Advances in plant-derived vesicle like nanoparticles-based therapies for inflammatory diseases

Zhifei Cheng , Wengui Lu , Wei Shao , Chuan Zhang , Yunfei She , Rui Song , Ruohan Qi , Jiajia Song , Wenjing Zhang , Xiangwei Chang , Ning Wang , Qi Liu , Shuangying Gui , Qi Wang

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (4) : 101052

PDF (9021KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (4) :101052 DOI: 10.1016/j.ajps.2025.101052
Review artices
research-article

Advances in plant-derived vesicle like nanoparticles-based therapies for inflammatory diseases

Author information +
History +
PDF (9021KB)

Abstract

Dysregulated inflammatory reactions can result in detrimental effects to the body, thereby causing various diseases. Traditional treatments relying on anti-inflammatory drugs or nanoformulations often undermine the body's physiological immune functions or potentially exhibit biotoxicity. Extracellular vesicles, which contain a diverse array of anti-inflammatory substances and possess nanomedicine transport properties, are emerging as highly promising candidates for next-generation drug delivery systems and active biological agents. Plant-derived vesicle-like nanoparticles (PDVLNs) are nanostructured particles isolated from plants. Given their wide availability and low immunogenicity, PDVLNs are considered to hold great potential in the treatment of inflammatory diseases (IDs). In this review, we introduce the principle, design consideration and treatment mechanism associated with PDVLNs in treating various IDs. Specifically, the natural ingredients carried by PDVLNs not only help eliminate danger signals such as reactive oxygen species and reactive nitrogen species, but also hinder the initiation of inflammatory responses through various mechanisms. Moreover, engineered PDVLNs nanotechnology has been successfully employed in the treatment of IDs. Finally, the review discusses the current opportunities and challenges in this field and provides insights for the future clinical applications of PDVLNs in treating IDs.

Keywords

Plant-derived vesicle-like nanoparticles / Inflammatory diseases / Nano-drug delivery / Design principle / Therapy strategy

Cite this article

Download citation ▾
Zhifei Cheng, Wengui Lu, Wei Shao, Chuan Zhang, Yunfei She, Rui Song, Ruohan Qi, Jiajia Song, Wenjing Zhang, Xiangwei Chang, Ning Wang, Qi Liu, Shuangying Gui, Qi Wang. Advances in plant-derived vesicle like nanoparticles-based therapies for inflammatory diseases. Asian Journal of Pharmaceutical Sciences, 2025, 20(4): 101052 DOI:10.1016/j.ajps.2025.101052

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Acknowledgments

This work was supported by the National Nature Science Foundation of China [grant numbers 82204939, 82104701]; the Youth Project of Natural Science Foundation of Anhui Province [grant number 2208085QH268]; the Excellent Youth Fund Project of Anhui Provincial Department of Education (grant numbers 2023AH030069); the Key Project of Anhui Province Department of Education [grant numbers 2024AH051051]; Anhui University Collaborative Innovation Project [grant number GXXT-2022-061]; and Anhui University of Chinese Medicine Foundation [grant numbers 2022rcZD001, 2022rcZD004].

References

[1]

Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell 2015; 160(5):816-27.

[2]

Guo J, Li D, Tao H, Li G, Liu R, Dou Y, et al. Cyclodextrin-derived intrinsically bioactive nanoparticles for treatment of acute and chronic IDs. Adv Mater 2019; 31:1904607.

[3]

Khilfeh I, Guyette E, Watkins J, Danielson D, Gross D, Yeung K. Adherence, persistence, and expenditures for high-cost anti-inflammatory drugs in rheumatoid arthritis: an exploratory study. J. Manag Care Spec Pharm 2019; 25(4):461-7.

[4]

Kim J, Kim HY, Song SY, Go SH, Sohn HS, Baik S, et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 2019; 13(3):3206-17.

[5]

Wang Y, Li C, Wan Y, Qi M, Chen Q, Sun Y, et al. Quercetin-loaded ceria nanocomposite potentiate dual directional immunoregulation via macrophage polarization against periodontal inflammation. Small 2021; 17:2101505.

[6]

Cocozza F, Grisard E, Martin-Jaular L, Mathieu M, Théry C. SnapShot: extracellular vesicles. Cell 2020; 182(1):262.

[7]

Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med 2024; 56(4):836-49.

[8]

Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol 2023; 23(4):236-50.

[9]

Ze W, Xiao Z, Qing K, Hui H, Jia S, Wen Q, et al. Extracellular vesicle preparation and analysis: a state-of-the-art review. Adv Sci 2024; 11:2401069.

[10]

An Q, van Bel AJ, Huckelhoven R. Do plant cells secrete exosomes derived from multivesicular bodies? Plant Signal Behav 2007; 2(1):4-7.

[11]

Halperin W, Jensen WA. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastructure Res 1967; 18(3-4):428-43.

[12]

Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021; 29(8):2424-40.

[13]

Mu J, Zhuang X, Wang Q Jiang H, Deng ZB, Wang B, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr Food Res 2014; 58:1561-73.

[14]

Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 2011; 87(1):146-50.

[15]

Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 2011; 7(6):780-8.

[16]

Karamanidou T, Tsouknidas A. Plant-derived extracellular vesicles as therapeutic nanocarriers. Int J Mol Sci 2021; 23(1):191.

[17]

De Robertis M, Sarra A, D'Oria V, Mura F, Bordi F, Postorino P, et al. Blueberry-derived exosome-like nanoparticles counter the response to TNF-alpha-induced change on gene expression in EA.hy 926 cells. Biomolecules 2020; 10(5):742.

[18]

Zhao Z, Yu S, Li M, Gui X, Li P. Isolation of exosome-like nanoparticles and analysis of microRNAs derived from coconut water based on small RNA high-throughput sequencing. J Agric Food Chem 2018; 66(11):2749-57.

[19]

Cho JH, Hong YD, Kim D, Park SJ, Kim JS, Kim HM, et al. Confirmation of plant-derived exosomes as bioactive substances for skin application through comparative analysis of keratinocyte transcriptome. Appl Biol Chem 2022; 65(1):8.

[20]

Fang Z, Liu K. Plant-derived extracellular vesicles as oral drug delivery carriers. J Control Release 2022; 350:389-400.

[21]

Zu M, Xie D, Canup BSB, Chen N, Wang Y, Sun R, et al. Green' nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases. Biomaterials 2021; 279:121178.

[22]

Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 2018; 24(5):637-52 e8.

[23]

Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine (Lond) 2017; 12(16):1927-43.

[24]

Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer 2019; 7(1):326.

[25]

Xu F, Mu J, Teng Y, Zhang X, Sundaram K, Sriwastva MK, et al. Restoring oat nanoparticles mediated brain memory function of mice fed alcohol by sorting inflammatory dectin-1 complex into microglial exosomes. Small 2022; 18(6):e2105385.

[26]

Zhu MZ, Xu HM, Liang YJ, Xu J, Yue NN, Zhang Y, et al. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis via facilitating double-positive $\mathrm{CD}^{+} \mathrm{CD8}^{+} \mathrm{T}$ cells expansion. J Nanobiotechnol 2023; 21(1):309.

[27]

Wang D, Zhang H, Liao X, Li J, Zeng J, Wang Y, et al. Oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF- la - and HIF- 2a -mediated lipid peroxidation. J Nanobiotechnol 2024; 22(1):479.

[28]

Stanly C, Moubarak M, Fiume I, Turiák L, Pocsfalvi G. Membrane transporters in citrus clementina fruit juice-derived nanovesicles. Int J Mol Sci 2019; 20(24):6205.

[29]

Regente M, Corti-Monzón G, Maldonado AM, Pinedo M, Jorrín J, de la Canal L. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett 2009; 583(20):3363-6.

[30]

Jia H, Kolaczkowski O, Rolland J, Kolaczkowski B. Increased affinity for RNA targets evolved early in animal and plant dicer lineages through different structural mechanisms. Mol Biol Evol 2017; 34(12):3047-63.

[31]

Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 ( MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV 2014 guidelines. J Extracell Vesicles 2018; 7(1):1535750.

[32]

Ozkan I, Kocak P, Yildirim M, Unsal N, Yilmaz H, Telci D, et al. Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis. Sci Rep 2021; 11(1):14773.

[33]

Chen Q, Li Q, Liang Y, Zu M, Chen N, Canup BSB, et al. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm Sin B 2022; 12(2):907-23.

[34]

Kim K, Yoo HJ, Jung JH, Lee R, Hyun JK, Park JH, et al. Cytotoxic effects of plant sap-derived extracellular vesicles on various tumor cell types. J Funct Biomater 2020; 11(2):22.

[35]

Pan S, Pei L, Zhang A, Zhang Y, Zhang C, Huang M, et al. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials 2020; 230:119606.

[36]

Martinez-Ballesta MDC, Garcia-Gomez P, Yepes-Molina L, Guarnizo AL, Teruel JA, Carvajal M, et al. Plasma membrane aquaporins mediates vesicle stability in broccoli. PLoS One 2018; 13(2):e0192422.

[37]

Zhang Y, Zhang X, Kai T, Zhang L, Li A. Lycium ruthenicum Murray derived exosome-like nanovesicles inhibit A $\beta$-induced apoptosis in PC12 cells via MAPK and PI3K/AKT signaling pathways. Int J Biol Macromol 2024; 277(2):134309.

[38]

Vestuto V, Conte M, Vietri M, Mensitieri F, Santoro V, Di Muro A, et al. Multiomic profiling and neuroprotective bioactivity of salvia hairy root-derived extracellular vesicles in a cellular model of Parkinson's disease. Int J Nanomedicine 2024; 19:9373-93.

[39]

Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 2016; 26(2):217-28.

[40]

Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 2012; 22(1):107-26.

[41]

Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. Peer J 2018; 6:e5186.

[42]

Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021; 29(8):2424-40.

[43]

Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 2018; 24(5):637-52.

[44]

De Robertis M, Sarra A, D'Oria V, Mura F, Bordi F, Postorino P, et al. Blueberry-derived exosome-like nanoparticles counter the response to TNF-alpha-induced change on gene expression in EA.hy926. Cell Biomol 2020; 10(5):742.

[45]

Shen C, Li X, Qin J, Duan L. Characterization of miRNA profiling in konjac-derived exosome-like nanoparticles and elucidation of their multifaceted roles in human health. Front Plant Sci 2024; 15:1444683.

[46]

Yang M, Liu X, Luo Q, Xu L, Chen F. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnol 2020; 18(1):100.

[47]

Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther 2017; 25(7):1641-54.

[48]

Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015; 4:28713.

[49]

Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016; 101:321-40.

[50]

Valentino A, Conte R, Bousta D, BekkariH Salle AD, Calarco A, et al. Extracellular vesicles derived from opuntia ficus-indica fruit (OFI-EVs) speed up the normal wound healing processes by modulating cellular responses. Int J Mol Sci 2024; 25(13):7103.

[51]

Emmanuela N, Muhammad DR, Iriawati, et al. Isolation of plant-derived exosome-like nanoparticles (PDENs) from Solanum nigrum L. berries and their effect on interleukin-6 expression as a potential anti-inflammatory agent. PLoS One 2024; 19(1):e0296259.

[52]

Kim WS, Lee SJ, Shin KW, Lee HY, Park JY, Lee IC, et al. Nutraceutical potential of exosome-like nanoparticles derived from Boehmeria japonica in inflammatory bowel disease. J Funct 2024; 112:106007.

[53]

Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 2007; 7:803-15.

[54]

Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol-mech 2020; 15 493-418.

[55]

Iason G. The role of plant secondary metabolites in mammalian herbivory: ecological perspectives. Proc Nutr Soc 2005; 64:123-31.

[56]

Peters A, Nawrot TS, Baccarelli AA. Hallmarks of environmental insults. Cell 2021; 184(6):1455-68.

[57]

Medzhitov R. The spectrum of inflammatory responses. Science 2021; 374(6571):1070-5.

[58]

Navegantes KC, de Souza Gomes R, Pereira ATP, Czaikoski PG, Azevedo CHM, Monteiro MC. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med 2017; 15:36-57.

[59]

Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 2009; 6(1):10-21.

[60]

Meizlish ML, Franklin RA, Zhou X, Medzhitov R. Tissue homeostasis and inflammation. Annu Rev Immunol 2021; 39:557-81.

[61]

Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010; 140(6):771-6.

[62]

Kim ME, Lee JS. Molecular foundations of inflammatory diseases: insights into inflammation and inflammasomes. Curr Issues Mol Biol 2024; 46(1):469-84.

[63]

Song W, Jia P, Ren Y, Xue J, Zhou B, Xu X, et al. Engineering white blood cell membrane-camouflaged nanocarriers for inflammation-related therapeutics. Bioact Mater 2022; 23:80-100.

[64]

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22(2):240-73.

[65]

Koltsova EK, Garcia Z, Chodaczek G, Landau M, McArdle S, Scott SR, et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J. Clin. Invest. 2012; 122(9):3114-26.

[66]

Doran AC, Yurdagul AJ, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol 2020; 20(4):254-67.

[67]

Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005; 6(12):1182-90.

[68]

Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542:177-85.

[69]

Olvera HA, Alvarez LD, Kubzansky Campen MJ, Slavich GM. Early life stress, air pollution, inflammation, and disease: an integrative review and immunologic model of social-environmental adversity and lifespan health. Neurosci Biobehav Rev 2018; 92:226-42.

[70]

Luo M, Ballester MP, Soffientini U, Jalan R, Mehta G. SARS-CoV-2 infection and liver involvement. Hepatol Int 2022; 16(4):755-74.

[71]

Nabil A, Uto K, Elshemy MM, Soliman R, Hassan AA, Ebara M, et al. Current coronavirus (SARS-CoV-2) epidemiological, diagnostic and therapeutic approaches: an updated review until June 2020. Excli J 2020; 19:992-1016.

[72]

Davidson S, Coles M, Thomas T, Kollias G, Ludewig B, Turley S, et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol 2021; 21(11):704-17.

[73]

Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity 2014; 41(5):694-707.

[74]

Sinigaglia F, D'Ambrosio D. Regulation of helper T cell differentiation and recruitment in airway inflammation. Am J Respir Crit Care Med 2000; 162:S157-60.

[75]

Naylor AJ, Filer A, Buckley CD. The role of stromal cells in the persistence of chronic inflammation. Clin Exp Immunol 2013; 171(1):30-5.

[76]

Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6(1):263.

[77]

Qadir J, Wen SY, Yuan H, Yang BB. CircRNAs regulate the crosstalk between inflammation and tumorigenesis: the bilateral association and molecular mechanisms. Mol Ther 2023; 31(6):1514-32.

[78]

Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative-species-selective materials for diagnostic and therapeutic applications. Angew Chem Int Ed Engl 2021; 60(18):9804-27.

[79]

Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-99.

[80]

Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 2019; 119(6):4357-412.

[81]

Savci Y, Kirbas OK, Bozkurt BT, Abdik EA, Tasli PN, Sahin F, et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct 2021; 12(11):5144-56.

[82]

De Robertis M, Sarra A, D'Oria V, Mura F, Bordi F, Postorino P, et al. Blueberry-derived exosome-like nanoparticles counter the response to TNF- a -induced change on gene expression in EA.hy926. Cells Biomol 2020; 10(5):742.

[83]

Li S, Zhang R, Wang A, Li Y, Zhang M, Kim J, et al. Panax notoginseng: derived exosome-like nanoparticles attenuate ischemia reperfusion injury via altering microglia polarization. J Nanobiotechnol 2023; 21(1):416.

[84]

Yan G, Xiao Q, Zhao J, Chen H, Xu Y, Tan M, et al. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J Control Release 2024; 367:425-40.

[85]

C Martínez Fajardo, Morote L, Moreno-Giménez E, López-López S, Á Rubio-Moraga, Díaz-Guerra MJM, et al. Exosome-like nanoparticles from Arbutus unedo L. mitigate LPS-induced inflammation via JAK-STAT inactivation. Food Funct 2024; 15(22):11280-90.

[86]

Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev 2019; 119(8):4881-985.

[87]

Wu M, Ding Y, Li L. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. Nanoscale 2019; 11(42):19658-83.

[88]

Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016; 101:321-40.

[89]

Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing. Tissue Eng Regen Med 2021; 18(4):561-71.

[90]

Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, et al. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother 2023; 165:115007.

[91]

Zhao WJ, Bian YP, Wang QH, Yin F, Yin L, Zhang YL, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin 2022; 43(3):645-58.

[92]

Derksen V, Huizinga TWJ, van der Woude D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol 2017; 39(4):437-46.

[93]

Peng B, Liang H, Li Y, Dong C, Shen J, Mao HQ, et al. Tuned cationic dendronized polymer: molecular scavenger for rheumatoid arthritis treatment. Angew Chem Int Ed Engl 2019; 58(13):4254-8.

[94]

Scherer U, Huizinga TWJ, Krönke G, Schett G, Toes REM. The B cell response to citrullinated antigens in the development of rheumatoid arthritis. Nat Rev Rheumatol 2018; 14(3):157-69.

[95]

Yang S, Lu S, Ren L, Bian S, Zhao D, Liu M, et al. Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing. J Ginseng Res 2023; 47(1):133-43.

[96]

Vanessa V, Rachmawati H, Barlian A. Anti-inflammatory potential of goldenberry-derived exosome-like nanoparticles in macrophage polarization. Fut Sci OA 2024; 10(1):FSO943.

[97]

Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, et al. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: preparation, characterization, and immunostimulatory effect via TNF- a/ NF- $\kappa$ b/PU. 1 axis. J Nanobiotechnol 2023; 21(1):160.

[98]

Wang X, Liu Y, Dong X, Duan T, Wang C, Wang L, et al. peu-MIR2916-p3-enriched garlic exosomes ameliorate murine colitis by reshaping gut microbiota, especially by boosting the anti-colitic Bacteroides thetaiotaomicron. Pharmacol Res 2024; 200:107071.

[99]

Iriawati I, Vitasasti S, Rahmadian FNA, Barlian A. Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PLoS One 2024; 19(7):e0304335.

[100]

Lee J, Sohn JW, Zhang Y, Leong KW, Pisetsky D, Sullenger BA. Nucleic acid-binding polymers as anti-inflammatory agents. Proc Natl Acad Sci USA 2011; 108(34):14055-60.

[101]

Liang H, Peng B, Dong C, Liu L, Mao J, Wei S, et al. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat Commun 2018; 9(1):4291.

[102]

Wu J, Liang H, Li Y, Shi Y, Bottini M, Chen Y, et al. Cationic block copolymer nanoparticles with tunable DNA affinity for treating rheumatoid arthritis. Adv Funct Mater 2020; 30:2000391.

[103]

Dawulieti J, Sun M, Zhao Y, Shao D, Yan H, Lao YH, et al. Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. Sci Adv 2020; 6(22):7148.

[104]

Jackman JG, Juwarker H, Poveromo LP, Levinson H, Leong KW, Sullenger BA. Polycationic nanofibers for nucleic acid scavenging. Biomacromolecules 2016; 17(11):3706-13.

[105]

Lee J, Jackman JG, Kwun J, Manook M, Moreno A, Elster EA, et al. Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials 2017; 120:94-102.

[106]

Liu F, Sheng S, Shao D, Xiao Y, Zhong Y, Zhou J, et al. A cationic metal-organic framework to scavenge cell-free DNA for severe sepsis management. Nano Lett. 2021; 21(6):2461-9.

[107]

Zhu Z, Liao L, Gao M, Liu Q. Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-kappaB pathway and gut microbiota modulation. Food Funct 2023; 14(16):7520-34.

[108]

Liu Z, Yago T, Zhang N, Panicker SR, Wang Y, Yao L, et al. L-selectin mechanochemistry restricts neutrophil priming in vivo. Nat Commun 2017; 8(1):15196.

[109]

Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of porphyromonas gingivalis. iScience 2019; 21:308-27.

[110]

Stanly C., Alfieri M., Ambrosone A., Leone A., Fiume I. Pocsfalvi G grapefruit-derived micro and nanovesicles show distinct metabolome profiles and anticancer activities in the A375 human melanoma cell line. Cells 2020; 9(12):2722.

[111]

Türk H, Haag R, Alban S. Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system. Bioconjug Chem 2004; 15(1):162-7.

[112]

Xu J, Yu Y, Zhang Y, Dai H, Yang Q Wang B, et al. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal ifn $\gamma$-producing $\gamma \delta$ T cells. Nat Nanotechnol 2024; 19(10): 1569-1578.

[113]

Achek A, Yesudhas D, Choi S. Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016; 39(8):1032-49.

[114]

Yepes-Molina L, Pérez-Jiménez MI, Martínez-Esparza M, Teruel JA, Ruiz-Alcaraz AJ, García-Peñarrubia P, et al. Membrane vesicles for nanoencapsulated sulforaphane increased their anti-inflammatory role on an in vitro human macrophage model. Int J Mol Sci 2022; 23(4):1940.

[115]

Awatramani GB, Turecek R, Trussell LO.Staggered development of GABAergic and glycinergic transmission in the MNTB. J Neurophysiol 2005; 93(2):819-28.

[116]

Beers EJ, Yang Y, Raghavachari N, Tian X, Allen DT, Nichols JS, et al. Inflammation, and early death in adults with sickle cell disease. Circ Res 2015; 116(2):298-306.

[117]

Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 2016; 41(3):274-86.

[118]

Clapham DE. Calcium signaling. Cell 2007; 131(6):1047-58.

[119]

Piccirillo S, Castaldo P, Macrì ML, Amoroso S, Magi S. Glutamate as a potential "survival factor" in an in vitro model of neuronal hypoxia/reoxygenation injury: leading role of the $\mathrm{Na}\left({ }^{+}\right) / \mathrm{Ca}\left({ }^{2+}\right)$ exchanger. Cell Death Dis 2018; 9(7):731.

[120]

Bortolotti M, Polito L, Battelli MG, Bolognesi A. Xanthine oxidoreductase: one enzyme for multiple physiological tasks. Redox Biol 2021; 41:101882.

[121]

Hwang JH, Park YS, Kim HS, Kim DH, Lee SH, Lee CH, et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice. J Control Release 2023; 355:184-98.

[122]

Zhan W, Deng M, Huang X, Xie D, Gao X, Chen J, et al. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J Control Release 2023; 364:644-53.

[123]

Martínez-Ballesta MDC, García-Gomez P, Yepes-Molina L, Guarnizo AL, Teruel JA, Carvajal M. Plasma membrane aquaporins mediates vesicle stability in broccoli. PLoS One 2018; 13(2):e0192422.

[124]

Cai H, Huang LY, Hong R, Song JX, Guo XJ, Zhou W, et al. Momordica charantia exosome - like nanoparticles exert neuroprotective effects against ischemic brain injury via inhibiting matrix metalloproteinase 9 and activating the AKT/GSK 3 $\beta$ signaling pathway. Front Pharmacol 2022; 13:908830.

[125]

Wu J, Ma X, Lu Y, Zhang T, Du Z, Xu J, et al. Edible pueraria lobata-derived exosomes promote M2 macrophage polarization. Molecules 2022; 27(23):8184.

[126]

Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun 2013; 4:1867.

[127]

Nemati M, Singh B, Mir RA, Nemati M, Babaei A, Ahmadi M, et al. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun Signal 2022; 20(1):69.

[128]

Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther 2014; 22(3):522-34.

[129]

Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 2015; 205:35-44.

[130]

Zeng L, Wang H, Shi W, Chen L, Chen T, Chen G, et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnol 2021; 19(1):439.

[131]

Yang M, Luo Q Chen X, Chen F. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma. J Nanobiotechnol 2021; 19(1):259.

[132]

Abraham AM, Wiemann S, Ambreen G, Zhou J, Engelhardt K, Brussler J, et al. Cucumber - derived exosome - like vesicles and plantcrystals for improved dermal drug delivery. Pharmaceut 2022; 14(3):476.

[133]

Sharma S, Mahanty M, Rahaman SG, Mukherjee P, Dutta B, Khan M I, et al. Avocado-derived extracellular vesicles loaded with ginkgetin and berberine prevent inflammation and macrophage foam cell formation. J Cell Mol Med 2024; 28(7):e18177.

[134]

Kilasoniya A, Garaeva L, Shtam T, Spitsyna A, Putevich E, Moreno-Chamba B, et al. Potential of plant exosome vesicles from grapefruit (Citrus × paradisi) and tomato (Solanum lycopersicum) juices as functional ingredients and targeted drug delivery vehicles. Antioxidants (Basel) 2023; 12(4):943.

[135]

Wang Q, Liu K, Cao X, Rong W, Shi W, Yu Q. Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold. Bioeng Transl Med 2024; 9(4):e10646.

[136]

Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8):541-55.

[137]

Yan W, Tao M, Jiang B, Yao M, Jun Y, Dai W, et al. Overcoming drug resistance in colon cancer by aptamer - mediated targeted co - delivery of drug and siRNA using grapefruit derived nanovectors. Cell Physiol Biochem 2018; 50(1):79-91.

[138]

Wang X, Zhang M, Flores SRL, Woloshun RR, Yang C, Yin L, et al. Oral gavage of ginger nanoparticle - derived lipid vectors carrying Dmt1 siRNA blunts iron loading in murine hereditary hemochromatosis. Mol Ther 2019; 27(3):493-506.

[139]

Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther 2016; 24(1):96-105.

[140]

Umezu T, Takanashi M, Murakami Y, Ohno SI, Kanekura K, Sudo K, et al. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol Ther Methods Clin Dev 2021; 21:199-208.

[141]

Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine 2017; 12(16):1927-43.

[142]

Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for ligand display on ginger exosome - like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep 2018; 8(1):14644.

[143]

Liu Y, Qi H, Zong J, Li M, Yang Y, Li X, et al. Oral piwi-interacting RNA delivery mediated by green tea derived exosome - like nanovesicles for the treatment of aortic dissection. Adv Healthc Mater 2024; 13(30):e2401466.

[144]

Xu XH, Yuan TJ, Dad HA, Shi MY, Huang YY, Jiang ZH, et al. Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett 2021; 21(19):8151-9.

[145]

Chen J, Wu J, Mu J, Li L, Hu J, Lin H, et al. An antioxidative sophora exosome-encapsulated hydrogel promotes spinal cord repair by regulating oxidative stress microenvironment. Nanomedicine 2023; 47:102625.

[146]

Tan S, Liu Z, Cong M, Zhong X, Mao Y, Fan M, et al. Dandelion-derived vesicles-laden hydrogel dressings capable of neutralizing Staphylococcus aureus exotoxins for the care of invasive wounds. J Control Release 2024; 368:355-71.

[147]

Huang R, Jia B, Su D, Li M, Xu Z, He C, et al. Plant exosomes fused with engineered mesenchymal stem cell-derived nanovesicles for synergistic therapy of autoimmune skin disorders. J Extracell Vesicles 2023; 12(10):e12361.

[148]

Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res 2015; 75(12):2520-9.

[149]

Ouyang J, Wang L, Chen W, Zeng K, Han Y, Xu Y, et al. Biomimetic nanothylakoids for efficient imaging guided photodynamic therapy of cancer. Chem Commun 2018; 54(28):3468-71.

[150]

Zhao H, Huang Y, Lv F, Liu L, Gu Q. Biomimetic 4D-printed breathing hydrogel actuators by nanothylakoid and thermoresponsive polymer networks. Adv Funct Mater 2021; 31:2105544.

[151]

Qi Y, Wang H, Du A, Liu C, Sun X, Meng X, et al. Engineering multifunctional thylakoid as an oxygen self-supplying photosensitizer for esophageal squamous cell carcinoma-targeted photodynamic therapy. CCS Chem 2022; 5(11):2519-33.

[152]

Lei Y, Zhao H, Wu Y, Huang L, Nie W, Liu H, et al. Phytochemical natural killer cells reprogram tumor microenvironment for potent immunotherapy of solid tumors. Biomaterials 2022; 287:121635.

[153]

Liu H, Lei Y, Nie W, Zhao H, Wu Y, Zuo L, et al. Immunomodulatory hybrid bio-nanovesicle for self-promoted photodynamic therapy. Nano Res 2022; 15:4233-42.

[154]

Zhuang WR, Wang Y, Lei Y, Zuo L, Jiang A, Wu G, et al. Phytochemical engineered bacterial outer membrane vesicles for photodynamic effects promoted immunotherapy. Nano Lett 2022; 22(11):4491-500.

[155]

Zhao H, Guo Y, Yuan A, Xia S, Gao Z, Huang Y, et al. Nature-inspired nanothylakoids for multimodal cancer therapeutics. Sci China Mater 2022; 65:1971-9.

[156]

Hou L, Gong X, Yang J, Zhang H, Yang W, Chen X. Hybrid-membrane-decorated prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv Mater 2022; 34(14):e2200389.

[157]

Lu X, Xu Z, Shu F, Wang Y, Han Y, Yang X, et al. Reactive Oxygen Species responsive multifunctional fusion extracellular nanovesicles: prospective treatments for acute heart transplant rejection. Adv Mater 2024; 36(35):e2406758.

[158]

Feng J, Xiu Q, Huang Y, Troyer Z, Li B, Zheng L. Plant-derived vesicle-like nanoparticles as promising biotherapeutic tools: present and future. Adv Mater 2023; 35(24):e2207826.

[159]

Mao Y, Han M, Chen C, Wang X, Han J, Gao Y, et al. A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies. Nanoscale 2021; 13(47):20157-69.

[160]

Chen P, Liu X, Gu C, Zhong P, Song N, Li M, et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 2022; 612(7940):546-54.

[161]

Cui C, Du M, Zhao Y, Tang J, Liu M, Min G, et al. Functional ginger-derived extracellular vesicles-coated ZIF-8 containing TNF- a siRNA for ulcerative colitis therapy by modulating gut microbiota. ACS Appl Mater Interfaces 2024; 16(40):53460-73.

[162]

Xiao Q, Zhao W, Wu C, Wang X, Chen J, Shi X, et al. Lemon-derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis - triggered energy dissipation and energy production reduction. Adv Sci 2022; 9(20):e2105274.

[163]

Niu W, Xiao Q, Wang X, Zhu J, Li J, Liang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin - loaded heparin - based nanoparticles for glioma therapy. Nano Lett 2021; 21(3):1484-92.

[164]

Qiao Z, Zhang K, Liu J, Cheng D, Yu B, Zhao N, et al. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat Commun 2022; 13(1):7164.

[165]

Gao W, Wang Y, Xiong Y, Sun L, Wang L, Wang K, et al. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomater 2019; 85:203-17.

[166]

Chen J, Pan J, Liu S, Zhang Y, Sha S, Guo H, et al. Fruit-derived extracellular- vesicle - engineered structural droplet drugs for enhanced glioblastoma chemotherapy. Adv Mater 2023; 35(45):2304187.

[167]

Xu Y, Yan G, Zhao J, Ren Y, Xiao Q, Tan M, et al. Plant-derived exosomes as cell homogeneous nanoplatforms for brain biomacromolecules delivery ameliorate mitochondrial dysfunction against Parkinson's disease. Nano Today 2024; 58:102438.

[168]

Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther 2021; 29(1):13-31.

[169]

Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, et al. Mulberry biomass-derived nanomedicines mitigate colitis through improved inflamed mucosa accumulation and intestinal microenvironment modulation. Research 2023; 6:0188.

[170]

Wang J, Zhang T, Gu R, Ke Y, Zhang S, Su X, et al. Development and evaluation of reconstructed nanovesicles from turmeric for multifaceted obesity intervention. ACS Nano 2024; 18(34):23117-35.

[171]

Jia Y, Spiegel CA, Welle A, Heißler S, Sedghamiz E, Liu M, et al. Covalent adaptable microstructures via combining two-photon laser printing and alkoxyamine chemistry: toward living 3D microstructures. Adv Funct Mater 2023; 33(39):2207826.

[172]

Rao L, Wu L, Liu Z, Tian R, Yu G, Zhou Z, et al. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nat Commun 2020; 11(1):4909.

[173]

Cong M, Tan S, Li S, Gao L, Huang L, Zhang HG, et al. Technology insight: plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev 2022; 182:114108.

[174]

Song H, Canup BSB, Ngo VL, Denning TL, Garg P, Laroui H. Internalization of garlic-derived nanovesicles on liver cells is triggered by interaction with CD98. ACS Omega 2020; 5(36):23118-28.

PDF (9021KB)

98

Accesses

0

Citation

Detail

Sections
Recommended

/