Recent advances in cell membrane-based biomimetic delivery systems for Parkinson's disease: Perspectives and challenges

Jasleen Kaur , Abhishek Thakran , Saba Naqui

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (4) : 101060

PDF (3616KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (4) :101060 DOI: 10.1016/j.ajps.2025.101060
Review artices
research-article

Recent advances in cell membrane-based biomimetic delivery systems for Parkinson's disease: Perspectives and challenges

Author information +
History +
PDF (3616KB)

Abstract

Neuroinflammation, α-synuclein pathology and dopaminergic cell loss are the hallmarks of Parkinson’s disease (PD), an incurable movement disorder. The presence of the blood-brain barrier (BBB) impedes the delivery of therapeutics and makes the design of drug-targeting delivery vehicles challenging. Nanomedicine is designed and has significantly impacted the scientific community. Over the last few decades, to address the shortcomings of synthetic nanoparticles, a new approach has emerged that mimic the physiological environment. Cell membrane-coated nanoparticles have been developed to interact with the physiological environment, enhance central nervous system drug delivery and mask toxic effects. Cell membranes are multifunctional, biocompatible platforms with the potential for surface modification and targeted delivery design. A synchronous design of cell membrane and nanoparticles is required for the cell membrane-based biomimetics, which can improve the BBB recognition and transport. This review summarizes the challenges in drug delivery and how cell membrane-coated nanoparticles can overcome them. Moreover, major cell membranes used in biomedical applications are discussed with a focus on PD.

Keywords

Parkinson’s disease / Cell membrane / Nanoparticles / Blood-brain barrier / Drug delivery

Cite this article

Download citation ▾
Jasleen Kaur, Abhishek Thakran, Saba Naqui. Recent advances in cell membrane-based biomimetic delivery systems for Parkinson's disease: Perspectives and challenges. Asian Journal of Pharmaceutical Sciences, 2025, 20(4): 101060 DOI:10.1016/j.ajps.2025.101060

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare that there are no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Acknowledgments

We wish to acknowledge the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Centre of Excellence (CoE), NDDS, NIPER-Raebareli. Communication Number/737.

References

[1]

Gudmundsdottir H, Habermann EB, Vierkant RA, Starlinger P, Thiels CA, Warner SG. Survival and symptomatic relief after cytoreductive hepatectomy for neuroendocrine tumor liver metastases-long-term follow-up of over 500 patients. Ann Surg Oncol 2023; 30(8):4854-5.

[2]

Huang Z, Hu B, Xiang B, Fang H, Zhang B, Wang Y, et al. Biomimetic biomembrane encapsulation and targeted delivery of a nitric oxide release platform for therapy of parkinson's disease. ACS Biomater Sci Eng 2023; 9(5):2545-57.

[3]

Kaplan L, Chow BW, Gu C. Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci 2020; 21(8):416-32.

[4]

Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 2020; 581(7806):71-6.

[5]

Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 2019; 25(2):270-6.

[6]

Arvanitis CD, Ferraro GB, Jain RK.The blood-brain barrier and blood-tumor barrier in brain tumors and metastases. Nat Rev Cancer 2020; 20(1):26-41.

[7]

Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11):1959-72.

[8]

Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 2015; 207:18-30.

[9]

Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307(1):93-102.

[10]

Lu Y, Li C, Chen Q, Liu P, Guo Q, Zhang Y, et al. Microthrombus-targeting micelles for neurovascular remodeling and enhanced microcirculatory perfusion in acute ischemic stroke. Adv Mater 2019; 31(21):e1808361.

[11]

Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 2002; 54(4):531-45.

[12]

Lubich C, Allacher P, de la Rosa M, Bauer A, Prenninger T, Horling FM, et al. The mystery of antibodies against polyethylene glycol (PEG) - what do we know? Pharm Res 2016; 33(9):2239-49.

[13]

Najahi-Missaoui W, Arnold RD, Cummings BS. Cummings, safe nanoparticles: are we there yet? Int J Mol Sci 2020; 22(1):385.

[14]

Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019; 224:119491.

[15]

Klyachko NL, Haney MJ, Zhao Y, Manickam DS, Mahajan V, Suresh P, et al. Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine (Lond) 2014; 9(9):1403-22.

[16]

Brynskikh AM, Zhao YL, Mosley RL, Li S, Boska MD, Klyachko NL, et al. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine (Lond) 2010; 5(3):379-96.

[17]

Gao J, Chu D, Wang Z. Cell membrane-formed nanovesicles for disease-targeted delivery. J Control Release 2016; 224:208-16.

[18]

Mathias NR, Hussain MA. Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci 2010; 99(1):1-20.

[19]

Song Y, Day CM, Afinjuomo F, Tan JE, Page SW, Garg S, et al. Advanced strategies of drug delivery via oral, topical, and parenteral administration routes: where do equine medications stand? Pharmaceutics 2023; 15(1):186.

[20]

Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4:33.

[21]

Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, et al. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics 2023; 15(9):2233.

[22]

Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release 2020; 327:546-70.

[23]

Narain A, Asawa S, Chhabria V, Patil-Sen Y. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine (Lond) 2017; 12(21):2677-92.

[24]

Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1):48-58.

[25]

Shen Z, Ye H, Kröger M, Li Y. Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes. Nanoscale 2018; 10(9):4545-60.

[26]

Atha DH, Ingham KC. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J Biol Chem 1981; 256(23):12108-17.

[27]

Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv 2012; 9(11):1319-23.

[28]

Garcia-Fuentes M, Prego C, Torres D, Alonso MJA. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci 2005; 25(1):133-43.

[29]

Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release 2003; 88(1):35-42.

[30]

Vandorpe J, Schacht E, Stolnik S, Garnett MC, Davies MC, Illum L, et al. Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide). Biotechnol Bioeng 1996; 52(1):89-95.

[31]

Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108(27):10980-5.

[32]

Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater 2018; 30(23):e1706759.

[33]

Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic nanotechnology toward personalized vaccines. Adv Mater 2020; 32(13):e1901255.

[34]

Huang LL, Nie W, Zhang J, Xie HY. Cell-membrane-based biomimetic systems with bioorthogonal functionalities. Acc Chem Res 2020; 53(1):276-87.

[35]

Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res; 2023; 13(3):716-37.

[36]

Luo C, Fang H, Zhou M, Li J, Zhang X, Liu S, et al. Biomimetic open porous structured core-shell microtissue with enhanced mechanical properties for bottom-up bone tissue engineering. Theranostics 2019; 9(16):4663-77.

[37]

Liu L, Bai X, Martikainen MV, Kårlund A, Roponen M, Xu W, et al. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun 2021; 12(1):5726.

[38]

Liu L, Yu W, Seitsonen J, Xu W, Lehto VP, et al. Correct identification of the core-shell structure of cell membrane-coated polymeric nanoparticles. Chemistry (Easton) 2022; 28(68):e202200947.

[39]

Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD 47 as a marker of self on red blood cells. Science 2000; 288(5473):2051-4.

[40]

Le QV, Lee J, Lee H, Shim G, Oh YK. Cell membrane-derived vesicles for delivery of therapeutic agents. Acta Pharm Sin B 2021; 11(8):2096-113.

[41]

Fazal S, Lee R. Biomimetic bacterial membrane vesicles for drug delivery applications. Pharmaceutics 2021; 13(9):1430.

[42]

Li R, He Y, Zhang S, Qin J, Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B 2018; 8(1): 14-22.

[43]

Fan Z, Li PY, Deng J, Bady SC, Cheng H. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res 2018; 11(10):5573-83.

[44]

Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 2014; 14(4):2181-8.

[45]

Tietjen GT, Bracaglia LG, Saltzman WM, Pober JS. Focus on fundamentals: achieving effective nanoparticle targeting. Trends Mol Med 2018; 24(7):598-606.

[46]

Moyano DF, Liu Y, Peer D, Rotello VM. Modulation of immune response using engineered nanoparticle surfaces. Small 2016; 12(1):76-82.

[47]

Deirram N, Zhang C, Kermaniyan SS, Johnston APR. Such GK. pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 2019; 40(10):e1800917.

[48]

Franklin Robin JM, Ffrench-Constant C. Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 2017; 18(12):753-69.

[49]

Chooi WH, Chew SY. Modulation of cell-cell interactions for neural tissue engineering: potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 2019; 197:327-44.

[50]

Zhang N, Lin J, Chew SY. Neural cell membrane-coated nanoparticles for targeted and enhanced uptake by central nervous system cells. ACS Appl Mater Interfaces 2021; 13(47):55840-50.

[51]

Huang S, Liu S, Wang K, Yang C, Luo Y, Zhang Y, et al. Highly fluorescent and bioresorbable polymeric nanoparticles with enhanced photostability for cell imaging. Nanoscale 2015; 7(3):889-95.

[52]

Zhang Y, Wang J. Research progress of cell membrane biomimetic nanoparticles for circulating tumor cells. Front Oncol 2024; 14:1389775.

[53]

Rampado R, Caliceti P, Agostini M. Latest advances in biomimetic cell membrane-coated and membrane-derived nanovectors for biomedical applications. Nanomaterials (Basel) 2022; 12(9):1543.

[54]

Zhong X, Na Y, Yin S, Yan C, Gu J, Zhang N, et al. Cell membrane biomimetic nanoparticles with potential in treatment of Alzheimer's disease. Molecules 2023; 28(5):2336.

[55]

Iurisci I, Cumashi A, Sherman AA, Tsvetkov YE, Tinari N, Piccolo E, et al. Synthetic inhibitors of galectin-1 and -3 selectively modulate homotypic cell aggregation and tumor cell apoptosis. Anticancer Res 2009; 29(1):403-10.

[56]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5):646-74.

[57]

Guo Q Wang S, Xu R, Tang Y, Xia X. Cancer cell membrane-coated nanoparticles: a promising anti-tumor bionic platform. RSC Adv 2024; 14(15):10608-37.

[58]

Cui X, Pertile R, Liu P, Eyles DW. Vitamin D regulates tyrosine hydroxylase expression: n-cadherin a possible mediator. Neuroscience 2015; 304:90-100.

[59]

Lelièvre EC, Plestant C, Boscher C, Wolff E, Mège RM, Birbes H. N-cadherin mediates neuronal cell survival through Bim down-regulation. PLoS ONE 2012; 7(3):e33206.

[60]

Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater 2016; 28(43):9581-8.

[61]

Zhu JY, Zheng DW, Zhang MK, Yu WY, Qiu WX, Hu JJ, et al. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett 2016; 16(9):58955901.

[62]

Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 2018; 12(6):5121-9.

[63]

Xiao Y, Xu RH, Dai Y. Nanoghosts: harnessing mesenchymal stem cell membrane for construction of drug delivery platforms via optimized biomimetics. Small 2024; 20(1):e2304824.

[64]

Lei T, Li C, Liu Y, Cui Z, Deng S, Cao J, et al. Microfluidics-enabled mesenchymal stem cell-derived neuron-like cell membrane-coated nanoparticles inhibit inflammation and apoptosis for Parkinson's Disease. J Nanobiotechnology 2024; 22(1):370.

[65]

Gao Z, Zhang L, Hu J, Sun Y. Mesenchymal stem cells: a potential targeted-delivery vehicle for an anti-cancer drug, loaded nanoparticles. Nanomedicine 2013; 9(2):174-84.

[66]

Hu YL, Fu YH, Tabata Y, Gao JQ. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release 2010; 147(2):154-62.

[67]

Yang N, Ding Y, Zhang Y, Wang B, Zhao X, Cheng K, et al. Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl Mater Interfaces 2018; 10(27):22963-73.

[68]

Tang J, Shen D, Caranasos TG, Wang Z, Vandergriff AC, Allen TA, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun 2017; 8:13724.

[69]

Liu Y, Zhao J, Jiang J, Chen F, Fang X. Doxorubicin delivered using nanoparticles camouflaged with mesenchymal stem cell membranes to treat colon cancer. Int J Nanomedicine 2020; 15:2873-84.

[70]

Bose RJ, Kim BJ, Arai Y, Han IB, Moon JJ, Paulmurugan R, et al. Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials 2018; 185:360-70.

[71]

Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 2006; 26(1):125-34.

[72]

Xue L, Wang J, Wang W, Yang Z, Hu Z, Hu M, et al. The effect of stromal cell-derived factor 1 in the migration of neural stem cells. Cell Biochem Biophys 2014; 70(3):1609-16.

[73]

Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, et al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol Adv 2018; 36(4):968-85.

[74]

Shao J, Xuan M, Zhang H, Lin X, Wu Z, He Q. Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angew Chem Int Ed Engl 2017; 56(42):12935-9.

[75]

Gao F, Xu L, Yang B, Fan F, Yang L. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier. ACS Infect Dis 2019; 5(2):218-27.

[76]

Xia Q, Zhang Y, Li Z, Hou X, Feng N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 2019; 9(4):675-89.

[77]

Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 2004; 58(2):327341.

[78]

Ren H, Liu J, Li Y, Wang H, Ge S, Yuan A, et al. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater 2017; 59:269-82.

[79]

Luk BT, Hu CM, Fang RH, Dehaini D, Carpenter C, Gao W, et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 2014; 6(5):2730-7.

[80]

Lv W, Xu J, Wang X, Li X, Xu Q, Xin H. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 2018; 12(6):5417-26.

[81]

Hong HY, Choi JS, Kim YJ, Lee HY, Kwak W, Yoo J, et al. Detection of apoptosis in a rat model of focal cerebral ischemia using a homing peptide selected from in vivo phage display. J Control Release 2008; 131(3):167-72.

[82]

Zhao Y, Jiang Y, Lv W, Wang Z, Lv L, Wang B, et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J Control Release 2016; 233:64-71.

[83]

Estelrich J, Busquets MA. Iron oxide nanoparticles in photothermal therapy. Molecules 2018; 23(7):1567.

[84]

Ren X, Zheng R, Fang X, Wang X, Zhang X, Yang W, et al. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 2016; 92:13-24.

[85]

Wu YW, Goubran H, Seghatchian J, Burnouf T. Smart blood cell, and microvesicle-based Trojan horse drug delivery: merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfus Apher Sci 2016; 54(2):309-18.

[86]

Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc Natl Acad Sci USA 1973; 70(9):2663-6.

[87]

Aryal S, Hu CM, Fang RH, Dehaini D, Carpenter C, Zhang DE, et al. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine (Lond) 2013; 8(8):1271-80.

[88]

Gao W, Hu CM, Fang RH, Luk BT, Su J, Zhang L. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv Mater 2013; 25(26):3549-53.

[89]

Piao JG, Wang L, Gao F, You YZ, Xiong Y, Yang L. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 2014; 8 (10):10414-25.

[90]

Skorokhod OA, TTs Garmaeva, Vitvitsky VM, Isaev VG, Parovichnikova EN, Savchenko VG, Ataullakhanov FI. Pharmacokinetics of erythrocyte-bound daunorubicin in patients with acute leukemia. Med Sci Monit 2004; 10(4):PI55-64.

[91]

Batlle AM, Bustos NL, Stella AM, Wider EA, Conti HA, Mendez A. Enzyme replacement therapy in porphyrias-IV. First successful human clinical trial of delta-aminolevulinate dehydratase-loaded erythrocyte ghosts. Int J Biochem 1983; 15(10):1261-5.

[92]

Eichler HG, Rameis H, Bauer K, Korn A, Bacher S, Gasić S. Survival of gentamicin-loaded carrier erythrocytes in healthy human volunteers. Eur J Clin Invest 1986; 16(1):39-42.

[93]

Friedl P, Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol 2008; 9(9):960-9.

[94]

Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203):436-44.

[95]

Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8(1):61-8.

[96]

Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475(7355):222-5.

[97]

Krishnamurthy S, Gnanasammandhan MK, Xie C, Huang K, Cui MY, Chan JM. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale 2016; 8(13):6981-5.

[98]

Wan SW, Wu-Hsieh BA, Lin YS, Chen WY, Huang Y, Anderson R. The monocyte-macrophage-mast cell axis in dengue pathogenesis. J Biomed Sci 2018; 25(1):77.

[99]

Baek SK, Makkouk AR, Krasieva T, Sun CH, Madsen SJ, Hirschberg H. Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 2011; 104(2):439-48.

[100]

Zhang L, Li R, Chen H, Wei J, Qian H, Su S, et al. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomedicine 2017; 12:2129-42.

[101]

Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano 2021; 15(2):2263-80.

[102]

Zhao Y, Haney MJ, Klyachko NL, Li S, Booth SL, Higginbotham SM, et al. Polyelectrolyte complex optimization for macrophage delivery of redox enzyme nanoparticles. Nanomedicine (Lond) 2011; 6(1):25-42.

[103]

Li J, Ai Y, Wang L, Bu P, Sharkey CC, Wu Q, et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 2016; 76:52-65.

[104]

Xu L, Gao F, Fan F, Yang L. Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials 2018; 159:59-67.

[105]

Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015; 526(7571):118-21.

[106]

Jing L, Qu H, Wu D, Zhu C, Yang Y, Jin X, et al. Platelet-camouflaged nanococktail: simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics 2018; 8(10):2683-95.

[107]

Xu C, Pan Y, Zhang H, Sun Y, Cao Y, Qi P, et al. Platelet-membrane-coated polydopamine nanoparticles for neuroprotection by reducing oxidative stress and repairing damaged vessels in intracerebral hemorrhage. Adv Healthc Mater 2023; 12(26):e2300797.

[108]

Silva AK, Di Corato R, Pellegrino T, Chat S, Pugliese G, Luciani N, et al. Cell-derived vesicles as a platform for the encapsulation of theranostic nanomaterials. Nanoscale 2013; 5(23):11374-84.

[109]

Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J 2015; 282(21):4067-79.

[110]

Sun J, Huang Y, Gong J, Wang J, Fan Y, Cai J, et al. Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat Commun 2020; 11(1):5196.

[111]

Wei W, Cheng W, Dai W, Lu F, Cheng Y, Jiang T, et al. A nanodrug coated with membrane from brain microvascular endothelial cells protects against experimental cerebral malaria. Nano Lett 2022; 22(1):211-19.

[112]

Lennartz F, Adams Y, Bengtsson A, Olsen RW, Turner L, Ndam NT, et al. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria. Cell Host Microbe 2017; 21(3):403-14.

[113]

Hao W, Cui Y, Fan Y, Chen M, Yang G, Wang Y, et al. Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma therapy via drug and antigen delivery. J Nanobiotechnol 2021; 19(1):378.

[114]

Wu L, Li Q, Deng J, Shen J, Xu W, Yang W, et al. Platelet-tumor cell hybrid membrane-camouflaged nanoparticles for enhancing therapy efficacy in glioma. Int J Nanomed 2021; 16:8433-46.

[115]

Shi W, Cao X, Liu Q, Zhu Q, Liu K, Deng T, et al. Hybrid membrane-derived nanoparticles for isoliquiritin enhanced glioma therapy. Pharmaceuticals (Basel) 2022; 15(9):1059.

[116]

Lin RR, Jin LL, Xue YY, Zhang ZS, Huang HF, Chen DF, et al. Hybrid membrane-coated nanoparticles for precise targeting and synergistic therapy in Alzheimer's disease. Adv Sci (Weinh) 2024; 11(24):e2306675.

[117]

Liu Y, Luo J, Liu Y, Liu W, Yu G, Huang Y, et al. Brain-targeted biomimetic nanodecoys with neuroprotective effects for precise therapy of Parkinson's disease. ACS Cent Sci 2022; 8(9):1336-49.

[118]

Liu J, Gao D, Hu D, Lan S, Liu Y, Zheng H, et al. Delivery of biomimetic liposomes via meningeal lymphatic vessels route for targeted therapy of Parkinson's disease. Research (Wash DC) 2023; 6:0030.

[119]

Liu H, Han Y, Wang T, Zhang H, Xu Q, Yuan J, et al. Targeting microglia for therapy of Parkinson's disease by using biomimetic ultrasmall nanoparticles. J Am Chem Soc 2020; 142(52):21730-42.

[120]

Zheng Q, Liu H, Zhang H, Han Y, Yuan J, Wang T, et al. Ameliorating mitochondrial dysfunction of neurons by biomimetic targeting nanoparticles mediated mitochondrial biogenesis to boost the therapy of Parkinson's disease. Adv Sci (Weinh) 2023; 10(22):e2300758.

[121]

Hu CM, Fang RH, Copp J, Luk BT, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 2013; 8(5):336-40.

[122]

Su J, Sun H, Meng Q, Zhang P, Yin Q Li Y. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 2017; 7(3):523-37.

[123]

Cao H, Dan Z, He X, Zhang Z, Yu H, Yin Q. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 2016; 10(8):7738-48

[124]

Rao L, He Z, Meng QF, Zhou Z, Bu LL, Guo SS, et al. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J Biomed Mater Res A 2017; 105(2):521-30.

[125]

Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers (Basel) 2019; 11(12):1836.

[126]

Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 2017; 7(10):2575-92.

[127]

Copp JA, Fang RH, Luk BT, Hu CM, Gao W, Zhang K. Clearance of pathological antibodies using biomimetic nanoparticles. Proc Natl Acad Sci U S A 2014; 111(37):13481-6.

[128]

Rao L, Cai B, Bu LL, Liao QQ, Guo SS, Zhao XZ, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017; 11(4):3496-505.

[129]

Zhang J, Gao W, Fang RH, Dong A, Zhang L. Synthesis of nanogels via cell membrane-templated polymerization. Small 2015; 11(34):4309-13.

[130]

Liu L, Pan D, Chen S, Martikainen MV, Kårlund A, Ke J, et al. Systematic design of cell membrane coating to improve tumor targeting of nanoparticles. Nat Commun 2022; 13(1):6181.

[131]

Ben-Akiva E, Meyer RA, Yu H, Smith JT, Pardoll DM, Green JJ, et al. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci Adv 2020; 6(16):eaay9035.

[132]

Wang H, Wu J, Williams GR, Fan Q, Niu S, Wu J, et al. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J Nanobiotechnol 2019; 17(1):60.

[133]

Niazi SK. Non-invasive drug delivery across the blood-brain barrier: a prospective analysis. Pharmaceutics 2023; 15(11):2599.

[134]

Chaulagain B, Gothwal A, Lamptey RNL, Trivedi R, Mahanta AK, Layek B, et al. Experimental models of in vitro blood-brain barrier for CNS drug delivery: an evolutionary perspective. Int J Mol Sci 2023; 24(3):2710.

[135]

Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X. Anti-parkinsonian therapy: strategies for crossing the blood-brain barrier and nano-biological effects of nanomaterials. Nanomicro Lett 2022; 14(1):105.

[136]

Storck SE, Hartz AMS, Pietrzik CU. The blood-brain barrier in Alzheimer's disease. Handb Exp Pharmacol 2022; 273:247266.

[137]

Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells 2017; 35(6):1446-60.

[138]

Huang Y, Wu Q, Tam PKH. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. Int J Mol Sci 2022; 23(17):10023.

[139]

Shibata S. Ultrastructure of capillary walls in human brain tumors. Acta Neuropathol 1989; 78(6):561-71.

[140]

Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19(12):1584-96.

[141]

Wu H, Zhang T, Li N, Gao J. Cell membrane-based biomimetic vehicles for effective central nervous system target delivery: insights and challenges. J Control Release 2023; 360:169-84.

[142]

Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 2010; 6(7):393-403.

[143]

Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer's disease. Neurobiol Dis 2017; 107:41-56.

[144]

Zenaro E, Piacentino G, Constantin G. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 2013; 5(19):8884-8.

[145]

Luo L, Zang G, Liu B, Qin X, Zhang Y, Chen Y, et al. Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury. Theranostics 2021; 11(16):8043-56.

[146]

Wang D, Jiang S, Zhang F, Ma S, Heng BC, Wang Y, et al. Cell membrane vesicles with enriched CXCR4 display enhances their targeted delivery as drug carriers to inflammatory sites. Adv Sci (Weinh) 2021; 8(23):e2101562.

[147]

Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood; 2005; 105(1):40-8.

[148]

Dong X, Gao J, Zhang CY, Hayworth C, Frank M, Wang Z. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 2019; 13(2):1272-83.

[149]

Chauhan PS, Kumarasamy M, Carcaboso AM, Sosnik A, Danino D. Multifunctional silica-coated mixed polymeric micelles for integrin-targeted therapy of pediatric patient-derived glioblastoma. Mater Sci Eng C Mater Biol Appl 2021; 128:112261.

[150]

Beckman H. Laser iridotomy. Trans New Orleans Acad Ophthalmol 1985; 33:177-81.

[151]

Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials (Basel) 2019; 12(19):3052.

[152]

Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem 2013; 2013:238428.

[153]

Missaoui WN, Arnold RD, Cummings BS. Toxicological status of nanoparticles: what we know and what we don't know. Chem Biol Interact 2018; 295:1-12.

[154]

Wu Y, Wan S, Yang S, Hu H, Zhang C, Lai J, et al. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment. J Nanobiotechnol 2022; 20(1):542.

[155]

Nguyen-Thi PT, Nguyen TT, Phan HL, Ho TT, Vo TV, Vo GV, et al. Cell membrane-based nanomaterials for therapeutics of neurodegenerative diseases. Neurochem Int 2023; 170:105612.

[156]

Xuan M, Shao J, Li J. Cell membrane-covered nanoparticles as biomaterials. Natl Sci Rev 2019; 6(3):551-61.

[157]

Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson's disease. CMAJ 2016; 188(16):1157-65.

[158]

Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, et al. Nanoparticles: a hope for the treatment of inflammation in CNS. Front Pharmacol 2021; 12:683935.

[159]

Kalia LV, Lang AE. Parkinson's disease. Lancet 2015; 386(9996):896-912.

[160]

Mantri S, Fullard M, Gray SL, Weintraub D, Hubbard RA, Hennessy S, et al. Patterns of dementia treatment and frank prescribing errors in older adults with Parkinson disease. JAMA Neurol 2019; 76(1):41-9.

[161]

Charvin D, Medori R, Hauser RA, Rascol O. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov 2018; 17(11):804-22.

[162]

Margolesky J, Singer C. Extended-release oral capsule of carbidopa-levodopa in Parkinson disease. Ther Adv Neurol Disord 2018; 11:1756285617737728.

[163]

Montastruc JL, Rascol O, Senard JM. Glutamate antagonists and Parkinson's disease: a review of clinical data. Neurosci Biobehav Rev 1997; 21(4):477-80.

[164]

Xu DC, Chen Y, Xu Y, Shen Tu CY, Peng LH. Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8(1):73.

[165]

Martínez-Fernández R, Rodríguez-Rojas R, Del Álamo M, Hernández-Fernández F, Pineda-Pardo JA, Dileone M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson's disease: a pilot study. Lancet Neurol 2018; 17(1):54-63.

[166]

Pandit R, Chen L, Götz J. The blood-brain barrier: physiology and strategies for drug delivery. Adv Drug Deliv Rev 2020:165-61-14.

[167]

Wiklander OPB, Brennan , Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019; 11(492):8521.

[168]

van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater 2022; 11(5):e2100639.

[169]

Anand S, Samuel M, Kumar S, Mathivanan S. Ticket to a bubble ride: cargo sorting into exosomes and extracellular vesicles. Biochim Biophys Acta Proteins Proteom 2019; 1867(12):140203.

[170]

Chen W, Zhang Q, Luk BT, Fang RH, Liu Y, Gao W, et al. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. Nanoscale 2016; 8(19):10364-70.

[171]

Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017; 128:69-83.

[172]

Hu CM, Fang RH, Luk BT, Chen KN, Carpenter C, Gao W, et al. Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 2013; 5(7):2664-8.

[173]

Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired approaches for central nervous system targeted gene delivery. ACS Appl Bio Mater 2024; 7(8):4975-97.

[174]

Jiang Y, Fu P, Liu Y, Wang C, Zhao P, Chu X, et al. Near-infrared light-triggered NO release for spinal cord injury repair. Sci Adv 2020; 6(39):3513.

[175]

J.Y Xu L, Han Y, Jiang Z, Qing Z, Gao Y, et al. Boosting neurite outgrowth and anti-oxidative stress for treatment of Parkinson's disease by biomimetic ultrasmall nanoparticles. Sustain Mater Technol 2024;39: e007807.

[176]

Vashist A, Manickam P, Raymond AD, Arias AY, Kolishetti N, Vashist A, et al. Recent advances in nanotherapeutics for neurological disorders. ACS Appl Bio Mater 2023; 6(7):2614-21.

[177]

Mistretta M, Farini A, Torrente Y, Villa C. Multifaceted nanoparticles: emerging mechanisms and therapies in neurodegenerative diseases. Brain 2023;146(6):2227-40.

[178]

Yin Y, Tian N, Deng Z, Wang J, Kuang L, Tang Y, et al. Targeted microglial membrane-coated microRNA nanosponge mediates inhibition of glioblastoma. ACS Nano 2024; 18(42):29089-105.

[179]

Kaur J, Singh H, Naqvi S. Intracellular DAMPs in neurodegeneration and their role in clinical therapeutics. Mol Neurobiol 2023; 60(7):3600-16.

[180]

Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson's disease. Neurobiol Dis 2009; 34(2):279-90.

[181]

Alonso Vilatela ME, López-López M, Yescas-Gómez P. Genetics of Alzheimer's disease. Arch Med Res 2012; 43(8):622-31.

[182]

Zvěřová M. Clinical aspects of Alzheimer's disease. Clin Biochem 2019; 72:3-6.

[183]

Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 2018; 13(6):612-32.

[184]

Ma M, Liu Z, Gao N, Pi Z, Du X, Ren J, et al. Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-beta in an Alzheimer's disease model. J Am Chem Soc 2020; 142(52):21702-11.

[185]

Huo Q, Shi Y, Qi Y, Huang L, Sui H, Zhao L. Biomimetic silibinin-loaded macrophage-derived exosomes induce dual inhibition of Abeta aggregation and astrocyte activation to alleviate cognitive impairment in a model of Alzheimer's disease. Mater Sci Eng C Mater Biol Appl 2021; 129:112365.

[186]

Klineova S, Lublin FD. Clinical course of multiple sclerosis. Cold Spring Harb Perspect Med 2018; 8(9):a028928.

[187]

Hauser SL, Cree BAC. Treatment of multiple sclerosis: a review. Am J Med 2020; 133(12):1380-90 e2.

[188]

Mehdi-Alamdarlou S, Ahmadi F, Azadi A, Shahbazi MA, Heidari R, Ashrafi H. A cell-mimicking platelet-based drug delivery system as a potential carrier of dimethyl fumarate for multiple sclerosis. Int J Pharm 2022; 625:122084.

[189]

Krugmann B, Radulescu A, Appavou MS, Koutsioubas A, Stingaciu LR, Dulle M, Förster S, et al. Membrane stiffness and myelin basic protein binding strength as the molecular origin of multiple sclerosis. Sci Rep 2020; 10(1): 16691.

[190]

Ai X, Hu M, Wang Z, Zhang W, Li J, Yang H, et al. Recent advances of membrane-cloaked nanoplatforms for biomedical applications. Bioconjug Chem 2018; 29(4):838-51.

[191]

Khatoon N, Zhang Z, Zhou C, Chu M. Macrophage membrane coated nanoparticles: a biomimetic approach for enhanced and targeted delivery. Biomater Sci 2022; 10(5):1193-208.

[192]

Gong P, Wang Y, Zhang P, Yang Z, Deng W, Sun Z, et al. Immunocyte membrane-coated nanoparticles for cancer immunotherapy. Cancers (Basel) 2020; 13(1):77.

[193]

Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Casadevall, artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15(1):2504.

[194]

Ryu H, Fuwad A, Yoon S, Jang H, Lee JC, Kim SM, et al. Biomimetic membranes with transmembrane proteins: state-of-the-art in transmembrane protein applications. Int J Mol Sci 2019; 20(6):1437.

[195]

Zhu L, Yu X, Cao T, Deng H, Tang X, Lin Q, et al. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm Sin B 2023; 13(6):2464-82.

[196]

Xia Z, Mu W, Yuan S, Fu S, Liu Y, Zhang N. Cell membrane biomimetic nano-delivery systems for cancer therapy. Pharmaceutics 2023; 15(12):2770.

PDF (3616KB)

114

Accesses

0

Citation

Detail

Sections
Recommended

/