Functionalized chitosan as nano-delivery platform for CRISPR-Cas9 in cancer treatment

Asif Nawaz , Nur Syamimi Ariffin , Tin Wui Wong

Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (3) : 101041

PDF (1685KB)
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (3) :101041 DOI: 10.1016/j.ajps.2025.101041
Review artices
research-article

Functionalized chitosan as nano-delivery platform for CRISPR-Cas9 in cancer treatment

Author information +
History +
PDF (1685KB)

Abstract

CRISPR-Cas system permanently deletes any harmful gene-of-interest to combat cancer growth. Chitosan (CS) is a potential cancer therapeutic that mediates via PI3K/Akt/mTOR, MAPK and NF-kβ signaling pathway modulation. CS and its covalent derivatives have been designed as nanocarrier of CRISPR-Cas9 alone (plasmid or ribonucleoprotein) or in combination with chemical drug for cancer treatment. The nanocarrier was functionalized with polyethylene glycol (PEG), targeting ligand, cell penetrating ligand and its inherent positive zeta potential to mitigate premature clearance and particulate aggregation, and promote cancer cell/nucleus targeting and permeabilization to enable CRISPR-Cas9 acting on the host DNA. Different physicochemical attributes are required for the CS-based nanocarrier to survive from the administration site, through the systemic circulation-extracellular matrix-mucus-mucosa axis, to the nucleus target. CRISPR-Cas9 delivery is met with heterogeneous uptake by the cancer cells. Choice of excipients such as targeting ligand and PEG may be inappropriate due to lacking overexpressed cancer receptor or availability of excessive metabolizing enzyme and immunoglobulin that defies the survival and action of these excipients rendering nanocarrier fails to reach the target site. Cancer omics analysis should be implied to select excipients which meet the pathophysiological needs, and chitosan nanocarrier with a “transformative physicochemical behavior” is essential to succeed CRISPR-Cas9 delivery.

Keywords

Cancer / Chitosan / CRISPR-Cas9 / Excipient / Nanocarrier

Cite this article

Download citation ▾
Asif Nawaz, Nur Syamimi Ariffin, Tin Wui Wong. Functionalized chitosan as nano-delivery platform for CRISPR-Cas9 in cancer treatment. Asian Journal of Pharmaceutical Sciences, 2025, 20(3): 101041 DOI:10.1016/j.ajps.2025.101041

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Acknowledgments

The authors wish to express their heart-felt gratitude to Universiti Teknologi MARA (0141903) for facility support and MOHE (FRGS/1/2023/STG05/UITM/01/3) for funding support.

References

[1]

Gockert M, Schmid M, Jakobsen L, Jens M, Andersen JS, Jensen TH. Rapid factor depletion highlights intricacies of nucleoplasmic RNA degradation. Nucleic Acids Res 2022; 50:1583-600.

[2]

Mayorga-Ramos A, Zúniga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. CRISPR-Cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance. ACS Infect Dis 2023; 9:1283-302.

[3]

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32:347-55.

[4]

Zheng R, Zhang L, Parvin R, Su L, Chi J, Shi K, et al. Progress and perspective of CRISPR-Cas9 technology in translational medicine. Advanced Science 2023; 10:2300195.

[5]

Liu Z, Dong H, Cui Y, Cong L, Zhang D. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact 2020; 19:1-14.

[6]

Ratner HK, Sampson TR, Weiss DS. Overview of CRISPR-Cas9 biology. Cold Spring Harb Protoc 2016; 2016(12):pdb.top088849.

[7]

Filippova J, Matveeva A, Zhuravlev E, Stepanov G. Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie 2019; 167:49-60.

[8]

El-Ashry AH. The CRISPR/Cas system: gene editing by bacterial defense. Novel Res Microbiol J 2023; 7(5):2101-15.

[9]

Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics 2021:353-61.

[10]

Mei Y, Wang Y, Chen H, Sun ZS, Ju XD. Recent progress in CRISPR/Cas9 technology. J Genet Genomics 2016; 43:63-75.

[11]

Barman A, Deb B, Chakraborty S. A glance at genome editing with CRISPR-Cas9 technology. Curr Genet 2020;66: 447-462.

[12]

Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014; 156:935-49.

[13]

Rabinowitz R, Offen D. Single-base resolution: increasing the specificity of the CRISPR-Cas system in gene editing. Molecul Ther 2021; 29:937-48.

[14]

Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 2018; 361:1259-62.

[15]

Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154:1380-9.

[16]

Chiang Tww, Le Sage C, Larrieu D, Demir M, Jackson SP. CRISPR-Cas9D10A nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep 2016; 6:24356.

[17]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209-49.

[18]

Farinha P, Pinho JO, Matias M, Gaspar MM. Nanomedicines in the treatment of colon cancer: a focus on metallodrugs. Drug Deliv Transl Res 2022:1-18.

[19]

Mbemi A, Khanna S, Njiki S, Yedjou CG, Tchounwou PB. Impact of gene-environment interactions on cancer development. Int J Environ Res Public Health 2020; 17:8089.

[20]

Wu W, Pu Y, Shi J. Nanomedicine-enabled chemotherapy-based synergetic cancer treatments. J Nanobiotechnology 2022; 20:4.

[21]

Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445.

[22]

Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: an innovative and developing strategy. J Drug Deliv Sci Technol 2020; 60:102018.

[23]

Zaiki Y, Iskandar A, Wong TW. Functionalized chitosan for cancer nano drug delivery. Biotechnol Adv 2023; 67:108200.

[24]

Yang P, Lee AYT, Xue J, Chou SJ, Lee C, Tseng P, et al. Nano-vectors for CRISPR/Cas9-mediated genome editing. Nano Today 2022; 44:101482.

[25]

Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, et al. Gene therapy: comprehensive overview and therapeutic applications. Life Sci 2022; 294:120375.

[26]

Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ. CRISPR-based diagnostics. Nat Biomed Eng 2021; 5:643-56.

[27]

Liu T, Yan Z, Liu Y, Choy E, Hornicek FJ, Mankin H, et al. CRISPR-Cas9-mediated silencing of CD44 in human highly metastatic osteosarcoma cells. Cellular Physiol Biochem 2018; 46:1218-30.

[28]

Mujtaba M, Wang D, Carvalho LB, Oliveira JL, et al.Ad Espirito Santo Pereira, Sharif R, Nanocarrier-mediated delivery of miRNA, RNAi, and CRISPR-Cas for plant protection: current trends and future directions. ACS Agric Sci Technol 2021; 1:417-35.

[29]

Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, et al. CRISPR/Cas9: a powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci 2020; 263:118525.

[30]

Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014; 32:551-3.

[31]

Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N, Zhao Z, et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 2014; 25:652-65.

[32]

Wang CS, Chang CH, Tzeng TY, Lin AMY, Lo YL. Gene-editing by CRISPR-Cas9 in combination with anthracycline therapy via tumor microenvironment-switchable, EGFR-targeted, and nucleus-directed nanoparticles for head and neck cancer suppression. Nanoscale Horizons 2021; 6:729-43.

[33]

Aparicio C, Acebal C, González-Vallinas M. Current approaches to develop "off-the-shelf" chimeric antigen receptor (CAR)-T cells for cancer treatment: a systematic review. Exp Hematol Oncol 2023; 12:73.

[34]

Flugel CL, Majzner RG, Krenciute G, Dotti G, Riddell SR, Wagner DL, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol 2023; 20:49-62.

[35]

Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood 2016; 127:3312-20.

[36]

Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 2017; 129:1039-41.

[37]

Elahi R, Heidary AH, Hadiloo K, Esmaeilzadeh A. Chimeric antigen receptor-engineered natural killer (CAR NK) cells in cancer treatment; recent advances and future prospects. Stem Cell Rev Rep 2021; 17:2081-106.

[38]

Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 2017; 27:154-7.

[39]

Cai W, Luo T, Mao L, Wang M. Spatiotemporal delivery of CRISPR/Cas9 genome editing machinery using stimuli-responsive vehicles. Angewandte Chemie 2021; 133:8679-89.

[40]

Liu Q, Yang J, Xing Y, Zhao Y, Liu Y. Development of delivery strategies for CRISPR-Cas9 genome editing. BMEMat 2023; 1:e12025.

[41]

Yip BH. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules 2020; 10:839.

[42]

Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Translation Med 2022; 7:e10258.

[43]

Santana-Armas ML, de Ilarduya CT. Strategies for cancer gene-delivery improvement by non-viral vectors. Int J Pharm 2021; 596:120291.

[44]

Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, et al. Nanoparticle delivery of CRISPR/Cas 9 for genome editing. Front Genet 2021; 12:673286.

[45]

Sheshala R, Anuar NK, Abu Samah NH, Wong TW. In vitro drug dissolution/permeation testing of nanocarriers for skin application: a comprehensive review. AAPS PharmSciTech 2019; 20:1-28.

[46]

Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020; 167:170-88.

[47]

Gan WW, Chan LW, Li W, Wong TW. Critical clinical gaps in cancer precision nanomedicine development. J Controlled Release 2022; 345:811-18.

[48]

Karayianni M, Sentoukas T, Skandalis A, Pippa N, Pispas S. Chitosan-based nanoparticles for nucleic acid delivery: technological aspects, applications, and future perspectives. Pharmaceutics 2023; 15:1849.

[49]

Lim SH, Wong TW, Tay WX. Overcoming colloidal nanoparticle aggregation in biological milieu for cancer therapeutic delivery: perspectives of materials and particle design. Adv Colloid Interface Sci 2024; 325:103094.

[50]

Rasul RM, Muniandy MT, Zakaria Z, Shah K, Chee CF, Dabbagh A, et al. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydr Polym 2020;250: 116800.

[51]

Meka AK, Abbaraju PL, Song H, Xu C, Zhang J, Zhang H, et al. A vesicle supra-assembly approach to synthesize amine-functionalized hollow dendritic mesoporous silica nanospheres for protein delivery. Small 2016; 12:5169-77.

[52]

Shao D, Li M, Wang Z, Zheng X, Lao YH, Chang Z, et al. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv Mater 2018; 30:1801198.

[53]

Wu JB, Zhang X, Ijäs M, Han WP, Qiao XF, Li XL, et al. Resonant Raman spectroscopy of twisted multilayer graphene. Nat Commun 2014; 5:5309.

[54]

Xu C, Yu M, Noonan O, Zhang J, Song H, Zhang H, et al. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery. Small 2015; 11:5949-55.

[55]

Yang Y, Wan J, Niu Y, Gu Z, Zhang J, Yu M, et al. Structure-dependent and glutathione-responsive biodegradable dendritic mesoporous organosilica nanoparticles for safe protein delivery. Chem Mater 2016; 28:9008-16.

[56]

Bale SS, Kwon SJ, Shah DA, Banerjee A, Dordick JS, Kane RS. Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular machinery. ACS Nano 2010; 4:1493-500.

[57]

Chen TT, Yi JT, Zhao YY, Chu X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J Am Chem Soc 2018; 140:9912-20.

[58]

Lin JT, Liu ZK, Zhu QL, Rong XH, Liang CL, Wang J, et al. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles. Colloids Surfaces B: Biointerfaces 2017; 155:41-50.

[59]

Röder R, Preiß T, Hirschle P, Steinborn B, Zimpel A, Höhn M, et al. Multifunctional nanoparticles by coordinative self-assembly of his-tagged units with metal-organic frameworks. J Am Chem Soc 2017; 139:2359-68.

[60]

Jiang Y, Yang W, Zhang J, Meng F, Zhong Z. Protein toxin chaperoned by LRP-1-targeted virus-mimicking vesicles induces high-efficiency glioblastoma therapy in vivo. Adv Mater 2018; 30:1800316.

[61]

Li J, Zhang L, Liu Y, Wen J, Wu D, Xu D, et al. An intracellular protein delivery platform based on glutathione-responsive protein nanocapsules. Chemical Commun 2016; 52:13608-11.

[62]

Malhotra M, Tomaro-Duchesneau C, Saha S, Prakash S. Systemic siRNA delivery via peptide-tagged polymeric nanoparticles, targeting PLK1 gene in a mouse xenograft model of colorectal cancer. Int J Biomater 2013; 2013:252531.

[63]

Wang F, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. A neutralized noncharged polyethylenimine-based system for efficient delivery of siRNA into heart without toxicity. ACS Appl Mater Interfaces 2016; 8:33529-38.

[64]

Zhou J, Patel TR, Fu M, Bertram JP, Saltzman WM. Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors. Biomaterials 2012; 33:583-91.

[65]

Huang K, He Y, Zhu Z, Guo J, Wang G, Deng C, et al. Small traceable, endosome-disrupting, and bioresponsive click nanogels fabricated via microfluidics for CD44-targeted cytoplasmic delivery of therapeutic proteins. ACS Appl Mater Interfaces 2019; 11:22171-80.

[66]

Kawasaki R, Sasaki Y, Katagiri K, Sa Mukai, Si Sawada, Akiyoshi K. Magnetically guided protein transduction by hybrid nanogel chaperones with iron oxide nanoparticles. Angewandte Chemie 2016; 128:11549-53.

[67]

Singhal A, Morris V, Labhasetwar V, Ghorpade A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis 2013; 4 e903-e90e.

[68]

Zhang X, Zhang K, Haag R. Multi-stage, charge conversional, stimuli-responsive nanogels for therapeutic protein delivery. Biomater Sci 2015; 3:1487-96.

[69]

Kim A, Miura Y, Ishii T, Mutaf OF, Nishiyama N, Cabral H, et al. Intracellular delivery of charge-converted monoclonal antibodies by combinatorial design of block/homo polyion complex micelles. Biomacromolecules 2016; 17:446-53.

[70]

Qiu M, Zhang Z, Wei Y, Sun H, Meng F, Deng C, et al. Small-sized and robust chimaeric lipopepsomes: a simple and functional platform with high protein loading for targeted intracellular delivery of protein toxin in vivo. Chem Mater 2018; 30:6831-8.

[71]

Fang X, Gao K, Huang J, Liu K, Chen L, Piao Y, et al. Molecular level precision and high molecular weight peptide dendrimers for drug-specific delivery. J Mater Chem B 2021; 9:8594-603.

[72]

Lin PJ, Tam YYC, Hafez I, Sandhu A, Chen S, Ciufolini MA, et al. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. Nanomed: Nanotechnol Biol Med 2013; 9:233-46.

[73]

Yu-Wai-Man C, Tagalakis AD, Manunta MD, Hart SL, Khaw PT. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Sci Rep 2016; 6:21881.

[74]

Nishina K, Unno T, Uno Y, Kubodera T, Kanouchi T, Mizusawa H, et al. Efficient in vivo delivery of siRNA to the liver by conjugation of a-tocopherol. Molecul Ther 2008; 16:734-40.

[75]

Santel A, Aleku M, Keil O, Endruschat J, Esche V, Fisch G, et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 2006; 13:1222-34.

[76]

Glass Z, Li Y, Xu Q. Nanoparticles for CRISPR-Cas9 delivery. Nat Biomed Eng 2017; 1:854-5.

[77]

Choy C, Lim LY, Chan LW, Cui Z, Mao S, Wong TW. Exploring intestinal surface receptors in oral nanoinsulin delivery. Pharmacol Rev 2022; 74:962-83.

[78]

Tao Y, Hou X, Zuo F, Li X, Pang Y, Jiang G. Application of nanoparticle-based siRNA and CRISPR/Cas9 delivery systems in gene-targeted therapy. Nanomedicine 2019; 14(5):511-14.

[79]

Zaiki Y, Lim LY, Wong TW. Critical material designs for mucus-and mucosa-penetrating oral insulin nanoparticle development. Int Mater Rev 2023; 68:121-39.

[80]

Cheng H, Zhang F, Ding Y. CRISPR/Cas 9 delivery system engineering for genome editing in therapeutic applications. Pharmaceutics 2021; 13:1649.

[81]

Kazemian P, Yu S-Y, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJ. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol Pharm 2022; 19:1669-86.

[82]

Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al.Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 2015; 33:73-80.

[83]

Shao J, Zaro J, Shen Y. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. Int J Nanomedicine 2020:9355-71.

[84]

Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Controlled Release 2017; 266:8-16.

[85]

Aghamiri S, Talaei S, Ghavidel AA, Zandsalimi F, Masoumi S, Hafshejani NH, et al. Nanoparticles-mediated CRISPR/Cas9 delivery: recent advances in cancer treatment. J Drug Deliv Sci Technol 2020; 56:101533.

[86]

Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-based delivery of CRISPR/Cas9 genome-editing therapeutics. AAPS J 2018; 20:1-22.

[87]

Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, et al. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-92.

[88]

Xu C, Lu Z, Luo Y, Liu Y, Cao Z, Shen S, et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat Commun 2018; 9:4092.

[89]

Chen Z, Liu F, Chen Y, Liu J, Wang X, Chen AT, et al. Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles. Adv Funct Mater 2017; 27:1703036.

[90]

Lin Y, Wu J, Gu W, Huang Y, Tong Z, Huang L, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas 9 system in MSCs. Adv Sci 2018; 5:1700611.

[91]

Luo YL, Xu CF, Li HJ, Cao ZT, Liu J, Wang J-L, et al. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 2018; 12:994-1005.

[92]

Zhang Z, Wan T, Chen Y, Chen Y, Sun H, Cao T, et al. Cationic polymer-mediated CRISPR/Cas9 plasmid delivery for genome editing. Macromol Rapid Commun 2019; 40:1800068.

[93]

Liu BY, He XY, Xu C, Xu L, Ai SL, Cheng SX, et al. A dual-targeting delivery system for effective genome editing and in situ detecting related protein expression in edited cells. Biomacromolecules 2018; 19:2957-68.

[94]

Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas 9 ribonucleoprotein complexes. Nat Commun 2017; 8:14261.

[95]

Kong J, Wang Y, Zhang J, Qi W, Su R, He Z. Rationally designed peptidyl virus-like particles enable targeted delivery of genetic cargo. Angewandte Chemie Int Edition 2018; 57:14032-6.

[96]

Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angewandte Chemie Int Edition 2018; 57:1491-6.

[97]

Sun W, Ji W, Hall JM, Hu Q Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angewandte Chemie 2015; 127:12197-201.

[98]

Rui Y, Wilson DR, Choi J, Varanasi M, Sanders K, Karlsson J, et al. Carboxylated branched poly ($\beta$-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas 9 gene editing. Sci Adv 2019;5:eaay3255.

[99]

Zhao X, Guo K, Zhang K, Ding X, Zhao N, Xu FJ. Degradable CRISPR/Cas9 nanosystem activated by NIR-II light targets genome editing of PD-L1 and metabolic modulation for enhanced antitumor immunity. Nano Today 2024; 55:102186.

[100]

Mout R, Ray M, Tonga GY, Lee YW, Tay T, Sasaki K, et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 2017; 11:2452.

[101]

Zhen S, Liu Y, Lu J, Tuo X, Yang X, Chen H, et al. Human papillomavirus oncogene manipulation using clustered regularly interspersed short palindromic repeats/Cas9 delivered by pH-sensitive cationic liposomes. Hum Gene Ther 2020; 31:309-24.

[102]

Tao Y, Yi K, Hu H, Shao D, Li M. Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. J Mater Chem B 2021; 9:94-100.

[103]

Ali G, Sharma M, Salama E-S, Ling Z, Li X. Applications of chitin and chitosan as natural biopolymer: potential sources, pretreatments, and degradation pathways. Biomass Conversion Biorefinery 2024; 14:4567-81.

[104]

Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, et al. Chitosan: an overview of its properties and applications. Polymers (Basel) 2021; 13:3256.

[105]

Chen DD, Wang ZB, Wang LX, Zhao P, Yun CH, Bai L. Structure, catalysis, chitin transport, and selective inhibition of chitin synthase. Nat Commun 2023; 14:4776.

[106]

Hasan S, Boddu VM, Viswanath DS, Ghosh TK. Preparation of chitin and chitosan. In: Roberts GAF, chitosan.editor. Chitin and Switzerland: Springer; 2022. p. 17-50.

[107]

Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, et al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 2020; 34:100914.

[108]

Hirano T, Shiraishi H, Ikejima M, Uehara R, Hakamata W, Nishio T. Chitin oligosaccharide deacetylase from Shewanella baltica ATCC BAA-1091. Biosci Biotechnol Biochem 2017; 81:547-50.

[109]

Iskandar A, Kim S-K, Wong TW. Drug-free" chitosan nanoparticles as therapeutic for cancer treatment. Polymer Rev 2024; 64(3):1-54.

[110]

Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243.

[111]

Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym 2018; 184:243-59.

[112]

Naveed M, Phil L, Sohail M, Hasnat M, Baig MMFA, Ihsan AU, et al. Chitosan oligosaccharide (COS): an overview. Int J Biol Macromol 2019; 129:827-43.

[113]

Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 2015; 13:5156-86.

[114]

Harugade A, Sherje AP, Pethe A. Chitosan: a review on properties, biological activities and recent progress in biomedical applications. Reactive Function Polymers 2023; 191:105634.

[115]

Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers (Basel) 2021; 13:1717.

[116]

Silva S, Fook M, Montazerian M, Barbosa F, Silva H. Composites based on chitosan and inorganic materials for biomedical applications. In: Belmontes FA, González FJ, López-Manchado , Green-based nanocomposite materials and applications. Switzerland: Springer; 2023. p. 119-39.

[117]

Bakshi PS, Selvakumar D, Kadirvelu K, Kumar N. Chitosan as an environment friendly biomaterial-a review on recent modifications and applications. Int J Biol Macromol 2020; 150:1072-83.

[118]

Khan A, Ali N, Malik S, Bilal M, Munir H, Ferreira LFR, et al. Chitosan-based green sorbents for toxic cations removal. In: Núñez-Delgado A, Sorbents materials for controlling environmental pollution. Elsevier; 2021. p. 323-52.

[119]

Gao K, Qin Y, Liu S, Wang L, Xing R, Yu H, et al. A review of the preparation, derivatization and functions of glucosamine and N -acetyl-glucosamine from chitin. Carbohydrate Polymer Technolog Application 2023; 5:100296.

[120]

Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, et al. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172.

[121]

Tan RSL, Hassandarvish P, Chee CF, Chan LW, Wong TW. Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500.

[122]

Ferreira LM, Dos Santos AM, Boni FI, Dos Santos KC, Robusti LMG, de Souza MP, et al. Design of chitosan-based particle systems: a review of the physicochemical foundations for tailored properties. Carbohydr Polym 2020; 250:116968.

[123]

Kim S. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci 2018; 2018:1708172.

[124]

Ding J, Guo Y. Recent advances in chitosan and its derivatives in cancer treatment. Front Pharmacol 2022; 13:888740.

[125]

Singh S, Sharma N, Shukla S, Behl T, Gupta S, Anwer MK, et al. Understanding the potential role of nanotechnology in liver fibrosis: a paradigm in therapeutics. Molecules 2023; 28:2811.

[126]

Ying Y, Hao W. Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review. Front Immunol 2023; 14:1147641.

[127]

Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. Int J Biol Macromol 2020; 164:2726-44.

[128]

Nakai K, Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? Int J Mol Sci 2021; 22:10799.

[129]

Chotphruethipong L, Chanvorachote P, Reudhabibadh R, Singh A, Benjakul S, Roytrakul S, et al. Chitooligosaccharide from Pacific white shrimp shell chitosan ameliorates inflammation and oxidative stress via NF- $\kappa$ b, Erk1/2, akt and Nrf2/HO-1 pathways in LPS-induced RAW264. 7 macrophage cells. Foods 2023; 12:2740.

[130]

Mao S, Wang B, Yue L, Xia W. Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym 2021; 262:117972.

[131]

Kumar S, Koh J, Kim H, Gupta M, Dutta P. A new chitosan-thymine conjugate: synthesis, characterization and biological activity. Int J Biol Macromol 2012; 50:493-502.

[132]

Li X, Wang J, Chen X, Tian J, Li L, Zhao M, et al. Effect of chitooligosaccharides on cyclin D1, bcl-xl and bcl-2 mRNA expression in A549 cells using quantitative PCR. Chinese Sci Bullet 2011; 56:1629-32.

[133]

Sharma VK, Liu X, Oyarzún DA, Abdel-Azeem AM, Atanasov AG, Hesham AE-L, et al. Microbial polysaccharides: an emerging family of natural biomaterials for cancer therapy and diagnostics. Semin Cancer Biol 2022; 86(part3):706-31.

[134]

Adhikari HS, Yadav PN. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater 2018; 2018:2952085.

[135]

Al-Nemrawi N, Hameedat F, Al-Husein B, Nimrawi S. Photolytic controlled release formulation of methotrexate loaded in chitosan/ TiO2 nanoparticles for breast cancer. Pharmaceuticals 2022; 15:149.

[136]

Ekinci M, Ilem-Ozdemir D, Gundogdu E, Asikoglu M. Methotrexate loaded chitosan nanoparticles: preparation, radiolabeling and in vitro evaluation for breast cancer diagnosis. J Drug Deliv Sci Technol 2015; 30:107-13.

[137]

Mikušová V, Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci 2021;22: 9652.

[138]

Rajashekaraiah R, Kumar PR, Prakash N, Rao GS, Devi VR, Metta M, et al. Anticancer efficacy of 6-thioguanine loaded chitosan nanoparticles with or without curcumin. Int J Biol Macromol 2020; 148:704-14.

[139]

Samy M, Abd El-Alim SH, Amin A, Ayoub MM. Formulation, characterization and in vitro release study of 5-fluorouracil loaded chitosan nanoparticles. Int J Biol Macromol 2020; 156:783-91.

[140]

Yu X, Hou J, Shi Y, Su C, Zhao L. Preparation and characterization of novel chitosan-protamine nanoparticles for nucleus-targeted anticancer drug delivery. Int J Nanomedicine 2016:6035-46.

[141]

Huang J, Xiao Z, An Y, Han S, Wu W, Wang Y, et al. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials 2021; 269:120636.

[142]

Yang S, Ren Z, Chen M, Wang Y, You B, Chen W, et al. Nucleolin-targeting AS1411-aptamer-modified graft polymeric micelle with dual pH/ redox sensitivity designed to enhance tumor therapy through the codelivery of doxorubicin/TLR4 siRNA and suppression of invasion. Mol Pharm 2018; 15:314-25.

[143]

Ramasamy T, Tran TH, Cho HJ, Kim JH, Kim YI, Jeon JY, et al. Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharm Res 2014; 31:1302-14.

[144]

Young CC, Vedadghavami A, Bajpayee AG. Bioelectricity for drug delivery: the promise of cationic therapeutics. Bioelectricity 2020; 2:68-81.

[145]

Joseph SM, Krishnamoorthy S, Paranthaman R, Moses J, Anandharamakrishnan C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technolog Applications 2021; 2:100036.

[146]

Amirkhanov R, Stepanov G. Systems of delivery of CRISPR/Cas9 ribonucleoprotein complexes for genome editing. Russ J Bioorganic Chem 2019; 45:431-7.

[147]

Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435.

[148]

Zhang H, Zhang Y, Williams RO III, Smyth HD. Development of PEGylated chitosan/CRISPR-Cas9 dry powders for pulmonary delivery via thin-film freeze-drying. Int J Pharm 2021; 605:120831.

[149]

Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res 2019; 52:1555-64.

[150]

Sahel DK, Vora LK, Saraswat A, Sharma S, Monpara J, D'Souza AA, et al. CRISPR/Cas9 genome editing for tissue-specific in vivo targeting: nanomaterials and translational perspective. Adv Sci 2023; 10:2207512.

[151]

Rouatbi N, McGlynn T, KT Al-Jamal. Pre-clinical non-viral vectors exploited for in vivo CRISPR/Cas9 gene editing: an overview. Biomater Sci 2022; 10:3410-32.

[152]

Li Q, Lv X, Tang C, Yin C. Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy. Carbohydr Polym 2022; 287:119315.

[153]

Srivastav A, Gupta K, Chakraborty D, Dandekar P, Jain R. Efficiency of chitosan-coated PLGA nanocarriers for cellular delivery of siRNA and CRISPR/Cas9 complex. J Pharm Innov 2020:1-14.

[154]

Zhang BC, Wu PY, Zou JJ, Jiang JL, Zhao RR, Luo BY, et al. Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect. Chem Eng J 2020; 393:124688.

[155]

He XY, Liu BY, Peng Y, Zhuo RX, Cheng SX. Multifunctional vector for delivery of genome editing plasmid targeting $\beta$-catenin to remodulate cancer cell properties. ACS Appl Mater Interfaces 2018; 11:226-37.

[156]

Khademi Z, Ramezani M, Alibolandi M, Zirak MR, Salmasi Z, Abnous K, et al. A novel dual-targeting delivery system for specific delivery of CRISPR/Cas9 using hyaluronic acid, chitosan and AS1411. Carbohydr Polym 2022; 292:119691.

[157]

Liu BY, He XY, Zhuo RX, Cheng SX. Tumor targeted genome editing mediated by a multi-functional gene vector for regulating cell behaviors. J Controlled Release 2018; 291:90-8.

[158]

Qiao J, Sun W, Lin S, Jin R, Ma L, Liu Y. Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan-coated red fluorescent protein. Chem Commun 2019; 55:4707-10.

[159]

Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Jajarmi V, et al. Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. J Nanostructure Chem 2021; 12:1-14.

[160]

Rabiee N, Bagherzadeh M, Tavakolizadeh M, Pourjavadi A, Atarod M, Webster TJ. Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. Int J Polymeric Mater Polymeric Biomater 2022; 71:116-26.

[161]

Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HD. PEGylated chitosan for nonviral aerosol and mucosal delivery of the CRISPR/Cas9 system in vitro. Mol Pharm 2018; 15:4814-26.

[162]

Lee M-H, Lin C-C, Thomas JL, Li JA, Lin HY. Cellular reprogramming with multigene activation by the delivery of CRISPR/dCas9 ribonucleoproteins via magnetic peptide-imprinted chitosan nanoparticles. Materials Today Bio 2021; 9:100091.

[163]

Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics 2021; 13:1686.

[164]

Aranda-Barradas ME, Trejo-López SE, Del Real A, Álvarez-Almazán S, Méndez-Albores A, García-Tovar CG, et al. Effect of molecular weight of chitosan on the physicochemical, morphological, and biological properties of polyplex nanoparticles intended for gene delivery. Carbohydrate Polymer Technolog Applications 2022; 4:100228.

[165]

Rahmani S, Hakimi S, Esmaeily A, Samadi FY, Mortazavian E, Nazari M, et al. Novel chitosan based nanoparticles as gene delivery systems to cancerous and noncancerous cells. Int J Pharm 2019; 560:306-14.

[166]

Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Controlled Release 2006; 115:216-25.

[167]

Santos-Carballal B, Fernández Fernández E, Goycoolea FM. Chitosan in non-viral gene delivery: role of structure, characterization methods, and insights in cancer and rare diseases therapies. Polymers (Basel) 2018; 10:444.

[168]

van den Berg AI, Yun C-O, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: approaching the clinic. J Controlled Release 2021; 331:121-41.

[169]

Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15:541-55.

[170]

Alameh M, Lavertu M, Tran-Khanh N, Chang CY, Lesage F, Bail M, et al. siRNA delivery with chitosan: influence of chitosan molecular weight, degree of deacetylation, and amine to phosphate ratio on in vitro silencing efficiency, hemocompatibility, biodistribution, and in vivo efficacy. Biomacromolecules 2018; 19:112-31.

[171]

Jiang F, Yin F, Lin Y, Xia W, Zhou L, Pan C, et al. The promotion of bone regeneration through CS/GP-CTH/antagomir-133a/b sustained release system. Nanomed Nanotechnol Biol Med 2020; 24:102116.

[172]

Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Controlled Release 2022; 352:970-93.

[173]

Ryu N, Kim MA, Park D, Lee B, Kim YR, Kim KH, et al. Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomed Nanotechnol Biol Med 2018; 14:2095-102.

[174]

Yang J, Luo GF. Peptide - based vectors for gene delivery. Chemistry (Easton) 2023; 5:1696-718.

[175]

Casper J, Nicolle L, Willimann M, Kuzucu , Tran A, Robin P, et al. Core-shell structured chitosan-polyethylenimine nanoparticles for gene delivery: improved stability, cellular uptake, and transfection efficiency. Macromol Biosci 2023; 23:2200314.

[176]

Sun P, Huang W, Kang L, Jin M, Fan B, Jin H, et al. siRNA-loaded poly (histidine-arginine) 6 -modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. Int J Nanomedicine 2017;12: 3221-3234.

[177]

Butt AM, Abdullah N, Rani NNIM, Ahmad N, Amin MCIM. Endosomal escape of bioactives deployed via nanocarriers: insights into the design of polymeric micelles. Pharm Res 2022; 39:1047-64.

[178]

Garcia BB, Mertins O, da Silva ER, Mathews PD, Han SW. Arginine-modified chitosan complexed with liposome systems for plasmid DNA delivery. Colloids Surfaces B: Biointerfaces 2020; 193:111131.

[179]

Zeng Y, Shen M, Pattipeiluhu R, Zhou X, Zhang Y, Bakkum T, et al. Efficient mRNA delivery using lipid nanoparticles modified with fusogenic coiled-coil peptides. Nanoscale 2023; 15:15206-18.

[180]

Alvarado-Kristensson M, Rosselló CA. The biology of the nuclear envelope and its implications in cancer biology. Int J Mol Sci 2019; 20:2586.

[181]

Saminathan A, Zajac M, Anees P, Krishnan Y. Organelle-level precision with next-generation targeting technologies. Na Rev Mater 2022; 7:355-71.

[182]

Ziegler A, Seelig J. High affinity of the cell-penetrating peptide HIV-1 Tat-PTD for DNA. Biochemistry 2007; 46:8138-45.

[183]

Esmaeili Y, Dabiri A, Mashayekhi F, Rahimmanesh I, Bidram E, Karbasi S, et al. Smart co-delivery of plasmid DNA and doxorubicin using MCM-chitosan-PEG polymerization functionalized with MUC-1 aptamer against breast cancer. Biomed Pharmacother 2024; 173:116465.

[184]

Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 2020; 12:298.

[185]

Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, et al. Nanotechnology-based delivery of CRISPR/Cas 9 for cancer treatment. Adv Drug Deliv Rev 2021; 176:113891.

[186]

Nguyen M-A, Wyatt H, Susser L, Geoffrion M, Rasheed A, Duchez A-C, et al. Delivery of microRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano 2019; 13:6491-505.

[187]

Sazali NB, Chan LW, Wong TW. Nano-enabled agglomerates and compact: design aspects of challenges. Asian J Pharmaceut Sci 2023; 18:100794.

[188]

Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 2017; 35:561-8.

[189]

Thakore PI, AM D'ippolito, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 2015; 12:1143-9.

PDF (1685KB)

104

Accesses

0

Citation

Detail

Sections
Recommended

/