Targeted protein degradation with small molecules for cancer immunotherapy

Zichao Yang , Jianwei Xu , Xixiang Yang , Jianjun Chen

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (4) : 101058

PDF (5082KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (4) :101058 DOI: 10.1016/j.ajps.2025.101058
Review artices
research-article

Targeted protein degradation with small molecules for cancer immunotherapy

Author information +
History +
PDF (5082KB)

Abstract

Immunotherapy has transformed cancer treatment, marked by the approval of numerous antibody-based drugs. However, the limitations of antibodies in pharmacokinetics including long half-lives, limited oral bioavailability and immunogenicity, have prompted the pursuit of small molecule-based immunotherapy. Traditional drug discovery strategies, which focus on blocking protein activity through inhibitors, face persistent hurdles, such as reliance on accessible binding pockets, poor selectivity, and the emergence of drug resistance. Targeted protein degradation (TPD) technologies have emerged as powerful tools to address these limitations, offering significant therapeutic advantages over conventional inhibition strategies, particularly for historically ''undruggable'' targets. In recent years, small molecule-based protein degraders have rapidly advanced in cancer immunotherapy. In this review, we highlight recent progress in TPD-driven small-molecule drug discovery and summarize the application of these technologies in cancer immunotherapy, including degraders targeting PD-1/PD-L1, chemokine receptors, IDO1, AhR, and others.

Keywords

Cancer immunotherapy / Small molecules / Targeted protein degradation / Degraders

Cite this article

Download citation ▾
Zichao Yang, Jianwei Xu, Xixiang Yang, Jianjun Chen. Targeted protein degradation with small molecules for cancer immunotherapy. Asian Journal of Pharmaceutical Sciences, 2025, 20(4): 101058 DOI:10.1016/j.ajps.2025.101058

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare that there are no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 82173668, 82373706).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ajps.2025.101058. The figures with "S" before the serial number are included in the Supplementary data.

References

[1]

Jokhadze N, Das A, Dizon DS. Global cancer statistics: a healthy population relies on population health. Ca-Cancer J Clin 2024;74( 3):224-6.

[2]

Huang Y, Fan H, Ti HH. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian J Pharm Sci 2024; 19(2):100902.

[3]

Chacon AC, Melucci AD, Qin SS, Prieto PA. Thinking small: small molecules as potential synergistic adjuncts to checkpoint inhibition in melanoma. Int J Mol Sci 2021; 22(6):3228.

[4]

Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, et al. Innovations in cancer immunotherapy: a comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hemat 2025; 206:104588.

[5]

Isazadeh A, Hajazimian S, Garshasbi H, Shadman B, Baghbanzadeh A, Chavoshi R, et al. Resistance mechanisms to immune checkpoints blockade by monoclonal antibody drugs in cancer immunotherapy: focus on myeloma. J Cell Physiol 2021; 236(2):791-805.

[6]

Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-beta pathway. J Hematol Oncol 2021; 14(1):55.

[7]

Su X, Li J, Xu X, Ye YB, Wang CL, Pang GL, et al. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22(1):751.

[8]

Braoudaki M, Ahmad MS, Mustafov D, Seriah S, Siddiqui MN, Siddiqui SS. Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact. Semin Cancer Biol 2022; 86(Pt 2):436-49.

[9]

Zhang Y, Hu ZL, Zhang JF, Ren CY, Wang YX. Dual-target inhibitors of indoleamine 2,3 dioxygenase 1 (IDO1): a promising direction in cancer immunotherapy. Eur J Med Chem 2022; 238:114524.

[10]

Sangro B, Sarobe P, Hervas-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021; 18(8):525-43.

[11]

Spisarova M, Melichar B, Vitaskova D, Studentova H. Pembrolizumab plus axitinib for the treatment of advanced renal cell carcinoma. Expert Rev Anticancer Ther 2021; 21(7):693-703.

[12]

Zhao B, Gao ML, Zhao H, Zhao JX, Shen X. Efficacy and safety profile of avelumab monotherapy. Crit Rev Oncol Hemat 2021; 166:103464.

[13]

Rijavec E, Indini A, Ghidini M, Tomasello G, Cattaneo M, Barbin F, et al. Nivolumab plus ipilimumab for the first-line treatment of metastatic NSCLC. Expert Rev Anticancer Ther 2021; 21(7):705-13.

[14]

Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Jafarpour R, Shojaei Z, Motallebnezhad M. Immune checkpoints and cancer development: therapeutic implications and future directions. Pathol Res Pract 2021; 223:153485.

[15]

Cheng BB, Wang W, Liu T, Cao H, Pan W, Xiao Y, et al. Bifunctional small molecules targeting PD-L1/CXCL12 as dual immunotherapy for cancer treatment. Signal Transduct Target Ther 2023; 8(1):91.

[16]

Guo JZ, Yu FY, Zhang KJ, Jiang S, Zhang XY, Wang TY. Beyond inhibition against the PD-1/PD-L1 pathway: development of PD-L1 inhibitors targeting internalization and degradation of PD-L1. Rsc Med Chem 2024; 15(4):1096-108.

[17]

Wang SH, Kong ZH, Shi YR, Shao CX, Wang W, Su ZH, et al. Discovery of small and bifunctional molecules targeting PD-L1/CD 73 for cancer dual immunotherapy. J Med Chem 2024; 67(11):9447-64.

[18]

Wu YR, Yang ZC, Cheng K, Bi HC, Chen JJ. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B 2022; 12(12):4287-308.

[19]

Jing TF, Zhang ZJ, Kang ZH, Mo JS, Yue XT, Lin ZY, et al. Discovery and optimization of novel biphenyl derivatives bearing cyclopropyl linkage as potent programmed cell death-1/programmed cell death-ligand 1 inhibitors. J Med Chem 2023; 66(10):6811-35.

[20]

Wang ZJ, Liao XT, He HQ, Guo X, Chen JJ. Targeting the STAT3 pathway with STAT3 degraders. Trends Pharmacol Sci 2024; 45(9):811-23.

[21]

Wang C, Zheng CX, Wang H, Zhang LR, Liu ZM, Xu P. The state of the art of PROTAC technologies for drug discovery. Eur J Med Chem 2022:235.

[22]

Wang X, Qin ZL, Li N, Jia MQ, Liu QG, Bai YR, et al. Annual review of PROTAC degraders as anticancer agents in 2022. Eur J Med Chem 2024; 267:116166.

[23]

Guedeney N, Cornu M, Schwalen F, Kieffer C, AS Voisin-Chiret. PROTAC technology: a new drug design for chemical biology with many challenges in drug discovery. Drug Discov Today 2023; 28(1):103395.

[24]

Sun Y, Ding N, Song Y, Yang Z, Liu W, Zhu J, et al. Degradation of Bruton's tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia 2019; 33(8):2105-10

[25]

Shaik S, Kumar Reddy Gayam P, Chaudhary M, Singh G, Pai A. Advances in designing ternary complexes: integrating in-silico and biochemical methods for PROTAC optimisation in target protein degradation. Bioorg Chem 2024; 153:107868.

[26]

Mullard A. Targeted protein degraders crowd into the clinic. Nat Rev Drug Discov 2021; 20(4):247-50.

[27]

Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 2022; 21(3):181-200.

[28]

Fang YZ, He QJ, Cao J. Targeted protein degradation and regulation with molecular glue: past and recent discoveries. Curr Med Chem 2022; 29(14):2490-503.

[29]

Domostegui A, Nieto-Barrado L, Perez-Lopez C, Mayor-Ruiz C. Chasing molecular glue degraders: screening approaches. Chem Soc Rev 2022; 51(13):5498-517.

[30]

Wu HY, Yao H, He C, Jia YL, Zhu ZY, Xu ST, et al. Molecular glues modulate protein functions by inducing protein aggregation: a promising therapeutic strategy of small molecules for disease treatment. Acta Pharm Sin B 2022; 12(9):3548-66.

[31]

Dong G, Ding Y, He S, Sheng C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem 2021; 64(15):10606-20.

[32]

Cecchini C, Pannilunghi S, Tardy S, Scapozza L. From conception to development: investigating PROTACs features for improved cell permeability and successful protein degradation. Front Chem 2021; 9:672267.

[33]

Lebraud H, Wright DJ, Johnson CN, Heightman TD.Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. Acs Central Sci 2016; 2(12):927-34.

[34]

Wang HY, Qiao C, Guan QT, Wei MJ, Li ZH. Nanoparticle-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: novel insights and perspectives. Asian J Pharm Sci 2023; 18(4):100829.

[35]

Hafezi F, Kling S, Hafezi NL, Aydemir ME, Lu NJ, Hillen M, et al. Corneal cross-linking. Prog Retin Eye Res 2025; 104:101322.

[36]

Reynders M, Trauner D. Optical control of targeted protein degradation. Cell Chem Biol 2021; 28(7):969-86.

[37]

Xue G, Wang K, Zhou DL, Zhong HB, Pan ZY. Light-induced protein degradation with photocaged PROTACs. J Am Chem Soc 2019; 141(46):18370-4.

[38]

Zhou YX, Li CR, Chen XK, Zhao Y, Liao YX, Huang PH, et al. Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins. Nat Commun 2024; 15(1):8695.

[39]

Liu J, Chen H, Liu Y, Shen YD, Meng FY, Kaniskan , et al. Cancer selective target degradation by folate-caged PROTACs. J Am Chem Soc 2021; 143(19):7380-7.

[40]

Eriksson I, Ollinger K. Lysosomes in cancer-at the crossroad of good and evil. Cells-Basel 2024; 13(5):459.

[41]

Zhao L, Zhao J, Zhong KH, Tong AP, Jia D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7(1):113.

[42]

Cassidy K, Zhao H. Redefining the scope of targeted protein degradation: translational opportunities in hijacking the autophagy-lysosome pathway. Biochemistry 2023; 62(3):580-7.

[43]

Takahashi D, Moriyama J, Nakamura T, Miki E, Takahashi E, Sato A, et al. AUTACS: cargo-specific degraders using selective autophagy. Mol Cell 2019; 76(5):797-810.

[44]

Pei JP, Pan XL, Wang AX, Shuai W, Bu FQ, Tang P, et al. Developing potent LC3-targeting AUTAC tools for protein degradation with selective autophagy. Chem Commun 2021; 57(97):13194-7.

[45]

Vatté J, Bourdeau V, Ferbeyre G, Schmitzer AR. Gaining insight into mitochondrial targeting: aUTAC-biguanide as an anticancer agent. Molecules 2024; 29(16):3773.

[46]

Bao JY, Chen ZQ, Li Y, Chen L, Wang W, Sheng CQ, et al. Discovery of novel PDE $\delta$ autophagic degraders: a case study of autophagy-tethering compound (ATTEC). ACS Med Chem Lett 2023; 15(1):29-35.

[47]

Ding Y, Fei YY, Lu BX. Emerging new concepts of degrader technologies. Trends Pharmacol Sci 2020; 41(7):464-74.

[48]

Zhu ZF, Li JY, Shen SJ, Al-furas H, Li SR, Tong YC, et al. Targeting EGFR degradation by autophagosome degraders. Eur J Med Chem 2024; 270:116345.

[49]

Dong GQ, Wu Y, Cheng JF, Chen L, Liu R, Ding Y, et al. Ispinesib as an effective warhead for the design of autophagosome-tethering chimeras: discovery of potent degraders of nicotinamide phosphoribosyltransferase (NAMPT). J Med Chem 2022; 65(11):7619-28.

[50]

Ramadas B, Kumar Pain P, Manna D. LYTACs: an emerging tool for the degradation of non-cytosolic proteins. Chemmedchem 2021; 16(19):2951-3.

[51]

Li YY, Yang Y, Zhang RS, Ge RX, Xie SB. Targeted degradation of membrane and extracellular proteins with LYTACs. Acta Pharmacol Sin 2025; 46(1):1-7.

[52]

Gauthier C, El Cheikh K, Basile I, Daurat M, Morere E, Garcia M, et al. Cation-independent mannose 6-phosphate receptor: from roles and functions to targeted therapies. J Control Release 2024; 365:759-72.

[53]

Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley NM, Bertozzi CR. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 2020; 584(7820):291-7.

[54]

Gauthier C, Mariot J, Daurat M, Dhommée C, El Cheikh K, Morère E, et al. Mannose 6-phosphate receptor-targeting antibodies preserve Fc receptor-mediated recycling. J Control Release 2023; 358:465-75.

[55]

Ramirez-Cortes F, Menova P. Hepatocyte targeting via the asialoglycoprotein receptor. Rsc Med Chem 2025; 16(2):525-44.

[56]

Petrov RA, Mefedova SR, Yamansarov EY, Maklakova SY, Grishin DA, Lopatukhina E, et al. New small-molecule glycoconjugates of docetaxel and GalNAc for targeted delivery to hepatocellular carcinoma. Mol Pharm 2021; 18(1):461-8.

[57]

Yamansarov EY, Lopatukhina EV, Evteev SA, Skvortsov DA, Lopukhov AV, Kovalev SV, et al. Discovery of bivalent GalNAc-conjugated betulin as a potent ASGPR-directed agent against hepatocellular carcinoma. Bioconj Chem 2021; 32(4):763-81.

[58]

Maklakova SY, Lopukhov AV, Khudyakov AD, Kovalev SV, Mazhuga MP, Chepikova OE, et al. Design and synthesis of atorvastatin derivatives with enhanced water solubility, hepatoselectivity and stability. Rsc Med Chem 2023; 14(1):56-64.

[59]

Ahn G, Banik SM, Miller CL, Riley NM, Cochran JR, Bertozzi CR. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol 2021; 17(9):937-46.

[60]

Bagdanoff JT, Smith TM, Allan M, O'Donnell P, Nguyen Z, Moore EA, et al. Clearance of plasma PCSK9 via the asialoglycoprotein receptor mediated by heterobifunctional ligands. Cell Chem Biol 2023; 30(1):97-109.e9.

[61]

Valdor R, Martinez-Vicente M. The role of chaperone-mediated autophagy in tissue homeostasis and disease pathogenesis. Biomedicines 2024; 12(2):257.

[62]

Liao ZZ, Wang B, Liu WJ, Xu Q, Hou L, Song JL, et al. Dysfunction of chaperone-mediated autophagy in human diseases. Mol Cell Biochem 2021; 476(3):1439-54.

[63]

Liu J, Wang LJ, He H, Liu YY, Jiang YQ, Yang JF. The complex role of chaperone-mediated autophagy in cancer diseases. Biomedicines 2023; 11(7):2050.

[64]

Shao JN, Lin XF, Wang HT, Zhao CH, Yao SQ, Ge JY, et al. Targeted degradation of cell-surface proteins via chaperone-mediated autophagy by using peptide-conjugated antibodies. Angew Chem Int Edit 2024; 63(18):e202319232.

[65]

Ma L, Zhang K, Huang ZQ, Guo YD, Liu N, Chen J, et al. Development of novel silicon-based hydrophobic tags (SiHyT) for targeted proteins degradation. J Med Chem 2024; 67(23):21344-63.

[66]

Chen Y, Pal S, Li W, Liu FY, Yuan SC, Hu QY. Engineered platelets as targeted protein degraders and application to breast cancer models. Nat Biotechnol 2024. doi:10.1038/s41587-024-02494-8.

[67]

Wang ZJ, Yuan L, Liao XT, Guo X, Chen JJ.Reducing PD-L1 expression by degraders and downregulators as a novel strategy to target the PD-1/PD-L1 pathway. J Med Chem 2024; 67(8):6027-43.

[68]

Awadasseid A, Wu YL, Zhang W. Advance investigation on synthetic small-molecule inhibitors targeting PD-1/PD-L1 signaling pathway. Life Sci 2021; 282:119813.

[69]

Liu C, Seeram NP, Ma H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: a review. Cancer Cell Int 2021; 21(1):239.

[70]

Wang X, Guo GC, Guan H, Yu Y, Lu J, Yu JM. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Canc Res 2019; 38:87.

[71]

Yang ZC, Liu ZQ, Xu CL, Xu JW, Liu T, He HQ, et al. Discovery of novel resorcinol biphenyl ether-based macrocyclic small molecules as PD-1/PD-L1 inhibitors with favorable pharmacokinetics for cancer immunotherapy. Bioorg Chem 2023; 139:106740.

[72]

Liu XJ, Yin MX, Dong JW, Mao GX, Min WJ, Kuang ZA, et al. Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mtor. Acta Pharm Sin B 2021; 11(10):3134-49.

[73]

Cheng BB, Ren YC, Cao H, Chen JJ. Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1. Eur J Med Chem 2020; 199:112377.

[74]

Wang YB, Zhou YY, Cao S, Sun Y, Dong ZQ, Li C, et al. In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC). Bioorg Chem 2021; 111:104833.

[75]

Liu Y, Zheng MZ, Ma ZL, Zhou YR, Huo JF, Zhang WB, et al. Design, synthesis, and evaluation of PD-L1 degraders to enhance T cell killing activity against melanoma. Chin Chem Lett 2023; 34(5):107762.

[76]

Zheng JW, He WY, Li J, Feng XJ, Li YY, Cheng BH, et al. Bifunctional compounds as molecular degraders for integrin-facilitated targeted protein degradation. J Am Chem Soc 2022; 144(48):21831-6.

[77]

Qu R, Zhao YH, Zhang YZ. The mechanism of cytokine regulation of cancer occurrence and development in the tumor microenvironment and its application in cancer treatment: a narrative review. Transl Cancer Res 2024; 13(10):5649-63.

[78]

Zhao HQ, Jiang J. Chemokines and receptors in the development and progression of malignant tumors. Cytokine 2023; 170:156335.

[79]

Abdul-Rahman T, Ghosh S, Badar SM, Nazir A, Bamigbade GB, Aji N, et al. The paradoxical role of cytokines and chemokines at the tumor microenvironment: a comprehensive review. Eur J Med Res 2024; 29(1):124.

[80]

Mempel TR, Lill JK, Altenburger LM. How chemokines organize the tumour microenvironment. Nat Rev Cancer 2024; 24(1):28-50.

[81]

Sonawani A, Kharche S, Dasgupta D, Sengupta D. Insights into the dynamic interactions at chemokine-receptor interfaces and mechanistic models of chemokine binding. J Struct Biol 2022; 214(3):107877.

[82]

Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I. CXCR4 as a therapeutic target in acute myeloid leukemia. Leukemia 2024; 38(11):2303-17.

[83]

Huber ME, Toy L, Schmidt MF, Vogt H, Budzinski J, Wiefhoff MFJ, et al. A chemical biology toolbox targeting the intracellular binding site of CCR9: fluorescent ligands, new drug leads and PROTACs. Angew Chem Int Edit 2022; 61(12):e202116782.

[84]

Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF- $\beta$ signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22(1):594.

[85]

Singh S, Gouri V, Samant M. TGF-beta in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40(11):335.

[86]

Goldmann O, Nwofor OV, Chen Q, Medina E. Mechanisms underlying immunosuppression by regulatory cells. Front Immunol 2024; 15:1328193.

[87]

Derynck R, Turley SJ, Akhurst RJ. TGF $\beta$ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2021; 18(1):9-34.

[88]

Ma R, Sun JH, Wang YY. The role of transforming growth factor-(TGF- $\beta$) in the formation of exhausted CD8+T cells. Clin Exp Med 2024; 24(1):128.

[89]

Li TY, Wang XR, Niu MK, Wang ML, Zhou JW, Wu KM, et al. Bispecific antibody targeting TGF- $\beta$ and PD-L 1 for synergistic cancer immunotherapy. Front Immunol 2023; 14:1196970.

[90]

Tauriello DVF, Sancho E, Batlle E. Overcoming TGF $\beta$-mediated immune evasion in cancer. Nat Rev Cancer 2022; 22(1):25-44.

[91]

Garg P, Pareek S, Kulkarni P, Horne D, Salgia R, Singhal SS. Exploring the potential of TGF $\beta$ as a diagnostic marker and therapeutic target against cancer. Biochem Pharmacol 2025; 231:116646.

[92]

Feng YQ, Su H, Li YZ, Luo CX, Xu HY, Wang YQ, et al. Degradation of intracellular TGF- $\beta$l by PROTACs efficiently reverses M2 macrophage induced malignant pathological events. Chem Commun 2020; 56(19):2881-4.

[93]

Guo YX, Liu Y, Wu W, Ling DS, Zhang Q, Zhao P, et al. Indoleamine 2,3-dioxygenase (IDO) inhibitors and their nanomedicines for cancer immunotherapy. Biomaterials 2021; 276:121018.

[94]

Fujiwara Y, Kato S, Nesline MK, Conroy JM, DePietro P, Pabla S, et al. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev 2022; 110:102461.

[95]

Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269.

[96]

Song XT, Si QQ, Qi R, Liu WD, Li M, Guo MY, et al. Indoleamine 2,3-dioxygenase 1: a promising therapeutic target in malignant tumor. Front Immunol 2021; 12:800630.

[97]

Wang PF, Yang LQ, Shi ZH, Li XM, Qiu HY. An updated patent review of IDO1 inhibitors for cancer ( 2018-2022). Expert Opin Ther Pat 2022; 32(11):1145-59.

[98]

Cicin I, Plimack ER, Gurney H, Leibowitz R, Alekseev BY, Parnis FX, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab for advanced urothelial carcinoma: results from the randomized phase III ECHO-303/KEYNOTE-698 study. BMC cancer 2024; 23(Suppl 1):1256.

[99]

Tang K, Wu YH, Song Y, Yu B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J Hematol Oncol 2021; 14(1):68.

[100]

Hu MX, Zhou WL, Wang YJ, Yao DP, Ye TH, Yao YQ, et al. Discovery of the first potent proteolysis targeting chimera (PROTAC) degrader of indoleamine 2,3-dioxygenase 1. Acta Pharm Sin B 2020; 10(10):1943-53.

[101]

Bollu LR, Bommi PV, Monsen PJ, Zhai LJ, Lauing KL, Bell A, et al. Identification and characterization of a novel indoleamine 2,3-dioxygenase 1 protein degrader for glioblastoma. J Med Chem 2022; 65(23):15642-62.

[102]

Akhmetova DA, Kozlov VV, Gulyaeva LF. New insight into the role of AHR in lung carcinogenesis. Biochemistry (Mosc) 2022; 87(11):1219-25.

[103]

Sun LJ. Recent advances in the development of AHR antagonists in immuno-oncology. Rsc Med Chem 2021; 12(6):902-14.

[104]

Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798.

[105]

Peyraud F, Guegan JP, Bodet D, Cousin S, Bessede A, Italiano A. Targeting tryptophan catabolism in cancer immunotherapy era: challenges and perspectives. Front Immunol 2022; 13:807271.

[106]

Kazzaz SA, Tawil J, Harhaj EW. The aryl hydrocarbon receptor-interacting protein in cancer and immunity: beyond a chaperone protein for the dioxin receptor. J Biol Chem 2024; 300(4):107157.

[107]

Lee HS, Puppala D, Choi EY, Swanson H, Kim KB. Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool. ChemBioChem 2007; 8(17):2058-62.

[108]

Ma T, Chen Y, Yi ZG, Li YH, Bai J, Li LJ, et al. BET in hematologic tumors: immunity, pathogenesis, clinical trials and drug combinations. Genes Dis 2023; 10(6):2306-19.

[109]

Guo JW, Zheng QQ, Peng Y. BET proteins: biological functions and therapeutic interventions. Pharmacol Ther 2023; 243:108354.

[110]

Qian HH, Zhu M, Tan XY, Zhang YX, Liu XN, Yang L. Super-enhancers and the super-enhancer reader BRD4: tumorigenic factors and therapeutic targets. Cell death discovery 2023; 9(1):470.

[111]

Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the bet bromodomain protein BRD4. ACS Chem Biol 2015; 10(8):1770-7.

[112]

Ma L, Wang JW, Yang Y, Lu J, Ling J, Chu XR, et al. BRD 4 PROTAC degrader MZ1 exhibits anti-B-cell acute lymphoblastic leukemia effects via targeting CCND3. Hematology 2023; 28(1):2247253.

[113]

Lang C, Stickler S, Rath B, Teufelsbauer M, Weigl L, Hohenegger M, et al. BRD4-targeting PROTACs synergize with chemotherapeutics against osteosarcoma cell lines. Anticancer Res 2024; 44(3):971-80.

[114]

Li G, Ma LY, Feng CX, Yin HL, Bao JP, Wu D, et al. MZ1, a BRD 4 inhibitor, exerted its anti-cancer effects by suppressing SDC1 in glioblastoma. BMC cancer 2024; 24(1):220.

[115]

Ma ZH, Zhang C, Bolinger AA, Zhou J. An updated patent review of BRD4 degraders. Expert Opin Ther Pat 2024; 34(10):929-51.

[116]

Gasparrini M, Giovannuzzi S, Nocentini A, Raffaelli N, Supuran CT. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review. Expert Opin Ther Pat 2024; 34(7):565-82.

[117]

Lin TC. Updated functional roles of NAMPT in carcinogenesis and therapeutic niches. Cancers 2022; 14(9):2059.

[118]

Navas LE, Carnero A. Nicotinamide adenine dinucleotide (NAD) metabolism as a relevant target in cancer. Cells-Basel 2022; 11(17):2627.

[119]

Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756.

[120]

Gasparrini M, Audrito V. NAMPT: a critical driver and therapeutic target for cancer. Int J Biochem Cell Biol 2022; 145:106189.

[121]

Wu Y, Pu CY, Fu YX, Dong GQ, Huang M, Sheng CQ. NAMPT-targeting PROTAC promotes antitumor immunity suppressing myeloid-derived suppressor cell expansion. Acta Pharm Sin B 2022; 12(6):2859-68.

[122]

Wei YC, Xiang HT, Zhang WQ. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553.

[123]

Galli U, Colombo G, Travelli C, Tron GC, Genazzani AA, Grolla AA. Recent advances in NAMPT inhibitors: a novel immunotherapic strategy. Front Pharmacol 2020; 11:656.

[124]

Liao GB, Li XZ, Zeng S, Liu C, Yang SM, Yang L, et al.Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal 2018; 16(1):57.

[125]

Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, et al. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022; 86:107-21.

[126]

Madhi H, Lee JS, Choi YE, Li Y, Kim MH, Choi Y, et al. FOXM1 inhibition enhances the therapeutic outcome of lung cancer immunotherapy by modulating PD-L 1 expression and cell proliferation. Adv Sci 2022; 9(29):e2202702.

[127]

Wang K, Dai XY, Yu A, Feng CY, Liu KW, Huang LQ. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression. J Exp Clin Canc Res 2022; 41(1):289.

[128]

Rozkiewicz D, Hermanowicz JM, Kwiatkowska I, Krupa A, Pawlak D. Bruton's tyrosine kinase inhibitors (BTKIs): review of preclinical studies and evaluation of clinical trials. Molecules 2023; 28(5):2400.

[129]

De Bondt M, Renders J, Petit de Prado P, Berghmans N, Portner N, Vanbrabant L, et al. Effect on neutrophil migration and antimicrobial functions by the Bruton's tyrosine kinase inhibitors tolebrutinib, evobrutinib, and fenebrutinib. J Leukoc Biol 2025; 117(3):qiae160.

[130]

Jiang Q Peng Y, Herling CD, Herling M. The immunomodulatory mechanisms of BTK inhibition in CLL and beyond. Cancers (Basel) 2024; 16(21):3574.

[131]

Schneider R, Oh J. Bruton's tyrosine kinase inhibition in multiple sclerosis. Curr Neurol Neurosci Rep 2022; 22(11):721-34.

[132]

Neys SFH, Hendriks RW, Corneth OBJ. Targeting Bruton's tyrosine kinase in inflammatory and autoimmune pathologies. Front Cell Dev Biol 2021; 9:668131.

[133]

Weber ANR, Bittner Z, Liu X, Dang TM, Radsak MP, Brunner C. Bruton's tyrosine kinase: an emerging key player in innate immunity. Front Immunol 2017; 8:1454.

[134]

Wang HR, Guo H, Yang JY, Liu YY, Liu XC, Zhang Q, et al. Bruton tyrosine kinase inhibitors in B-cell lymphoma: beyond the antitumour effect. Exp Hematol Oncol 2022; 11(1):60.

[135]

Robbins DW, Noviski MA, Tan YS, Konst ZA, Kelly A, Auger P, et al. Discovery and preclinical pharmacology of NX- 2127, an orally bioavailable degrader of Bruton's tyrosine kinase with immunomodulatory activity for the treatment of patients with b cell malignancies. J Med Chem 2024; 67(4):2321-36.

[136]

Montoya S, Bourcier J, Noviski M, Lu H, Thompson MC, Chirino A, et al. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 2024; 383(6682):eadi5798.

[137]

Mato AR, Wierda WG, Ai WZ, Flinn IW, Tees M, Patel MR, et al. NX-2127-001, a first-in-human trial of NX- 2127, a Bruton's tyrosine kinase-targeted protein degrader, in patients with relapsed or refractory chronic lymphocytic leukemia and B-cell malignancies. Blood 2022; 140:2329-32.

[138]

Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18(1):69.

[139]

Kaloni D, Diepstraten ST, Strasser A, Kelly GL.BCL-2 protein family: attractive targets for cancer therapy. Apoptosis: Int J Prog Cell Death 2023; 28(1-2):20-38.

[140]

Liu L, Cheng XF, Yang H, Lian SL, Jiang YG, Liang JH, et al. BCL-2 expression promotes immunosuppression in chronic lymphocytic leukemia by enhancing regulatory T cell differentiation and cytotoxic T cell exhaustion. Mol Cancer 2022; 21(1):59.

[141]

Kolb R, De U, Khan S, Luo YW, Kim MC, Yu HJ, et al. Proteolysis-targeting chimera against BCL-X destroys tumor-infiltrating regulatory T cells. Nat Commun 2021; 12(1):1281.

[142]

Khan S, Wiegand J, Zhang PY, Hu WY, Thummuri D, Budamagunta V, et al. BCL-X PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRAS-mutated cancers. J Hematol Oncol 2022; 15(1):23.

[143]

He YH, Koch R, Budamagunta V, Zhang PY, Zhang X, Khan S, et al. DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J Hematol Oncol 2020; 13(1):95.

[144]

Khan S, Zhang X, Lv DW, Zhang Q, He YH, Zhang PY, et al. A selective Bcl-xL PROTAC degrader achieves safe and potent antitumor activity. Nat Med 2019; 25(12):1938-47.

[145]

Khan S, Cao L, Wiegand J, Zhang PY, Zajac-Kaye M, Kaye FJ, et al. Protac-mediated dual degradation of BCL-xL and BCL-2 is a highly effective therapeutic strategy in small-cell lung cancer. Cells-Basel 2024; 13(6):528.

[146]

Han S, Tushoski-Alemán GW, Zhang PY, Zheng GR, Zhou DH, Huo ZG, et al. A novel regimen for pancreatic ductal adenocarcinoma targeting MEK, BCL-xL, and EGFR. Neoplasia 2025; 59:101070.

[147]

Suryavanshi A, Vandana Shukla YK, Kumar V, Gupta P, Asati V, et al. MEK inhibitors in oncology: a patent review and update ( 2016-present). Expert Opin Ther Pat 2024; 34(10):963-1007.

[148]

Ortega MA, Boaru DL, De Leon-Oliva D, Fraile-Martinez O, García-Montero C, Rios L, et al. PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications. J Mol Med 2024; 102(8):987-1000.

[149]

Dong L, Choi H, Budhu S, Schulze I, Verma S, Mangarin LM, et al. Intermittent MEK inhibition with GITR costimulation rescues T-cell function for increased efficacy with CTLA-4 blockade in solid tumor models. Cancer Immunol Res 2024; 12(10):1392-408.

[150]

Adamopoulos C, Papavassiliou KA, Poulikakos PI, Papavassiliou AG. RAF and MEK inhibitors in non-small cell lung cancer. Int J Mol Sci 2024; 25(9):4633.

[151]

Wei JL, Hu JP, Wang L, Xie L, Jin MS, Chen X, et al. Discovery of a first-in-class mitogen-activated protein kinase kinase 1/ 2 degrader. J Med Chem 2019; 62(23):10897-911.

[152]

Hu JP, Wei JL, Yim H, Wang L, Xie L, Jin MS, et al. Potent and selective mitogen-activated protein kinase kinase 1/2 (MEK1/2) heterobifunctional small-molecule degraders. J Med Chem 2020; 63(24):15883-905.

[153]

Haines E, Catterall R, De Jesus V, Hidalgo D, Cavanaugh J, Sanchez-Martin M, et al. IK-595, a best-in-class MEK-RAF molecular glue, drives broad and potent anti-tumor activity across RAS-MAPK pathway-altered cancers as a monotherapy and in combination. Cancer Res 2024; 84(6):3296.

[154]

Ramani S, Samant S, Manohar SM. The story of EGFR: from signaling pathways to a potent anticancer target. Future Med Chem 2022; 14(17):1267-88.

[155]

Alharbi KS, Shaikh MAJ, Afzal O, Altamimi ASA, Almalki WH, Alzarea SI, et al. An overview of epithelial growth factor receptor (EGFR) inhibitors in cancer therapy. Chem-Biol Interact 2022; 366:110108.

[156]

Kapoor SS, Zaiss DMW. Emerging role of EGFR mutations in creating an immune suppressive tumour microenvironment. Biomedicines 2022; 10(1):52.

[157]

Madeddu C, Donisi C, Liscia N, Lai E, Scartozzi M, Macciò A. EGFR-mutated non-small cell lung cancer and resistance to immunotherapy: role of the tumor microenvironment. Int J Mol Sci 2022; 23(12):6489.

[158]

Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer 2021; 21(3):181-97.

[159]

To KKW, Fong W, Cho WCS. Immunotherapy in treating EGFR-mutant lung cancer: current challenges and new strategies. Front Oncol 2021; 11:635007.

[160]

Yang ZC, Liu ZQ, Wan SH, Xu JW, Huang YQ, He HQ, et al. Discovery of novel small-molecule-based potential PD-L1/EGFR dual inhibitors with high druggability for glioblastoma immunotherapy. J Med Chem 2024; 67(10):7995-8019.

[161]

Wang K, Zhou HP. Proteolysis targeting chimera (PROTAC) for epidermal growth factor receptor enhances anti-tumor immunity in non-small cell lung cancer. Drug Dev Res 2021; 82(3):422-9.

[162]

Wang HR, Wang H, Wang R, Li YZ, Wang ZP, Zhou WS, et al. Discovery of a molecular glue for EGFR degradation. Oncogene 2025; 44(8):545-56.

[163]

Imai T, Lin J, Kaya GG, Ju E, Kondylis V, Kelepouras K, et al. The RIPK1 death domain restrains ZBP1- and TRIF-mediated cell death and inflammation. Immunity 2024; 57(7):1497-513.e6.

[164]

Hou JK, Wang YF, Shi LL, Chen Y, Xu CY, Saeedi A, et al. Integrating genome-wide CRISPR immune screen with multi-omic clinical data reveals distinct classes of tumor intrinsic immune regulators. J Immunother Cancer 2021; 9(2):e001819.

[165]

Cucolo L, Chen QZ, Qiu JY, Yu YJ, Klapholz M, Budinich KA, et al. The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade. Immunity 2022; 55(4):671-85.

[166]

Yu X, Lu D, Qi XL, Paudel RR, Lin HF, Holloman BL, et al. Development of a RIPK1 degrader to enhance antitumor immunity. Nat Commun 2024; 15(1):10683.

[167]

Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic - a new approach to cancer therapy. Nat Rev Clin Oncol 2023; 20(4):265-78.

[168]

Zhou YX, Teng P, Montgomery NT, Li XL, Tang WP. Development of triantennary N -acetylgalactosamine conjugates as degraders for extracellular proteins. Acs Central Sci 2021; 7(3):499-506.

[169]

Mikitiuk M, Barczynski J, Bielski P, Arciniega M, Tyrcha U, Hec A, et al. IGF2 peptide-based LYTACs for targeted degradation of extracellular and transmembrane proteins. Molecules 2023; 28(22):7519.

[170]

Du JH, Han S, Zhou HY, Wang JZ, Wang F, Zhao MX, et al. Targeted protein degradation combined with PET imaging reveals the role of host PD-L1 in determining anti-PD-1 therapy efficacy. Eur J Nucl Med Mol Imag 2024; 51(12):3559-71.

[171]

Schroder M, Renatus M, Liang X, Meili F, Zoller T, Ferrand S, et al. DCAF1-based PROTACs with activity against clinically validated targets overcoming intrinsic- and acquired-degrader resistance. Nat Commun 2024; 15(1):275.

PDF (5082KB)

124

Accesses

0

Citation

Detail

Sections
Recommended

/