q, Huang J, Zhao Z, Liu P, et al. Intravenous route to choroidal neovascularization by macrophage-disguised nanocarriers for mTOR modulation. Acta Pharm Sin B 2022; 12(5):2506-21.

[208]

Dong S, Liu X, Bi Y, Wang Y, Antony A, Lee D, et al. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat Commun 2023; 14(1):6610.

[209]

Chang A, Liu X, Tian H, Hua L, Yang Z, Wang S. Microfluidic electroporation coupling pulses of nanoseconds and milliseconds to facilitate rapid uptake and enhanced expression of DNA in cell therapy. Sci Rep 2020; 10(1):6061.

[210]

Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng 2020; 4(1):69-83.

[211]

Xu L, Wu S, Wang J. Cancer cell membrane-coated nanocarriers for homologous target inhibiting the growth of hepatocellular carcinoma. J Bioact Compat Pol 2019; 34(1):58-71.

[212]

Rao L, Cai B, Bu L, Liao Q, Guo S, Zhao X, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017; 11(4):3496-505.

[213]

Shi M, Shen K, Yang B, Zhang P, Lv K, Qi H, et al. An electroporation strategy to synthesize the membrane-coated nanoparticles for enhanced anti-inflammation therapy in bone infection. Theranostics 2021; 11(5):2349-63.

[214]

Liu C, Zhang W, Li Y, Chang J, Tian F, Zhao F, et al. Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Lett 2019; 19(11):7836-44.

[215]

Feins S, Kong W, Williams E, Milone M, Fraietta J. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol 2019; 94(S1):S3-9.

[216]

Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T cell therapy for solid tumors: bright future or dark reality? Mol Ther 2020; 28(11):2320-39.

[217]

Pan K, Farrukh H, Chittepu V, Xu H, Pan C, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022; 41(1): 119.

[218]

Niu Z, Chen G, Chang W, Sun P, Luo Z, Zhang H, et al. Chimeric antigen receptor-modified macrophages trigger systemic anti-tumour immunity. J Pathol 2021; 253(3):247-57.

[219]

Yu Y, Cui J. Present and future of cancer immunotherapy: a tumor microenvironmental perspective. Oncol Lett 2018; 16(4):4105-13.

[220]

White L, Goy H, Rose A, McLellan A. Controlling cell trafficking: addressing failures in CAR T and NK Cell therapy of solid tumours. Cancers (Basel) 2022; 14(4):978.

[221]

Liu Q, Li J, Zheng H, Yang S, Hua Y, Huang N, et al. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Mol Cancer 2023; 22(1):28.

[222]

Hadiloo K, Taremi S, Heidari M, Esmaeilzadeh A. The CAR macrophage cells, a novel generation of chimeric antigen-based approach against solid tumors. Biomark Res 2023; 11(1):103.

[223]

Klichinsky M, Ruella M, Shestova O, Lu X, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020; 38(8):947-53.

[224]

Liu M, Liu J, Liang Z, Dai K, Gan J, Wang Q et al. CAR-macrophages and CAR-T cells synergistically kill tumor cells in vitro. Cells 2022; 11(22):3692.

[225]

Morrissey M, Williamson A, Steinbach A, Roberts E, Kern N, Headley M, et al. Chimeric antigen receptors that trigger phagocytosis. Elife 2018; 7:e36688.

[226]

Sloas C, Gill S, Klichinsky M. Engineered CAR-macrophages as adoptive immunotherapies for solid tumors. Front Immunol 2021; 12:783305.

[227]

Cha E, Shin K, Seo J, Oh D. Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis. BMB Rep 2020; 53(8):442-7.

[228]

Liu Y, Hu P, Zheng Z, Zhong D, Xie W, Tang Z, et al. Photoresponsive vaccine-like CAR-M system with high-efficiency central immune regulation for inflammation-related depression. Adv Mater 2022; 34(11):e2108525.

[229]

Hu J, Yang Q, Yue Z, Liao B, Cheng H, Li W, et al. Emerging advances in engineered macrophages for tumor immunotherapy. Cytotherapy 2023; 25(3):235-44.

[230]

Sly L, McKay D. Macrophage immunotherapy: overcoming impediments to realize promise. Trends Immunol 2022; 43(12):959-68.

[231]

Dong X, Fan J, Xie W, Wu X, Wei J, He Z, et al. Efficacy evaluation of chimeric antigen receptor-modified human peritoneal macrophages in the treatment of gastric cancer. BrJ Cancer 2023; 129(3):551-62.

[232]

Guo Q Qian Z. Macrophage based drug delivery: key challenges and strategies. Bioact Mater 2024; 38:55-72.

[233]

Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016; 126(4):1208-15.

[234]

Wang Y, Zhao M, Liu S, Guo J, Lu Y, Cheng J, et al. Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis 2020; 11(10):924.

[235]

Kalluri R, LeBleu V. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478):eaau6977.

[236]

Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: new molecular targets of diseases. Acta Pharmacol Sin 2018; 39(4):501-13.

[237]

Iannotta D, A A, Kijas A, Rowan A, Wolfram J. Entry and exit of extracellular vesicles to and from the blood circulation. Nat Nanotechnol 2024; 19(1):13-20.

[238]

Matsumoto J, Stewart T, Banks W, Zhang J. The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr Pharm Des 2017; 23(40):6206-14.

[239]

Pang L, Zhu Y, Qin J, Zhao W, Wang J. Primary M1 macrophages as multifunctional carrier combined with PLGA nanoparticle delivering anticancer drug for efficient glioma therapy. Drug Deliv 2018; 25(1):1922-31.

[240]

Xu W, Cai J, Li Y, Wu J, Xiang D. Recent progress of macrophage vesicle-based drug delivery systems. Drug Deliv Transl Res 2022; 12(10):2287-302.

[241]

Kamerkar S, LeBleu V, Sugimoto H, Yang S, Ruivo C, Melo S, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017; 546(7659):498503.

[242]

Zhang H, Wang S, Sun M, Cui Y, Xing J, Teng L, et al. Exosomes as smart drug delivery vehicles for cancer immunotherapy. Front Immunol 2022; 13:1093607.

[243]

Ning J, Ye Y, Bu D, Zhao G, Song T, Liu P, et al. Imbalance of TGF- $\beta 1 / \mathrm{BMP}-7$ pathways induced by M2-polarized macrophages promotes hepatocellular carcinoma aggressiveness. Mol Ther 2021; 29(6):2067-87.

[244]

Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, et al. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2. Mol Ther 2021; 29(3):1226-38.

[245]

Zhong W, Lu Y, Han X, Yang J, Qin Z, Zhang W, et al. Upregulation of exosome secretion from tumor-associated macrophages plays a key role in the suppression of anti-tumor immunity. Cell Rep 2023; 42(10):113224.

[246]

Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, et al. Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L 1 in gastric cancer. Front Cell Dev Biol 2020; 8:572689.

[247]

Sun M, Zhang H, Liu J, Chen J, Cui Y, Wang S, et al. Extracellular vesicles: a new star for gene drug delivery. Int J Nanomed 2024; 19:2241-64.

[248]

Moradi-Chaleshtori M, Bandehpour M, Soudi S, Mohammadi-Yeganeh S, Hashemi S. In vitro and in vivo evaluation of anti-tumoral effect of M1 phenotype induction in macrophages by miR-130 and miR-33 containing exosomes. Cancer Immunol Immunother 2021; 70(5):1323-39.

[249]

Zhao Y, Zheng Y, Zhu Y, Li H, Zhu H, Liu T. Docetaxel-loaded M1 macrophage-derived exosomes for a safe and efficient chemoimmunotherapy of breast cancer. J Nanobiotechnol 2022; 20(1):359.

[250]

Zhao Y, Zheng Y, Zhu Y, Zhang Y, Zhu H, Liu T. M1 macrophage-derived exosomes loaded with gemcitabine and deferasirox against chemoresistant pancreatic cancer. Pharmaceutics 2021; 13(9):1493.

[251]

Kim M, Haney M, Zhao Y, Yuan D, Deygen I, Klyachko N, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomed 2018; 14(1):195204.

[252]

Rayamajhi S, Nguyen T, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater 2019; 94:482-94.

[253]

Lv Q, Cheng L, Lu Y, Zhang X, Wang Y, Deng J, et al. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv Sci 2020; 7(18):2000515.

[254]

Kumari N, Choi S. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 2022; 41(1):68.

[255]

Ruffell B, Coussens L. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015; 27(4):462-72.

[256]

Coley W. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res 1991(262):3-11.

[257]

Lee S, Lee J, Cho S, Chin J, Kim S, Lee I, et al. Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nanomicro Lett 2019; 11(1):36.

[258]

Muthana M, Giannoudis A, Scott S, Fang H, Coffelt S, Morrow F, et al. Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res 2011; 71(5):1805-15.

[259]

Muthana M, Rodrigues S, Chen Y, Welford A, Hughes R, Tazzyman S, et al. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Res 2013; 73(2):490-5.

[260]

Liu L, Wang Y, Guo X, Zhao J, Zhou S. A biomimetic polymer magnetic nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small 2020; 16(38):e2003543.

[261]

Ding C, Yang C, Cheng T, Wang X, Wang Q, He R, et al. Macrophage-biomimetic porous $\mathrm{Se} @ \mathrm{SiO}_{2}$ nanocomposites for dual modal immunotherapy against inflammatory osteolysis. J Nanobiotechnol 2021; 19(1):382.

PDF (4007KB)

116

Accesses

0

Citation

Detail

Sections
Recommended

/