Dual-responsive and NIR-triggered detachable nanoplatform for integrated thrombolytic and antiplatelet therapy
Huijuan Zhang , Zijun Qi , Chaoqun Wang , Yingmei Tian , Lin Hou
Asian Journal of Pharmaceutical Sciences ›› 2025, Vol. 20 ›› Issue (4) : 101035
Dual-responsive and NIR-triggered detachable nanoplatform for integrated thrombolytic and antiplatelet therapy
To develop an efficient thrombolytic therapy approach that addresses the limitations of current fibrinolytic drugs, such as short half-life, weak thrombus specificity and poor penetration ability, we constructed a NIR-triggered detachable nanoplatform (PA/UK@IcpLipo) using thin-film hydration method. It was designed to integrate attack and defense mechanisms for thrombolytic therapy. This platform can actively identify thrombi by binding to GPIIb-IIIa receptors overexpressed on activated platelets. Upon NIR laser activation and interaction with thrombin in the thrombotic microenvironment, the thermosensitive liposomes rupture, releasing the PA/UK core for deep penetration into the thrombus. Our results showed that the PA/UK@IcpLipo nanoplatform efficiently promoted rapid thrombolysis under the action of UK (attack), followed by PA exerting an antiplatelet aggregation effect (defense). This dual-action approach significantly improved vascular reperfusion rates. The NIR-triggered detachable nanoplatform offered a promising solution for enhanced thrombolysis efficiency and reduced bleeding risk, addressing critical limitations of current fibrinolytic therapies.
Thrombus targeting / Thermosensitive liposome / Controlled drug release / Penetration / Integrated attack and defense thrombolytic
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
/
| 〈 |
|
〉 |