Metal-organic frameworks as therapeutic chameleons: revolutionizing the cancer therapy employing novel nanoarchitectonics

Sajja Bhanu Prasad , Akshay Shinde , Dadi A. Srinivasrao , Paras Famta , Saurabh Shah , Tejaswini Kolipaka , Giriraj Pandey , Deelip Gaonker , Ganesh Vambhurkar , Pooja Khairnar , Rahul Kumar , Amol G. Dikundwar , Vinaykumar Kanchupalli , Saurabh Srivastava

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (5) : 101054

PDF (3717KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (5) :101054 DOI: 10.1016/j.ajps.2025.101054
Review artices
research-article

Metal-organic frameworks as therapeutic chameleons: revolutionizing the cancer therapy employing novel nanoarchitectonics

Author information +
History +
PDF (3717KB)

Abstract

Cancer is one of the most complex diseases and the second leading cause of mortality worldwide. Due to its poor prognosis and challenges in diagnosis, eradicating cancer remains highly difficult. The limitations associated with conventional therapies have led to the emergence of copious therapeutic strategies such as chemotherapy, phototherapy, starvation therapy, radiotherapy and immunotherapy; however, limited therapeutic efficacy, poor tumor cell selectivity and substantial adverse effects remain significant concern. Attributed to the expeditious advancement of nanotechnology, the amalgamation of nanomaterials with therapeutic approaches provides an opportunity to address the shortcomings of conventional chemotherapy. Metal-organic frameworks (MOFs), which consist of bridging ligands and ions/clusters connected by coordination bonds, have been widely used in cancer therapy to address the limitations of currently therapeutic interventions, such as poor efficacy, low stability and severe side effects. This potential arises from their tuneable porosities, high specific surface area-to-volume ratio, tailorable diameters, tractable morphologies, variegated compositions, biocompatibility and facile functionalization. We summarized the role of MOF-based nanoplatforms along with mechanistic insights into emerging avenues-such as cuproptosis, ferroptosis, cellpenetrating and biomimetic MOFs, and tumor microenvironment-responsive MOFsalongside recent advancements in mono- and multifunctional cancer therapeutics. Theragnostic and imaging functionalities, as well as regulatory considerations and future prospects of MOF-based nanoplatforms utilized in cancer treatment, are also discussed.

Keywords

Metal-organic frameworks / Monotherapeutic modality / Multifunctional mofs / Combination therapy / Theranostic and imaging / functionalities

Cite this article

Download citation ▾
Sajja Bhanu Prasad, Akshay Shinde, Dadi A. Srinivasrao, Paras Famta, Saurabh Shah, Tejaswini Kolipaka, Giriraj Pandey, Deelip Gaonker, Ganesh Vambhurkar, Pooja Khairnar, Rahul Kumar, Amol G. Dikundwar, Vinaykumar Kanchupalli, Saurabh Srivastava. Metal-organic frameworks as therapeutic chameleons: revolutionizing the cancer therapy employing novel nanoarchitectonics. Asian Journal of Pharmaceutical Sciences, 2025, 20(5): 101054 DOI:10.1016/j.ajps.2025.101054

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest

The authors declare that there is no conflict of interest.

Acknowledgment

The authors would like to acknowledge the research funding support by the Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Govt. of India to "Pharmaceutical Innovation and Translational Research Lab" (PITRL), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA.

References

[1]

Pandey G, Phatale V, Khairnar P, Kolipaka T, Shah S, Famta P, et al. Supramolecular self-assembled peptide-engineered nanofibers: a propitious proposition for cancer therapy. Int J Biol Macromol 2024; 256:128452.

[2]

Famta P, Shah S, Vambhurkar G, Pandey G, Bagasariya D, Kumar KC, et al. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation. Drug Del Trans Res 2024; 15:389-406.

[3]

Moorthi C, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 2011; 14:67-77.

[4]

Wagh SS, Famta P, Shah S, Vambhurkar G, Pandey G, Sikder A, et al. Navigating the brain: harnessing endogenous cellular hitchhiking for targeting neoplastic and neuroinflammatory diseases. Asian J Pharm Sci 2025; 20:101040.

[5]

Pandey G, Shah S, Phatale V, Khairnar P, Kolipaka T, Famta P, et al. Nano-in-nano' -Breaching the barriers of the tumor microenvironment using nanoparticle-incorporated nanofibers. J Drug Deliv Sci Technol 2024; 91:105249.

[6]

Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018; 12:8423-35.

[7]

Shah S, Famta P, Vambhurkar G, Kumar R, Pandey G, Singh G, et al. Docetaxel and niclosamide-loaded nanofiber systems for improved chemo-therapeutic activity and resistance reversal in prostate cancer. Drug Dev Ind Pharm 2025; 51(2):132-43.

[8]

Shah S, Famta P, Kumar R, Vambhurkar G, Pandey G, Shinde A, et al. QbD manoeuvred niclosamide laden polylactic-co-glycolic acid nanoparticles-impregnated gelatin nanofibers for the management of oral carcinoma. Bionanoscience 2025; 15:221.

[9]

Li F, Wang G, Ren J, Sun C.Synthesis methods and influencing factors of metal organic framework material MIL-53. J Phys Conf Ser 2022; 2194:012030.

[10]

Li H, Eddaoudi M, O'Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999; 402:276-9.

[11]

Férey G, Mellot-Draznieks C, Serre C, Millange F. Crystallized frameworks with giant pores: are there limits to the possible? Acc Chem Res 2005; 38:217-25.

[12]

Fang Q, Sculley J, Zhou HCJ, Zhu G. Porous metal-organic frameworks. In: Comprehensive nanoscience and technology,5. Elsevier; 2011. p. 1-20.

[13]

Koo W-T, Jang J-S, Kim I-D. Metal-organic frameworks for chemiresistive sensors. Chem 2019; 5:1938-63.

[14]

Mhettar P, Kale N, Pantwalawalkar J, Nangare S, Jadhav N. Metal-organic frameworks: drug delivery applications and future prospects. ADMET DMPK 2024; 12:27.

[15]

Yan C, Jin Y, Zhao C. Environment responsive metal-organic frameworks as drug delivery system for tumor therapy. Nanoscale Res Lett 2021; 16:140.

[16]

Peng Y, Sanati S, Morsali A, García H.Metal-organic frameworks as electrocatalysts. Angewandte Chemie International Edition 2023; 62(9):e202214707.

[17]

Remya VR, Kurian M. Synthesis and catalytic applications of metal-organic frameworks: a review on recent literature. Int Nano Lett 2018; 9:17-29.

[18]

Yin Y, Zhang J, Fan R, Zhu K, Jiang X, Ji C, et al. Terbium-functionalized silver-based metal-organic frameworks for efficient antibacterial and simultaneous monitoring of bacterial spores. J Hazard Mater 2023; 446:130753.

[19]

Wu YM, Zhao PC, Jia B, Li Z, Yuan S, Li CH. A silver-functionalized metal-organic framework with effective antibacterial activity. N Journal of Chemistry 2022; 46:5922-6.

[20]

Mohamed ME, BA Abd-El-Nabey. Fabrication of a biological metal-organic framework based superhydrophobic textile fabric for efficient oil/water separation. Sci Rep 2022; 12:1-14.

[21]

Yang SJ, Kim T, Lee K, Kim YS, Yoon J, Park CR. Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity. Carbon N Y 2014; 71:294-302.

[22]

Chen W, Du L, Wu C. Hydrothermal synthesis of MOFs. Metal-Org Frameworks Biomedi Appl 2020; 5:141-57.

[23]

Hsieh PF, Law ZX, Lin CH, Tsai DH. Understanding solvothermal growth of metal-organic framework colloids for CO2 capture applications. Langmuir 2022; 38:4415-24.

[24]

Ban Y, Li Y, Liu X, Peng Y, Yang W. Solvothermal synthesis of mixed-ligand metal-organic framework ZIF-78 with controllable size and morphology. Microporous and Mesoporous Materials 2013; 173:29-36.

[25]

Blanita G, Borodi G, Lazar MD, Biris AR, Barbu-Tudoran L, Coldea I, et al. Microwave assisted non-solvothermal synthesis of metal-organic frameworks. RSC Adv 2016; 6:25967-74.

[26]

De Lima Neto OJ, Frós AC, de O, Barros BS, De Farias Monteiro AF, Kulesza J. Rapid and efficient electrochemical synthesis of a zinc-based nano-MOF for Ibuprofen adsorption. New Journal of Chemistry 2019; 43:5518-24.

[27]

Afshariazar F, Morsali A. The unique opportunities of mechanosynthesis in green and scalable fabrication of metal-organic frameworks. J Mater Chem A Mater 2022; 10:15332-69.

[28]

Vaitsis C, Sourkouni G, Argirusis C. Metal organic frameworks (MOFs) and ultrasound: a review. Ultrason Sonochem 2019; 52:106-19.

[29]

Yu K, Lee YR, Seo JY, Baek KY, Chung YM, Ahn WS. Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: enhancement in catalytic and adsorption properties. Microporous and Mesoporous Materials 2021; 316:110985.

[30]

Bull OS, Bull I, Amadi GK, Obaalologhi Odu C, Okpa EO. A review on metal- organic frameworks (MOFS), synthesis, activation, characterisation, and application. Orient J Chem 2022; 38:490-516.

[31]

Pezhhanfar S, Farajzadeh MA, Hosseini-Yazdi SA, Mogaddam MRA. Synthesis of MOF-70 based on diffusion method; microgram amount application as a highly efficient sorbent in dispersive micro solid phase extraction prior to dispersive liquid-liquid microextraction for the preconcentration and extraction of pesticides from fruit juices. J Iran Chem Soc 2022; 19:2407-19.

[32]

Ye R, Ni M, Xu Y, Chen H, Li S. Synthesis of Zn-based metal-organic frameworks in ionic liquid microemulsions at room temperature. RSC Adv 2018; 8:26237-42.

[33]

Zhang S, Jang MS, Lee J, Puthiaraj P, Ahn WS. Zeolite-like metal organic framework (ZMOF) with a rho topology for a CO2 cycloaddition to epoxides. ACS Sustain Chem Eng 2020; 8:7078-86.

[34]

Zhao N, Cai K, He H. The synthesis of metal-organic frameworks with template strategies. Dalton Transactions 2020; 49:11467-79.

[35]

Bayliss PA, Ibarra IA, Pérez E, Yang S, Tang CC, Poliakoff M, et al. Synthesis of metal-organic frameworks by continuous flow. Green Chem 2014; 16:3796-802.

[36]

Tranchemontagne DJ, Hunt JR, Yaghi OM.Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008; 64:8553-7.

[37]

Mai Z, Liu D. Synthesis and applications of isoreticular metal-organic frameworks IRMOFs-n ($n=1,3,6,8$). Cryst Growth Des 2019; 19:7439-62.

[38]

Yusuf VF, Malek NI, Kailasa SK. Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS Omega 2022; 7:44507-31.

[39]

Paul A, Banga IK, Muthukumar S, Prasad S. Engineering the ZIF-8 pore for electrochemical sensor applications-A mini review. ACS Omega 2022; 7:26993-7003.

[40]

Lee YR, Jang MS, Cho HY, Kwon HJ, Kim S, Ahn WS. ZIF-8: a comparison of synthesis methods. Chem Engineer J 2015; 271:276-80.

[41]

Kawano M, Kawamichi T, Haneda T, Kojima T, Fujita M. The modular synthesis of functional porous coordination networks. J Am Chem Soc 2007; 129:15418-19.

[42]

Zou M, Dong M, Zhao T. Advances in metal-organic frameworks MIL-101(Cr). Int J Mol Sci 2022; 23:9396.

[43]

Usman KAS, Maina JW, Seyedin S, Conato MT, Payawan LM, Dumée LF, et al. Downsizing metal-organic frameworks by bottom-up and top-down methods. NPG Asia Materials 2020; 12:1-18.

[44]

Ru J, Wang X, Wang F, Cui X, Du X, Lu X. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: synthesis, applications and adsorption mechanism. Ecotoxicol Environ Saf 2021; 15(208):111577.

[45]

Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 2008; 130:13850-1.

[46]

Gautam S, Lakhanpal I, Sonowal L, Goyal N. Recent advances in targeted drug delivery using metal-organic frameworks: toxicity and release kinetics. Next Nanotechnol 2023;3-4:100027.

[47]

Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, et al. Fe-based metal organic frameworks (Fe-MOFs) for bio-related applications. Pharmaceutics 2023;15: 1599.

[48]

Ray Chowdhuri A, Bhattacharya D, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Transactions 2016; 45:2963-73.

[49]

Wu M, Yang Y. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mat 2017; 29(23):1606134.

[50]

Zhang K, Meng X, Yang Z, Dong H, Zhang X. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials 2020; 258:120278.

[51]

Li Y, Hu M, Huang X, Wang M, He L, Song Y, et al. Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sens Actuators B Chem 2020; 306:127608.

[52]

Al-Omoush MK, Polozhentsev OE, Soldatov AV. Fabrication of cisplatin-loaded core-shell Fe3O4@UiO-66-NH2 magnetic nanocomposite for potential drug delivery. Polyhedron 2024; 256:116999.

[53]

Liu X, Demir NK, Wu Z, Li K. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc 2015; 137:6999-7002.

[54]

Abánades Lázaro I, Forgan RS. Application of zirconium MOFs in drug delivery and biomedicine. Coord Chem Rev 2019; 380:230-59.

[55]

Abánades Lázaro I, Abánades Lázaro S, Forgan RS. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem Commun 2018; 54:2792-5.

[56]

Li Z, Zhao S, Wang H, Peng Y, Tan Z, Tang B. Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery. Colloids Surf B Biointerfaces 2019; 178:1-7.

[57]

Röder R, Preiß T, Hirschle P, Steinborn B, Zimpel A, Höhn M, et al. Multifunctional nanoparticles by coordinative self-assembly of his-tagged units with metal-organic frameworks. J Am Chem Soc 2017; 139:2359-68.

[58]

Abánades Lázaro I, Haddad S, Rodrigo-Muñoz JM, Marshall RJ, Sastre B, Del Pozo V, et al. Surface-functionalization of Zr-fumarate MOF for selective cytotoxicity and immune system compatibility in nanoscale drug delivery. ACS Appl Mater Interfaces 2018; 10:31146-57.

[59]

Huang J, Dong B, Zeng X, et al. Xu Z, jiang Y, cheung Law W, Metal organic framework-coated gold nanorod as an on-demand drug delivery platform for chemo-photothermal cancer therapy. J Nanobiotechnology 2021; 19:1-13.

[60]

López-Magano A, Jiménez-Almarza A, Alemán J, Mas-Ballesté R. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) applied to photocatalytic organic transformations. Catalysts 2020; 10:720.

[61]

Chen Y, Xiang S, Wang L, Wang M, Wang C, Liu S, et al. Hollow polypyrrole nanospindles for highly effective cancer therapy. Chempluschem 2018; 83:1127-34.

[62]

Shang W, Zeng C, Du Y, Hui H, Liang X, Chi C, et al. Core-shell gold nanorod@metal-organic framework nanoprobes for multimodality diagnosis of glioma. Adv Mat 2017; 18(3): 29.

[63]

Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 2015; 6:1-8.

[64]

Wang X, Lan PC, Ma S. Metal-organic frameworks for enzyme immobilization: beyond host matrix materials. ACS Cent Sci 2020; 6:1497-506.

[65]

Liu X, Qi W, Wang Y, Lin D, Yang X, Su R, et al. Rational design of Mimic multienzyme systems in hierarchically porous biomimetic metal-organic frameworks. ACS Appl Mater Interfaces 2018; 10:33407-15.

[66]

Li SY, Cheng H, Xie BR, Qiu WX, Zeng JY, Li CX, et al. Cancer cell membrane camouflaged cascade bioreactor for Cancer targeted starvation and photodynamic therapy. ACS Nano 2017; 11:7006-18.

[67]

Duan F, Feng X, Yang X, Sun W, Jin Y, Liu H, et al. A simple and powerful co-delivery system based on pH -responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 2017; 122:23-33.

[68]

Khairnar P, Kolipaka T, Pandey G, Phatale V, Shah S, Srinivasarao DA, et al. Nanosponge-mediated oligonucleotide delivery: a cutting-edge technology towards cancer management. J Drug Deliv Sci Technol 2023; 1(91):105226.

[69]

Nie Y, Li D, Peng Y, Wang S, Hu S, Liu M, et al. Metal organic framework coated MnO 2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. Int J Pharm 2020;585: 119513.

[70]

Wen M, Yu N, Wu S, Huang M, Qiu P, Ren Q, et al. On-demand assembly of polymeric nanoparticles for longer-blood-circulation and disassembly in tumor for boosting sonodynamic therapy. Bioact Mater 2022; 18:242-53.

[71]

Han X, Zhao C, Pan ZY, Tang X, Jiang Z. N-doping of the TiO2/C nanostructure derived from metal-organic frameworks with high drug loading for efficient sonodynamic & chemotherapy. Smart Mater Med 2022; 3:168-78.

[72]

Zhou L, Feng W, Mao Y, Chen Y, Zhang X. Nanoengineered sonosensitive platelets for synergistically augmented sonodynamic tumor therapy by glutamine deprivation and cascading thrombosis. Bioact Mater 2023; 24:26-36.

[73]

Attia M, Glickman RD, Romero G, Chen B, Brenner AJ, Ye JY. Optimized metal-organic-framework based magnetic nanocomposites for efficient drug delivery and controlled release. J Drug Deliv Sci Technol 2022;76: 103770.

[74]

Novickij V, Rembiałkowska N, Kasperkiewicz-Wasilewska P, Baczyńska D, Rzechonek A, Błasiak P, et al. Pulsed electric fields with calcium ions stimulate oxidative alternations and lipid peroxidation in human non-small cell lung cancer. Biochimica et Biophysica Acta (BBA) - Biomembranes 2022; 1864:184055.

[75]

Liu H, Zhao Y, Yao C, Schmelz EM, Davalos RV. Differential effects of nanosecond pulsed electric fields on cells representing progressive ovarian cancer. Bioelectrochemistry 2021; 142:107942.

[76]

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 2021; 22:266-82.

[77]

Peng H, Zhang X, Yang P, Zhao J, Zhang W, Feng N, et al. Defect self-assembly of metal-organic framework triggers ferroptosis to overcome resistance. Bioact Mater 2023; 19:1-11.

[78]

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science ( 1979) 2022; 375:1254-61.

[79]

Zhong J, Zheng X, Wen Y, Bin Wang S, Zhan G, Chen AZ. In situ sacrificial growth of metastable copper-enriched nanomedicine for cuproptosis-based synergistic cancer therapy. Chem Engineer J 2023; 474:145795.

[80]

Phatale V, Famta P, Srinivasarao DA, Vambhurkar G, Jain N, Pandey G, et al. Neutrophil membrane-based nanotherapeutics: propitious paradigm shift in the management of cancer. Life Sci 2023; 331:122021.

[81]

Wang H, Wu C, Tong X, Chen S. A biomimetic metal-organic framework nanosystem modulates immunosuppressive tumor microenvironment metabolism to amplify immunotherapy. J Control Rel 2023; 353:727-37.

[82]

Cai M, Yao Y, Yin D, Zhu R, Fu T, Kong J, et al. Enhanced lysosomal escape of cell penetrating peptide-functionalized metal-organic frameworks for co-delivery of survivin siRNA and oridonin. J Colloid Interface Sci 2023; 646:370-80.

[83]

Zhang Y, Wang Q, Chen G, Shi P. DNA-functionalized metal-organic framework: cell imaging, targeting drug delivery and photodynamic therapy. Inorg Chem 2019; 58:6593-6.

[84]

He S, Wu L, Li X, Sun H, Xiong T, Liu J, et al. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B 2021; 11:2362-95.

[85]

Maranescu B, Visa A. Applications of metal-organic frameworks as drug delivery systems. Int J Mol Sci 2022; 23:4458.

[86]

Pandey G, Shah S, Phatale V, Khairnar P, Kolipaka T, Famta P, et al. Nano-in-nano' -Breaching the barriers of the tumor microenvironment using nanoparticle-incorporated nanofibers. J Drug Deliv Sci Technol 2024; 91:105249.

[87]

Famta P, Shah S, Sharma A, Pandey G, Vambhurkar G, Srinivasarao DA, et al. Exploration of multi-layered nanofiber adjuvant implants of doxorubicin and resveratrol to prevent post-surgery tumor recurrence and invasion. J Drug Deliv Sci Technol 2024; 99:105977.

[88]

Li H, Zhang Y, Liang L, Song J, Wei Z, Yang S, et al. Doxorubicin-loaded metal-organic framework nanoparticles as acid-activatable hydroxyl radical nanogenerators for enhanced chemo/chemodynamic synergistic therapy. Materials (Basel) 2022; 15:1096.

[89]

He C, Lu K, Liu D, Lin W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 2014; 136:5181-4.

[90]

Zhao X, Liu S, Hu C, Liu Y, Pang M, Lin J. Controllable synthesis of monodispersed NU-1000 drug carrier for chemotherapy. ACS Appl Bio Mater 2019; 2:4436-41.

[91]

Alsaiari SK, Qutub SS, Sun S, Baslyman W, Aldehaiman M, Alyami M, et al. Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy. Sci Adv 2021;7:eabe7174.

[92]

Huang S, Yuan J, Xie Y, Qing K, Shi Z, Chen G, et al. Targeting nano-regulator based on metal-organic frameworks for enhanced immunotherapy of bone metastatic prostate cancer. Cancer Nanotechnol 2023; 14:1-15.

[93]

Xu M, Chang Y, Zhu G, Zhu X, Song X, Li J. Transforming cold tumors into hot ones with a metal-organic framework-based biomimetic nanosystem for enhanced immunotherapy. ACS Appl Mater Interfaces 2023; 15:17470-84.

[94]

Taylor KML, Jin A, Lin W. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angewandte Chemie 2008; 120:7836-9.

[95]

Lu K, He C, Lin W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J Am Chem Soc 2014; 136:16712-15.

[96]

Sun Q Bi H, Wang Z, Li C, Wang C, Xu J, et al. O2-Generating metal-organic framework-based hydrophobic photosensitizer delivery system for enhanced photodynamic therapy. ACS Appl Mater Interfaces 2019; 11:36347-58.

[97]

Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano 2023; 17:7979-8003.

[98]

Zhang L, Liu C, Gao Y, Li Z, Xing J, Ren W, et al. ZD2-engineered gold nanostar@metal-organic framework nanoprobes for T1-weighted magnetic resonance imaging and photothermal therapy specifically toward triple-negative breast cancer. Adv Healthc Mater 2018; 7(24):1801144.

[99]

Xu Z, Zhen W, McCleary C, Luo T, Jiang X, Peng C, et al. Nanoscale metal-organic framework with an X-ray triggerable prodrug for synergistic radiotherapy and chemotherapy. J Am Chem Soc 2023; 145:18698-704.

[100]

Liu J, Huang J, Zhang L, Lei J. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev 2021; 50:1188-218.

[101]

Ni K, Lan G, Veroneau SS, Duan X, Song Y, Lin W. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat Commun 2018; 9:1-13.

[102]

Chen W, Shi K, Liu J, Yang P, Han R, Pan M, et al. Sustained co-delivery of 5-fluorouracil and cis-platinum via biodegradable thermo-sensitive hydrogel for intraoperative synergistic combination chemotherapy of gastric cancer. Bioact Mater 2022; 23:1-15.

[103]

yan Chen F, Y Zhang, yu Chen X, qian Li J, ping Xiao X, lu Yu L, et al. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer. J Nanoparticle Res 2017; 19:1-10.

[104]

Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, et al. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016; 97:1-9.

[105]

Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew Chem Int Ed Engl 2016; 55:2101-6.

[106]

Chang M, Hou Z, Jin D, Zhou J, Wang M, Wang M, et al. Colorectal tumor microenvironment-activated bio-decomposable and metabolizable $\mathrm{Cu}_{2} \mathrm{O} @ \mathrm{CaCO}_{3}$ nanocomposites for synergistic oncotherapy. Adv Mat 2020; 32(43):2004647.

[107]

Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat Commun 2017; 8(1):357.

[108]

Xue T, Xu C, Wang Y, Wang Y, Tian H, Zhang Y. Doxorubicin-loaded nanoscale metal-organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy. Biomater Sci 2019; 7:4615-23.

[109]

Xiao Y, Lai F, Xu M, Zheng D, Hu Y, Sun M, et al. Dual-functional nanoplatform based on bimetallic metal-organic frameworks for synergistic starvation and chemodynamic therapy. ACS Biomater Sci Eng 2023; 9:1991-2000.

[110]

Hanna TP, King WD, Thibodeau S, Jalink M, Paulin GA, Harvey-Jones E, et al. Mortality due to cancer treatment delay: systematic review and meta-analysis. BMJ 2020;371:m4087.

[111]

Alijani H, Noori A, Faridi N, Bathaie SZ, Mousavi MF. Aptamer-functionalized $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{MOF}$ nanocarrier for targeted drug delivery and fluorescence imaging of the triple-negative MDA-MB-231 breast cancer cells. J Solid State Chem 2020; 292:121680.

[112]

Balakrishnan A, Jacob MM, Dayanandan N, Chinthala M, Ponnuchamy M, Vo DVN, et al. Chitosan/metal organic frameworks for environmental, energy, and bio-medical applications: a review. Mater Adv 2023; 4:5920-47.

[113]

Wang D, Wu H, Zhou J, Xu P, Wang C, Shi R, et al. In situ one-pot synthesis of MOF-polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy. Adv Sci 2018; 5(6):1800287.

[114]

Li J, Li T, Gorin D, Kotelevtsev Y, Mao Z, Tong W. Construction and characterization of magnetic cascade metal-organic framework/enzyme hybrid nanoreactors with enhanced effect on killing cancer cells. Colloids Surf A Physicochem Eng Asp 2020; 601:124990.

[115]

Li SY, Cheng H, Qiu WX, Zhang L, Wan SS, Zeng JY, et al. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 2017; 142:149-61.

[116]

Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother 2019;15: 1111.

[117]

Zhang H, Zhang J, Li Q, Song A, Tian H, Wang J, et al. Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials 2020; 245:119983.

[118]

Xu W, Qian J, Hou G, Wang T, Wang J, Wang Y, et al. A hollow amorphous bimetal organic framework for synergistic cuproptosis/ferroptosis/apoptosis anticancer therapy via disrupting intracellular redox homeostasis and copper/iron metabolisms. Adv Funct Mater 2022; 32(40):2205013.

[119]

Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065.

[120]

Chen Z, Sun Y, Wang J, Zhou X, Kong X, Meng J, et al. Dual-responsive triple-synergistic Fe-MOF for tumor theranostics. ACS Nano 2023; 17:9003-13.

[121]

Akeremale OK, Ore OT, Bayode AA, Badamasi H, Adedeji Olusola J, Durodola SS. Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: a review. Results Chem 2023; 5:100866.

[122]

Udourioh GA, Solomon MM, Matthews-Amune CO, Epelle EI, Okolie JA, Agbazue VE, et al. Current trends in the synthesis, characterization and application of metal-organic frameworks. React Chem Eng 2023; 8:278-310.

[123]

Gao Q, Bai Q, Zheng C, Sun N, Liu J, Chen W, et al. Application of metal-organic framework in diagnosis and treatment of diabetes. Biomolecules 2022; 12:1240.

[124]

Ndlwana L, Raleie N, Dimpe KM, Ogutu HF, Oseghe EO, Motsa MM, et al. Sustainable hydrothermal and solvothermal synthesis of advanced carbon materials in multidimensional applications: a review. Materials (Basel) 2021; 14:5094.

[125]

Chen C, Kosari M, Jing M, He C. Microwave-assisted synthesis of bimetallic NiCo-MOF-74 with enhanced open metal site for efficient CO2 capture. Environ Function Mat 2022; 1:253-66.

[126]

Zhao Z, Li H, Zhao K, Wang L, Gao X. Microwave-assisted synthesis of MOFs: rational design via numerical simulation. Chem Engineer J 2022; 428:131006.

[127]

Phan PT, Hong J, Tran N, Le TH. The properties of microwave-assisted synthesis of metal-organic frameworks and their applications. Nanomaterials 2023; 13:352.

[128]

Steenhaut T, Filinchuk Y, Hermans S. Aluminium-based MIL-100(Al) and MIL-101(Al) metal-organic frameworks, derivative materials and composites: synthesis, structure, properties and applications. J Mater Chem A Mater 2021; 9:21483-509.

[129]

Naseri AM, Zarei M, Alizadeh S, Babaee S, Zolfigol MA, Nematollahi D, et al. Synthesis and application of ++++ to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods. Sci Rep 2021; 11:1-19.

[130]

Jia Z, Hao S, Wen J, Li S, Peng W, Huang R, et al. Electrochemical fabrication of metal-organic frameworks membranes and films: a review. Microporous and Mesoporous Materials 2020; 305:110322.

[131]

Beamish-Cook J, Shankland K, Murray CA, Vaqueiro P.Insights into the mechanochemical synthesis of MOF-74. Cryst Growth Des 2021; 21:3047-55.

[132]

Afkhami-Ardekani M, MR Naimi-Jamal, Doaee S, Rostamnia S. Solvent-free mechanochemical preparation of metal-organic framework ZIF-67 impregnated by Pt nanoparticles for water purification. Catalysts 2022; 13:9.

[133]

Wenger SR, Kearns ER, Miller KL, Green D'Alessandro DM. one-step mechanochemical synthesis and techno-economic analysis of UiO-66-NH2. ACS Appl Energy Mater 2023; 6:9074-83.

[134]

Taghipour A, Rahimpour A, Rastgar M, Sadrzadeh M. Ultrasonically synthesized MOFs for modification of polymeric membranes: a critical review. Ultrason Sonochem 2022; 90:106202.

[135]

Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Recent developments in sonochemical synthesis of nanoporous materials. Molecules 2023; 28:2639.

[136]

Lee JH, Ahn Y, Kwak SY. Facile sonochemical synthesis of flexible Fe-based metal-organic frameworks and their efficient removal of organic contaminants from aqueous solutions. ACS Omega 2022; 7:23213-22.

[137]

Xiao JD, Qiu LG, Ke F, Yuan YP, Xu GS, Wang YM, et al. Rapid synthesis of nanoscale terbium-based metal-organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. J Mater Chem A Mater 2013; 1:8745-52.

[138]

Tovar TM, Zhao J, Nunn WT, Barton HF, Peterson GW, Parsons GN, et al. Diffusion of CO2 in large crystals of Cu-BTC MOF. J Am Chem Soc 2016; 138:11449-52.

[139]

Lim J, Lee EJ, Choi JS, Jeong NC. Diffusion control in the in situ synthesis of iconic metal-organic frameworks within an ionic polymer matrix. ACS Appl Mater Interfaces 2018; 10:3793-800.

[140]

Duan S, Dou B, Lin X, Zhao S, Emori W, Pan J, et al. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings. Colloids Surf A Physicochem Eng Asp 2021;624: 126836.

[141]

Huang C, Su X, Zhang D, Gu X, Liu R, Zhu H. Co-MOF nanocatalysts of tunable shape and size for selective aerobic oxidation of toluene. Inorganica Chim Acta 2020; 510:119737.

[142]

Zhao X, Li W, Zhao X, He N, Li C, Zhang X, et al. Controlled growth of MOFs in emulsion. Progress Chem 2023; 35:157-67.

[143]

Duong ATA, Nguyen HV, Tran MV, Ngo QN, Luu LC, Doan TLH, et al. Influence of ZIF-9 and ZIF-12 structure on the formation of a series of new Co/N-doped porous carbon composites as anode electrodes for high-performance lithium-ion batteries. RSC Adv 2023; 13:17370-83.

[144]

Guo X, Geng S, Zhuo M, Chen Y, Zaworotko MJ, Cheng P, et al. The utility of the template effect in metal-organic frameworks. Coord Chem Rev 2019; 391:44-68.

[145]

Rasmussen EG, Kramlich J, Novosselov IV. Synthesis of metal-organic framework HKUST-1 via tunable continuous flow supercritical carbon dioxide reactor. Chem Engineer J 2022; 450:138053.

[146]

Avci-Camur C, Troyano J, Pérez-Carvajal J, Legrand A, Farrusseng D, Imaz I, et al. Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying. Green Chemistry 2018; 20:873-8.

[147]

Batten MP, Rubio-Martinez M, Hadley T, Carey KC, Polyzos KSLA, Hill MR. Continuous flow production of metal-organic frameworks. Curr Opin Chem Eng 2015; 8:55-9.

[148]

Raju P, Balakrishnan K, Mishra M, Ramasamy T, Natarajan S. Fabrication of pH responsive FU@Eu-MOF nanoscale metal organic frameworks for lung cancer therapy. J Drug Deliv Sci Technol 2022; 70:103223.

[149]

Abd Al-jabbar S, Atiroğlu V, Hameed RM, Guney Eskiler G, Atiroğlu A, Deveci Ozkan A, et al. Fabrication of dopamine conjugated with protein @metal organic framework for targeted drug delivery: a biocompatible pH-responsive nanocarrier for gemcitabine release on MCF 7 human breast cancer cells. Bioorg Chem 2022; 118:105467.

[150]

Abazari R, Reza Mahjoub A, Slawin AMZ, Carpenter-Warren CL. Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: an efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution. Ultrason Sonochem 2018; 42:594-608.

[151]

Cui L, Wang X, Liu Z, Li Z, Bai Z, Lin K, et al. Metal-organic framework decorated with glycyrrhetinic acid conjugated chitosan as a pH-responsive nanocarrier for targeted drug delivery. Int J Biol Macromol 2023; 240:124370.

[152]

Karimi S, Namazi H. Fabrication of biocompatible magnetic maltose/MIL-88 metal-organic frameworks decorated with folic acid-chitosan for targeted and pH -responsive controlled release of doxorubicin. Int J Pharm 2023; 634:122675.

[153]

Anggraini SA, Prasetija KA, Yuliana M, Wijaya CJ, Bundjaja V, Angkawijaya AE, et al. pH-responsive hollow core zeolitic-imidazolate framework-8 as an effective drug carrier of 5-fluorouracil. Mater Today Chem 2023; 27:101277.

[154]

Bazzazan S, Moeinabadi-Bidgoli K, Lalami ZA, Bazzazan S, Mehrarya M, Yeganeh FE, et al. Engineered UIO-66 metal-organic framework for delivery of curcumin against breast cancer cells: an in vitro evaluation. J Drug Deliv Sci Technol 2023; 79:104009.

[155]

Hamidian K, Barani M, Adeli-Sardou M, Sarani M, Daliran S, Oveisi AR. Evaluation of cytotoxicity, loading, and release activity of paclitaxel loaded-porphyrin based metal-organic framework (PCN-600). Heliyon 2023; 9(1):e12634.

[156]

Zhong L, Yang T, Li P, Shi L, Lai J, Gu L. Metal-organic framework-based nanotherapeutics with tumor hypoxia-relieving ability for synergistic sonodynamic/chemo-therapy. Front Mater 2022; 9:841503.

[157]

An J, Hu YG, Li C, Hou XL, Cheng K, Zhang B, et al. A pH/ ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials 2020; 230:119636.

[158]

Cai W, Wang J, Chu C, Chen W, Wu C, Liu G. Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv Sci 2019; 6:1801526.

[159]

Li S, Bi K, Xiao L, Shi X. Facile preparation of magnetic metal organic frameworks core-shell nanoparticles for stimuli-responsive drug carrier. Nanotechnology 2017; 28:495601.

[160]

Ebrahimi AK, Barani M, Sheikhshoaie I. Fabrication of a new superparamagnetic metal-organic framework with core-shell nanocomposite structures: characterization, biocompatibility, and drug release study. Mat Sci Engineer 2018; 92:349-55.

[161]

Zhou G, Li M. Near-infrared-II plasmonic trienzyme-integrated metal-organic frameworks with high-efficiency enzyme cascades for synergistic trimodal oncotherapy. Adv Mat 2022; 34:2200871.

[162]

Zhou J, Wang K, Ding S, Zeng L, Miao J, Cao Y, et al. Anti-VEGFR2-labeled enzyme-immobilized metal-organic frameworks for tumor vasculature targeted catalytic therapy. Acta Biomater 2022; 141:364-73.

[163]

Wang B, Dai Y, Kong Y, Du W, Ni H, Zhao H, et al. Tumor microenvironment-responsive Fe(III)-porphyrin nanotheranostics for tumor imaging and targeted chemodynamic-photodynamic therapy. ACS Appl Mater Interfaces 2020; 12:53634-45.

[164]

Nosrati H, Charmi J, Salehiabar M, Abhari F, Danafar H. Tumor targeted albumin coated bismuth sulfide nanoparticles (Bi2S3) as radiosensitizers and carriers of curcumin for enhanced chemoradiation therapy. ACS Biomater Sci Eng 2019; 5:4416-24.

[165]

Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, et al. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016; 97:1-9.

[166]

Deng H, Zhang J, Yang Y, Yang J, Wei Y, Ma S, et al. Chemodynamic and photothermal combination therapy based on dual-modified metal-organic framework for inducing tumor ferroptosis/pyroptosis. ACS Appl Mater Interfaces 2022; 14:24089-101.

[167]

Min H, Wang J, Qi Y, Zhang Y, Han X, Xu Y, et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Advanced Materials 2019; 31:1808200.

[168]

Wang D, Zhou J, Shi R, Wu H, Chen R, Duan B, et al. Biodegradable core-shell dual-metal-organic-frameworks nanotheranostic agent for multiple imaging guided combination cancer therapy. Theranostics 2017; 7:4605-17.

[169]

Bai Y, Zhao J, Zhang L, Wang S, Hua J, Zhao S, et al. A smart near-infrared carbon dot-metal organic framework assemblies for tumor microenvironment-activated cancer imaging and chemodynamic-photothermal combined therapy. Adv Healthc Mater 2022; 11:2102759.

[170]

Liu H, Xu C, Meng M, Li S, Sheng S, Zhang S, et al. Metal-organic framework-mediated multifunctional nanoparticles for combined chemo-photothermal therapy and enhanced immunotherapy against colorectal cancer. Acta Biomater 2022; 144:132-41.

[171]

Feng L, Chen M, Li R, Zhou L, Wang C, Ye P, et al. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/photodynamic therapy. Acta Biomater 2022; 138:463-77.

[172]

Zhao Y, Li R, Sun J, Zou Z, Wang F, Liu X. Multifunctional DNAzyme-anchored metal-organic framework for efficient suppression of tumor metastasis. ACS Nano 2022; 16:5404-17.

[173]

Xie BX, Shu W, Wang HS, Chen L, Xu J, Zhang FZ, et al. Folic acid-modified metal-organic framework carries CPT and DOX for cancer treatment. J Solid State Chem 2022; 306:122803.

[174]

Dong J, Ma K, Ding J, Pei Y, Pei Z. pH-responsive mannose-modified ferrocene metal-organic frameworks with rare earth for tumor-targeted synchronous chemo/chemodynamic therapy. Bioorg Med Chem 2022; 69:116885.

[175]

Pan WL, Tan Y, Meng W, Huang NH, Zhao YB, Yu ZQ, et al. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials 2022; 283:121449.

[176]

Liu B, Liu Z, Lu X, Wu P, Sun Z, Chu H, et al. Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy. Mater Des 2023; 228:111861.

[177]

Feng H, Zhao L, Bai Z, Xin Z, Wang C, Liu L, et al. Aptamer modified Zr-based porphyrinic nanoscale metal-organic frameworks for active-targeted chemo-photodynamic therapy of tumors. RSC Adv 2023; 13:11215-24.

[178]

Yu Y, Xie BR, Liu XH, Ye JJ, Zhong Z, Zhang XZ. Mineralized porphyrin metal-organic framework for improved tumor elimination and combined immunotherapy. ACS Nano 2023; 17:12471-82.

[179]

Wang X, Luo J, Wang J, Cao J, Hong Y, Wen Q, et al. Catalytically active metal-organic frameworks elicit robust immune response to combination chemodynamic and checkpoint blockade immunotherapy. ACS Appl Mater Interfaces 2023; 15:6442-55.

[180]

Zhang J, Chang L, Hao R, Zhang G, Liu T, Li Z, et al. Copper/gold-modified porphyrinic metal-organic frameworks nanoprobes for enhanced photodynamic/chemodynamic therapy. Chem Engineer J 2023; 474:145485.

[181]

Wang B, Dai Y, Kong Y, Du W, Ni H, Zhao H, et al. Tumor microenvironment-responsive Fe(III)-porphyrin nanotheranostics for Tumor imaging and targeted chemodynamic-photodynamic therapy. ACS Appl Mater Interfaces 2020; 12:53634-45.

[182]

Liu W, Wang YM, Li YH, Cai SJ, Yin XB, He XW, et al. Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal-organic framework. Small 2017; 13:1603459.

[183]

Zhang W, Li B, Duan W, Yao X, Lu X, Li S, et al. Confined in situ polymerization in a nanoscale porphyrinic metal-organic framework for fluorescence imaging-guided synergistic phototherapy. Inorg Chem Front 2022; 9:670-7.

[184]

Chen X, Zhang M, Li S, Li L, Zhang L, Wang T, et al. Facile synthesis of polypyrrole@metal-organic framework core-shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J Mater Chem B 2017; 5:1772-8.

[185]

Zhao L, Zhang W, Wu Q, Fu C, Ren X, Lv K, et al. Lanthanide europium MOF nanocomposite as the theranostic nanoplatform for microwave thermo-chemotherapy and fluorescence imaging. J Nanobiotechnology 2022; 20:133.

[186]

Wang Q, Yu Y, Chang Y, Xu X, Wu M, Ediriweera GR, et al. Fluoropolymer-MOF hybrids with switchable hydrophilicity for 19F MRI-monitored cancer therapy. ACS Nano 2023; 17:8483-98.

[187]

Fang Z, Yang E, Du Y, Gao D, Wu G, Zhang Y, et al. Biomimetic smart nanoplatform for dual imaging-guided synergistic cancer therapy. J Mater Chem B 2022; 10:966-76.

[188]

Thirumurugan S, Samuvel Muthiah K, Sakthivel R, Liao MY, Kasai H, Chung RJ. Polydopamine-coated Cu-BTC nanowires for effective magnetic resonance imaging and photothermal therapy. Pharmaceutics 2023; 15:822.

[189]

Zhou C, Yang Q, Zhou X, Jia N. PDA-coated CPT@MIL-53(Fe)-based theranostic nanoplatform for pH-responsive and MRI-guided chemotherapy. J Mater Chem B 2022; 10:1821-32.

[190]

Ma Y, Mao J, Qin H, Liang P, Huang W, Liu C, et al. Nano-metal-organic framework decorated with Pt nanoparticles as an efficient theranostic nanoprobe for CT/MRI/PAI imaging-guided radio-photothermal synergistic cancer therapy. Front Bioeng Biotechnol 2022; 10:927461.

[191]

Zhou W, Liu Z, Wang N, Chen X, Sun X, Cheng Y. Hafnium-based metal-organic framework nanoparticles as a radiosensitizer to improve radiotherapy efficacy in esophageal cancer. ACS Omega 2022; 7:12021-9.

[192]

Tian Q, Wang X, Song S, An L, Yang S, Huang G. Engineering of an endogenous hydrogen sulfide responsive smart agent for photoacoustic imaging-guided combination of photothermal therapy and chemotherapy for colon cancer. J Adv Res 2022; 41:159-68.

[193]

Sun T, Li J, Zeng C, Luo C, Luo X, Li H. Banoxantrone coordinated metal-organic framework for photoacoustic imaging-guided high intensity focused ultrasound therapy. Adv Healthc Mater 2023; 12:2202348.

PDF (3717KB)

121

Accesses

0

Citation

Detail

Sections
Recommended

/