Design of pH-responsive antimicrobial peptide melittin analog-camptothecin conjugates for tumor therapy

Sujie Huang , Yuxuan Gao , Ling Ma , Bo Jia , Wenhao Zhao , Yufan Yao , Wenyuan Li , Tongyi Lin , Rui Wang , Jingjing Song , Wei Zhang

Asian Journal of Pharmaceutical Sciences ›› 2024, Vol. 19 ›› Issue (1) : 100890

PDF (3542KB)
Asian Journal of Pharmaceutical Sciences ›› 2024, Vol. 19 ›› Issue (1) : 100890 DOI: 10.1016/j.ajps.2024.100890
Research Article

Design of pH-responsive antimicrobial peptide melittin analog-camptothecin conjugates for tumor therapy

Author information +
History +
PDF (3542KB)

Abstract

Melittin, a classical antimicrobial peptide, is a highly potent antitumor agent. However, its significant toxicity seriously hampers its application in tumor therapy. In this study, we developed novel melittin analogs with pH-responsive, cell-penetrating and membrane-lytic activities by replacing arginine and lysine with histidine. After conjugation with camptothecin (CPT), CPT-AAM-1 and CPT-AAM-2 were capable of killing tumor cells by releasing CPT at low concentrations and disrupting cell membranes at high concentrations under acidic conditions. Notably, we found that the C-terminus of the melittin analogs was more suitable for drug conjugation than the N-terminus. CPT-AAM-1 significantly suppressed melanoma growth in vivo with relatively low toxicity. Collectively, the present study demonstrates that the development of antitumor drugs based on pH-responsive antimicrobial peptide-drug conjugates is a promising strategy.

Graphical abstract

Keywords

Antimicrobial peptide / Peptide-drug conjugate / Cell-penetrating activity / Membrane disruption / Antitumor activity

Cite this article

Download citation ▾
Sujie Huang, Yuxuan Gao, Ling Ma, Bo Jia, Wenhao Zhao, Yufan Yao, Wenyuan Li, Tongyi Lin, Rui Wang, Jingjing Song, Wei Zhang. Design of pH-responsive antimicrobial peptide melittin analog-camptothecin conjugates for tumor therapy. Asian Journal of Pharmaceutical Sciences, 2024, 19(1): 100890 DOI:10.1016/j.ajps.2024.100890

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (Nos. 81773566 and 21602092), Innovation Project of Medicine and Health Science and Technology of Chinese Academy of Medical Sciences (2019-I2M-5-074), the Funds for Fundamental Research Creative Groups of Gansu Province (No. 20JR5RA310), the Fundamental Research Funds for the Central Universities (No. lzujbky-2021-38).

null

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ajps.2024.100890.

References

[1]

Singh M, Overwijk WW. Intratumoral immunotherapy for melanoma. Cancer Immunol Immunother 2015; 64(7):911-21.

[2]

Dharmadhikari N, Mehnert JM, Kaufman HL. Oncolytic virus immunotherapy for melanoma. Curr Treat Options Oncol 2015; 16(3):326.

[3]

Ylosmaki E, Cerullo V. Design and application of oncolytic viruses for cancer immunotherapy. Curr Opin Biotechnol 2020;65:25-36.

[4]

Vitale I, Yamazaki T, Wennerberg E, Sveinbjornsson B, Rekdal O, Demaria S, et al. Targeting cancer heterogeneity with immune responses driven by oncolytic peptides. Trends Cancer 2021; 7(6):557-72.

[5]

Gajski G, Garaj-Vrhovac V. Melittin: a lytic peptide with anticancer properties. Environ Toxicol Pharmacol 2013; 36(2):697-705.

[6]

Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, Sun LS, et al. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol 2021;193:114769.

[7]

Zhou J, Wan C, Cheng J, Huang H, Lovell JF, Jin HL. Delivery strategies for melittin-based cancer therapy. ACS Appl Mater Interfaces 2021; 13(15):17158-73.

[8]

Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 2017;402:16-31.

[9]

Kohno M, Horibe T, Ohara K, Ito S, Kawakami K. The membrane-lytic peptides K8L9 and melittin enter cancer cells via receptor endocytosis following subcytotoxic exposure Chem Biol 2014; 21(11):1522-32.

[10]

Kiss E, Gyulai G, Pari E, Horvati K, Bosze S. Membrane affinity and fluorescent labelling: comparative study of monolayer interaction, cellular uptake and cytotoxicity profile of carboxyfluorescein-conjugated cationic peptides. Amino Acids 2018; 50(11):1557-71.

[11]

Luo L, Wu W, Sun D, Dai HB, Wang Y, Zhong Y, et al. Acid-activated melittin for targeted and safe antitumor therapy. Bioconjug Chem 2018; 29(9):2936-44.

[12]

Zhang W, Song J, Liang R, Zheng X, Chen J, Li G, et al. Stearylated antimicrobial peptide melittin and its retro isomer for efficient gene transfection. Bioconjug Chem 2013; 24(11):1805-12.

[13]

de Jong H, Bonger KM, Lowik D. Activatable cell-penetrating peptides: 15 years of research RSC Chem Biol 2020; 1(4):192-203.

[14]

Raucher D, Ryu JS. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 2015; 21(9):560-70.

[15]

Makovitzki A, Fink A, Shai Y. Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides. Cancer Res 2009; 69(8):3458-63.

[16]

Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 2017; 74(20):3809-25.

[17]

Wakabayashi N, Yano Y, Kawano K, Matsuzaki K. A pH-dependent charge reversal peptide for cancer targeting. Eur Biophys J 2017; 46(2):121-7.

[18]

Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: a versatile vector for co-delivery of drug and genes in cancer. J Control Release 2021;330:1220-8.

[19]

Song J, Zhang W, Kai M, Chen J, Liang R, Zheng X, et al. Design of an acid-activated antimicrobial peptide for tumor therapy. Mol Pharm 2013; 10(8):2934-41.

[20]

Huang S, Zhu Z, Jia B, Zhang W, Song J. Design of acid-activated cell-penetrating peptides with nuclear localization capacity for anticancer drug delivery. J Pept Sci 2021; 27(10):e3354.

[21]

Chang LL, Bao HX, Yao J, Liu H, Gou SH, Zhong C, et al. New designed pH-responsive histidine-rich peptides with antitumor activity. J Drug Target 2021; 29(6):651-9.

[22]

Regberg J, Vasconcelos L, Madani F, Langel U, Hallbrink M. pH-responsive PepFect cell-penetrating peptides. Int J Pharm 2016; 501(1-2):32-8.

[23]

Nam SH, Jang J, Cheon DH, Chong SE, Ahn JH, Hyun S, et al. pH-Activatable cell penetrating peptide dimers for potent delivery of anticancer drug to triple-negative breast cancer. J Control Release 2021;330:898-906.

[24]

Zhang W, Song J, Zhang B, Liu L, Wang K, Wang R. Design of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells. Bioconjug Chem 2011; 22(7):1410-15.

[25]

Ji K, Xiao Y, Zhang W. Acid-activated nonviral peptide vector for gene delivery. J Pept Sci 2020; 26(1):e3230.

[26]

Henne WA, Doorneweerd DD, Hilgenbrink AR, Kularatne SA, Low PS. Synthesis and activity of a folate peptide camptothecin prodrug. Bioorg Med Chem Lett 2006; 16(20):5350-5.

[27]

Song JJ, Kai M, Zhang W, Zhang JD, Liu LW, Zhang BZ, et al. Cellular uptake of transportan 10 and its analogs in live cells: selectivity and structure-activity relationship studies. Peptides 2011; 32(9):1934-41.

[28]

Song JJ, Zhang Y, Zhang W, Chen JB, Yang XL, Ma PP, et al. Cell penetrating peptide TAT can kill cancer cells via membrane disruption after attachment of camptothecin. Peptides 2015;63:143-9.

[29]

Soomets U, Lindgren M, Gallet X, Hallbrink M, Elmquist A, Balaspiri L, et al. Deletion analogues of transportan. Biochim Biophys Acta 2000; 1467(1):165-76.

[30]

Ramsey JD, Flynn NH. Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther 2015;154:78-86.

[31]

Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 2017; 38(4):406-24.

[32]

Hou KK, Pan H, Schlesinger PH, Wickline SA. A role for peptides in overcoming endosomal entrapment in siRNA delivery - a focus on melittin. Biotechnol Adv 2015; 33(6):931-40.

[33]

Lo SL, Wang S. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 2008; 29(15):2408-14.

[34]

Neundorf I, Rennert R, Hoyer J, Schramm F, Lobner K, Kitanovic I, et al. Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals 2009; 2(2):49-65.

[35]

Salomone F, Cardarelli F, Di Luca M, Boccardi C, Nifosi R, Bardi G, et al. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J Control Release 2012; 163(3):293-303.

[36]

Morais CM, Cardoso AM, Aguiar L, Vale N, Nobrega C, Zuzarte M, et al. Lauroylated histidine-enriched S413-PV peptide as an efficient gene silencing mediator in cancer cells. Pharm Res 2020; 37(10):188.

[37]

Zhou JQ, Li YY, Huang WL, Shi W, Qian H. Source and exploration of the peptides used to construct peptide-drug conjugates. Eur J Med Chem 2021;224.

[38]

Vargas JR, Stanzl EG, Teng NN, Wender PA. Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance. Mol Pharm 2014; 11(8):2553-65.

[39]

Dissanayake S, Denny WA, Gamage S, Sarojini V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release 2017;250:62-76.

[40]

Denison TA, Bae YH. Tumor heterogeneity and its implication for drug delivery. J Control Release 2012; 164(2):187-91.

[41]

Jiang TY, Zhang ZH, Zhang YL, Lv HX, Zhou JP, Li CC, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials 2012; 33(36):9246-58.

[42]

Krauson AJ, Hall OM, Fuselier T, Starr CG, Kauffman WB, Wimley WC. Conformational fine-tuning of pore-forming peptide potency and selectivity. J Am Chem Soc 2015; 137(51):16144-52.

[43]

Stefanis L, Park DS, Friedman WJ, Greene LA. Caspase-dependent and -independent death of camptothecin-treated embryonic cortical neurons. J Neurosci 1999; 19(15):6235-47.

[44]

Nadal-Bufí F, Henriques ST. How to overcome endosomal entrapment of cell-penetrating peptides to release the therapeutic potential of peptides? Peptide Science 2020; 112(6):e24168.

AI Summary AI Mindmap
PDF (3542KB)

677

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/