Spatiotemporal transformable nano-assembly for on-demand drug delivery to enhance anti-tumor immunotherapy

Chenglin Liang , Ge Zhang , Linlin Guo , Xinyi Ding , Heng Yang , Hongling Zhang , Zhenzhong Zhang , Lin Hou

Asian Journal of Pharmaceutical Sciences ›› 2024, Vol. 19 ›› Issue (1) : 100888

PDF (6916KB)
Asian Journal of Pharmaceutical Sciences ›› 2024, Vol. 19 ›› Issue (1) : 100888 DOI: 10.1016/j.ajps.2024.100888
Research Article

Spatiotemporal transformable nano-assembly for on-demand drug delivery to enhance anti-tumor immunotherapy

Author information +
History +
PDF (6916KB)

Abstract

Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy, but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration. Herein, we designed a cancer-associated fibroblasts (CAFs) triggered structure-transformable nano-assembly (HSD-P@V), which can directionally deliver valsartan (Val, CAFs regulator) and doxorubicin (DOX, senescence inducer) to the specific targets. In detail, DOX is conjugated with hyaluronic acid (HA) via diselenide bonds (Se-Se) to form HSD micelles, while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer, which is coated on Val nanocrystals (VNs) surface for improving the stability and achieving responsive release. Once arriving at tumor microenvironment and touching CAFs, HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment. VNs can degrade the extracellular matrix, leading to the enhanced penetration of HSD. HSD targets tumor cells, releases DOX to induce senescence, and recruits effector immune cells. Furthermore, senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy. In vitro and in vivo results show that the nano-assembly remarkably inhibits tumor growth as well as lung metastasis, and extends tumor-bearing mice survival. This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.

Graphical abstract

Keywords

Cells senescence / Tumor stroma / Structure transformable / Programmed delivery / Anti-tumor immunotherapy

Cite this article

Download citation ▾
Chenglin Liang, Ge Zhang, Linlin Guo, Xinyi Ding, Heng Yang, Hongling Zhang, Zhenzhong Zhang, Lin Hou. Spatiotemporal transformable nano-assembly for on-demand drug delivery to enhance anti-tumor immunotherapy. Asian Journal of Pharmaceutical Sciences, 2024, 19(1): 100888 DOI:10.1016/j.ajps.2024.100888

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

This research was supported by National Natural Science Foundation of China (81972893, 82172719), Natural Science Foundation of Henan (212300410071), Training program for young key teachers in Henan Province (2020GGJS019).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ajps.2024.100888.

References

[1]

Wang LQ, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer 2022; 22(6):340-55.

[2]

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell 2019; 179(4):813-27.

[3]

Rao SG, Jackson JG. SASP: tumor suppressor or promoter? yes!. Trends Cancer 2016; 2(11):676-87.

[4]

Schmitt CA, Wang B, Demaria M. Senescence and cancer-role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19(10):619-36.

[5]

Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 2019; 19(8):439-53.

[6]

Kansara M, Leong HS, Lin DM, Popkiss S, Pang P, Garsed DW, et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J Clin Investig 2013; 123(12):5351-60.

[7]

Liu HX, Zhao HF, Sun Y. Tumor microenvironment and cellular senescence: understanding therapeutic resistance and harnessing strategies. Semin Cancer Biol 2022; 86(Pt 3):769-81.

[8]

Eggert T, Wolter K, Ji JL, Ma C, Yevsa T, Klotz S, et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 2016; 30(4):533-47.

[9]

Borrelli C, Ricci B, Vulpis E, Fionda C, Ricciardi MR, Petrucci MT, et al. Drug-induced senescent multiple myeloma cells elicit NK cell proliferation by direct or exosome-mediated IL15 trans-presentation. Cancer Immunol Res 2018; 6(7):860-9.

[10]

Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Rmili CW, Kiialainen A, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med 2017; 9(385) eaak9670.

[11]

Ruscetti M, Leibold J, Bott MJ. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 2018; 362(6421):1416-22.

[12]

Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers 2020; 12(8):2134.

[13]

Estepa-Fernández A, García-Fernández A, Lérida-Viso A, Morellá-Aucejo A, Esteve-Moreno JJ, Blandez JF, et al. Engineering nanoparticle communication in living systems by stigmergy: an application to enhance antitumor therapy in triple-negative breast cancer. Nano Today 2023;48.

[14]

Irene G, Beatriz LT, Mónica S, María A, Andrea B, Viviana B, et al. Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanosenolytic. J Control Release 2020:323624-34.

[15]

Hsu CH, Altschuler SJ, Wu LF. Patterns of early p21 dynamics determine proliferation-senescence cell fate after chemotherapy. Cell 2019; 178(2) 361-73 e12.

[16]

Zhao BH, Wu B, Feng N, Zhang X, Zhang X, Wei YP, et al. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16(1):28.

[17]

Li X, Yong TY, Wei ZH, Bie NN, Zhang XQ, Zhan GT, et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat Commun 2022; 13(1):2794.

[18]

Liu HQ, Shi Y, Qian F. Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Adv Drug Deliv Rev 2021:17237-51.

[19]

Hou L, Chen DD, Wang RT, Wang RB, Zhang HJ, Zhang ZZ, et al. Transformable honeycomb-like nanoassemblies of carbon dots for regulated multisite delivery and enhanced antitumor chemoimmunotherapy. Angew Chem Int Ed Engl 2021; 60(12):6581-92.

[20]

Chhabra Y, Weeraratna AT. Fibroblasts in cancer: unity in heterogeneity. Cell 2023; 186(8):1580-609.

[21]

Liu SJ, Ren J, Dijke PT. Targeting TGF-β signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6(1):8.

[22]

Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGF-β. Nat Rev Immunol 2010; 10(8):554-67.

[23]

Qiang L, Hoffman MT, Ali LR, Castillo JI, Kageler L, Temesgen A, et al. Transforming growth factor-β blockade in pancreatic cancer enhances sensitivity to combination chemotherapy. Gastroenterology 2023; 165(4):874-90.

[24]

Miao L, Liu Q, Lin CM, Luo C, Wang YH, Liu LN, et al. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res 2017; 77(3):719-31.

[25]

Liu J, He DS, Hao TJ, Hu YM, Zhao Y, Li Z, et al. Gold mineralized “hybrid nanozyme bomb” for NIR-II triggered tumor effective permeation and cocktail therapy. Chin Chem Lett 2023:109296.

[26]

Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 2013:42516.

[27]

Pallasch FB, Schumacher U. Angiotensin inhibition, TGF-β and EMT in cancer. Cancers 2020; 12(10):2785.

[28]

Sreeharsha N, Naveen NR, Anitha P, Goudanavar PS, Ramkanth S, Fattepur S, et al. Development of nanocrystal compressed minitablets for chronotherapeutic drug delivery. Pharmaceuticals 2022; 15(3):311.

[29]

Sood J, Sapra B, Tiwary AK. Microemulsion transdermal formulation for simultaneous delivery of valsartan and nifedipine: formulation by design. AAPS PharmSciTech 2017; 18(6):1901-16.

[30]

Kumar A, Ramisetty KA, Bordignon S, Hodnett BK, Davern P, Hudson S. Preparation, stabilisation, isolation and tableting of valsartan nanoparticles using a semi-continuous carrier particle mediated process. Int J Pharm 2021;597:120199.

[31]

Ji P, Wang L, Chen YW, Wang SQ, Wu ZH, Qi XL. Hyaluronic acid hydrophilic surface rehabilitating curcumin nanocrystals for targeted breast cancer treatment with prolonged biodistribution. Biomater Sci 2020; 8(1):462-72.

[32]

Park JY, Sun B, Yeo Y. Albumin-coated nanocrystals for carrier-free delivery of paclitaxel. J Control Release 2017;263:90-101.

[33]

Fuhrmann K, Pozomska A, Aeberli C, Castagner B, Gauthier MA, Leroux JC. Modular design of redox-responsive stabilizers for nanocrystals. ACS Nano 2013; 7(9):8243-50.

[34]

Xu CR, He W, Lv YQ, Qin C, Shen LJ, Yin LF. Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Int J Pharm 2015; 493(1-2):172-81.

[35]

Liu ZN, Ji P, Liu HZ, Yu LL, Zhang SM, Liu P, et al. FNIII14 peptide-enriched membrane nanocarrier to disrupt stromal barriers through reversing CAFs for augmenting drug penetration in tumors. Nano Lett 2023; 23(21):9963-71.

[36]

Wang C, Yu H, Yang XH, Zhang XB, Wang YQ, Gu TR, et al. Elaborately engineering of a dual-drug co-assembled nanomedicine for boosting immunogenic cell death and enhancing triple negative breast cancer treatment. Asian J Pharm Sci 2022; 17(3):412-24.

[37]

Huang Y, Lin Y, Li BW, Zhang F, Zhan CY, Xie X, et al. Combination therapy to overcome ferroptosis resistance by biomimetic self-assembly nano-prodrug. Asian J Pharm Sci 2023; 18(5):100844.

[38]

Zhao XX, Li LL, Zhao Y, An HW, Cai Q, Lang JY, et al. In situ self-assembled nanofibers precisely target cancer-associated fibroblasts for improved tumor imaging. Angew Chem Int Ed Engl 2019; 58(43):15287-94.

[39]

Ji TJ, Zhao Y, Ding YP, Wang J, Zhao RF, Lang JY, et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer-associated fibroblast activation. Angew Chem Int Ed Engl 2016; 55(3):1050-5.

[40]

Xue YN, Xia XY, Yu B, Tao LJ, Wang Q, Huang SW, et al. Selenylsulfide bond-launched reduction-responsive superparamagnetic nanogel combined of acid-responsiveness for achievement of efficient therapy with low side effect. ACS Appl Mater Interfaces 2017; 9(36):30253-7.

[41]

Liu Q, Chen FQ, Hou L, Shen LM, Zhang XQ, Wang DG, et al. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. ACS Nano 2018; 12(8):7812-25.

[42]

Miao XQ, Yang WW, Feng T, Lin J, Huang P. Drug nanocrystals for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(3):e1499.

[43]

Wang LQ, Oliveira RLD, Wang C, Fernandes Neto JM, Mainardi S, Evers B, et al. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Rep 2017; 21(3):773-83.

[44]

Qu AH, Wu XL, Li S, Sun MZ, Xu LG, Kuang H, et al. An NIR-responsive DNA-mediated nanotetrahedron enhances the clearance of senescent cells. Adv Mater 2020; 32(14):e2000184.

[45]

Fecteau JF, Messmer D, Zhang S, Cui B, Chen L, Kipps TJ. In vitro propagation of mesenchymal stromal cells from marrow aspirates of patients with chronic lymphocytic leukemia is dependent upon physiologic oxygen tension. Blood 2011; 118(21):2839.

[46]

Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39(6):759-78.

[47]

Chou PC, Chuang TF, Jan TR, Gion HC, Huang YC, Lei HJ, et al. Effects of immunotherapy of IL-6 and IL-15 plasmids on transmissible venereal tumor in beagles. Vet Immunol Immunopathol 2009; 130(1-2):25-34.

[48]

Chibaya 1 L, Murphy KC, DeMarco KD, Gopalan S, Liu HB, Parikh CN, et al. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. Nat Cancer 2023; 4(6):872-92.

[49]

Qian L, Zhang Y, Pan XY, Ji MC, Gong WJ, Tian F. IL-15, in synergy with RAE-1ɛ stimulates TCR-independent proliferation and activation of CD8+ T cells Oncol Lett 2012; 3(2):472-6.

[50]

Ruscetti M, Morris JP, Mezzadra R, Russell J, Leibold J, Romesser PB, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 2020; 181(2) 424-41 e21.

[51]

Martina S, Nicolò R, Ece K, Antonino C, Céline Wyser R, Anna K, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med 2017; 9(385):eaak9670.

AI Summary AI Mindmap
PDF (6916KB)

453

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/