Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers

Xumei Ouyang , Yu Liu , Ke Zheng , Zhiqing Pang , Shaojun Peng

Asian Journal of Pharmaceutical Sciences ›› 2024, Vol. 19 ›› Issue (1) : 100883

PDF (5500KB)
Asian Journal of Pharmaceutical Sciences ›› 2024, Vol. 19 ›› Issue (1) : 100883 DOI: 10.1016/j.ajps.2023.100883
Review Article

Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers

Author information +
History +
PDF (5500KB)

Abstract

Nanoscale drug delivery systems (nDDS) have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects. Although several nDDS have been successfully approved for clinical use up to now, biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment. Polyethylene glycol (PEG)-modification (or PEGylation) has been regarded as the gold standard for stabilising nDDS in complex biological environment. However, the accelerated blood clearance (ABC) of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications. Zwitterionic polymer, a novel family of anti-fouling materials, have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility. Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues. More impressively, zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution, pressure gradients, impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications. The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS, which could facilitate their better clinical translation. Herein, we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlying mechanisms. Finally, prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.

Graphical abstract

The scheme of zwitterionic nanoscale drug delivery system (nDDS) to overcome multiple biological barriers including mononuclear phagocytic system (MPS) barrier, organs barrier, interstitial fluid pressure (IFP), cytomembrane barrier and lysosome barrier.

Keywords

Zwitterionic polymer / Nano drug delivery system / Biological barrier / Targeting delivery / Disease treatment

Cite this article

Download citation ▾
Xumei Ouyang, Yu Liu, Ke Zheng, Zhiqing Pang, Shaojun Peng. Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers. Asian Journal of Pharmaceutical Sciences, 2024, 19(1): 100883 DOI:10.1016/j.ajps.2023.100883

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (grant no. 8217070298 ), Guangdong Basic and Applied Basic Research Foundation (grant no. 2020A1515110770, 2021A1515220011, 2022A1515010335 ).

References

[1]

Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, et al. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater 2022; 7(7):557-74.

[2]

Kong XY, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. Nano Today 2021;36:101004.

[3]

Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-1323.

[4]

Hu QY, Sun WJ, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev 2016;98:19-34.

[5]

Bae YH, Park K. Advanced drug delivery 2020 and beyond: perspectives on the future Adv Drug Deliv Rev 2020;158:4-16.

[6]

Liu R, Luo C, Pang ZQ, Zhang JM, Ruan SB, Wu MY, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chem Lett 2023; 34(2):107518.

[7]

Wong KH, Yang D, Chen S, He C, Chen M. Development of nanoscale drug delivery systems of dihydroartemisinin for cancer therapy: a review. Asian J Pharm Sci 2022; 17(4):475-90.

[8]

Yu WQ, Liu R, Zhou Y, Gao HL. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent Sci 2020; 6(2):100-16.

[9]

He QY, Chen J, Yan JH, Cai SD, Xiong HJ, Liu YF, et al. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020; 15(4):416-48.

[10]

Zhang HY, Dong JS, Li ZM, Feng XR, Xu WG, Tulinao CMS, et al. Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian J Pharm Sci 2020; 15(4):397-415.

[11]

Xiao HH, Yan LS, Dempsey EM, Song WT, Qi RG, Li WL, et al. Recent progress in polymer-based platinum drug delivery systems. Prog Polym Sci 2018;87:70-106.

[12]

Park H, Otte A, Park K. Evolution of drug delivery systems: from 1950 to 2020 and beyond J Control Release 2022;342:53-65.

[13]

Peng SJ, Xiao FF, Chen M, Gao HL. Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy. Adv Sci 2022; 9(1):2103836.

[14]

Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 2013; 369(9): 819-829.

[15]

Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1):11-21.

[16]

Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, et al. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021;38:101142.

[17]

Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, et al. mRNA vaccines for COVID-19 and diverse diseases. J Control Release 2022;345:314-33.

[18]

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9):941-51.

[19]

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2):101-24.

[20]

Kim SM, Faix PH, Schnitzer JE. Overcoming key biological barriers to cancer drug delivery and efficacy. J Control Release 2017;267:15-30.

[21]

Jin Q, Deng YY, Chen XH, Ji J. Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano 2019; 13(2):954-77.

[22]

Wan MM, Chen H, Da Wang Z, Liu ZY, Yu YQ, Li L, et al. Nitric oxide-driven nanomotor for deep tissue penetration and multidrug resistance reversal in cancer therapy. Adv Sci 2021; 8(3):2002525.

[23]

Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives Angew Chem Int Ed Engl 2010; 49(36):6288-308.

[24]

Wang JL, Du XJ, Yang JX, Shen S, Li HJ, Luo YL, et al. The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials 2018;182:104-13.

[25]

Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A. PEG-a versatile conjugating ligand for drugs and drug delivery systems. J Control Release 2014;192:67-81.

[26]

Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release 2017;260:46-60.

[27]

Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release 2013; 172(1):38-47.

[28]

Zhang P, Sun F, Liu SJ, Jiang SY. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release 2016;244:184-93.

[29]

Cao ZQ, Jiang SY. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 2012; 7(5):404-13.

[30]

Liu SJ, Jiang SY. Zwitterionic polymer-protein conjugates reduce polymer-specific antibody response. Nano Today 2016; 11(3):285-91.

[31]

Shao Q, Jiang SY. Molecular understanding and design of zwitterionic materials. Adv Mater 2015; 27(1):15-26.

[32]

Xie RH, Yang P, Peng SJ, Cao YB, Yao XX, Guo SD, et al. A phosphorylcholine-based zwitterionic copolymer coated ZIF-8 nanodrug with a long circulation time and charged conversion for enhanced chemotherapy. J Mater Chem B 2020; 8(28):6128-38.

[33]

Yao XX, Ma SP, Peng SJ, Zhou GX, Xie RH, Jiang Q, et al. Zwitterionic polymer coating of sulfur dioxide-releasing nanosystem augments tumor accumulation and treatment efficacy. Adv Healthc Mater 2020; 9(5):1901582.

[34]

Qian HL, Wang K, Lv MT, Zhao CS, Wang H, Wen SC, et al. Recent advances on next generation of polyzwitterion-based nano-vectors for targeted drug delivery. J Control Release 2022;343:492-505.

[35]

Li QS, Wen CY, Yang J, Zhou XC, Zhu YN, Zheng J, et al. Zwitterionic biomaterials. Chem Rev 2022; 122(23):17073-154.

[36]

Zhang M, Yu P, Xie J, Li JS. Recent advances of zwitterionic-based topological polymers for biomedical applications. J Mater Chem B 2022; 10(14):2338-56.

[37]

Zhang M, Peng X, Ding Y, Ke X, Ren K, Xin QW, et al. A cyclic brush zwitterionic polymer based pH-responsive nanocarrier-mediated dual drug delivery system with lubrication maintenance for osteoarthritis treatment. Mater Horiz 2023;10:2554-67.

[38]

Sun QH, Zhou ZX, Qiu NS, Shen YQ. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater 2017; 29(14):1606628.

[39]

Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater 2021; 6(4):351-70.

[40]

She DJ, Huang HH, Li JM, Peng SJ, Wang H, Yu XR. Hypoxia-degradable zwitterionic phosphorylcholine drug nanogel for enhanced drug delivery to glioblastoma. Chem Eng J 2021;408:127359.

[41]

Jackson MA, Werfel TA, Curvino EJ, Yu F, Kavanaugh TE, Sarett SM, et al. Zwitterionic nanocarrier surface chemistry improves siRNA tumor delivery and silencing activity relative to polyethylene glycol. ACS Nano 2017; 11(6):5680-96.

[42]

Yuan YY, Mao CQ, Du XJ, Du JZ, Wang F, Wang J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv Mater 2012; 24(40):5476-80.

[43]

Chen Y, Tan JB, Zhang Q, Xin T, Yu YL, Nie Y, et al. Artificial organelles based on cross-linked zwitterionic vesicles. Nano Lett 2020; 20(9):6548-55.

[44]

Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020;167:89-108.

[45]

Zhou Y, Chen XC, Cao J, Gao HL. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mater Chem B 2020; 8(31):6765-81.

[46]

Tang YX, Wang XY, Li J, Nie Y, Liao GJ, Yu Y, et al. Overcoming the reticuloendothelial system barrier to drug delivery with a “Don’t-Eat-Us”strategy. ACS Nano 2019; 13(11):13015-26.

[47]

Liu YK, Zhao ZH, Li M. Overcoming the cellular barriers and beyond: recent progress on cell penetrating peptide modified nanomedicine in combating physiological and pathological barriers. Asian J Pharm Sci 2022; 17(4):523-43.

[48]

Bai S, Zhang Y, Li DF, Shi XX, Lin G, Liu G. Gain an advantage from both sides: smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration. Nano Today 2021;36:101038.

[49]

Ruan SB, Zhou Y, Jiang XG, Gao HL. Rethinking CRITID procedure of brain targeting drug delivery: circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci 2021; 8(9):2004025.

[50]

El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 2018; 12(11):10636-64.

[51]

Lazarovits J, Chen YY, Sykes EA, Chan WC. Nanoparticle-blood interactions: the implications on solid tumour targeting. ChemComm 2015; 51(14):2756-67.

[52]

Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013; 8(10):772-81.

[53]

Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009; 8(7): 543-557.

[54]

Oh JY, Kim HS, Palanikumar L, Go EM, Jana B, Park SA, et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat Commun 2018; 9(1):4548.

[55]

Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003; 2(3):214-21.

[56]

Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108(27):10980-5.

[57]

Asha AB, Chen Y, Narain R. Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chem Soc Rev 2021; 50(20):11668-83.

[58]

Zhao CS, Wen SC, Pan JF, Wang K, Ji YC, Huang DC, et al. Robust construction of supersmall zwitterionic micelles based on hyperbranched polycarbonates mediates high tumor accumulation. ACS Appl Mater Interfaces 2023; 15(2):2725-36.

[59]

Ngo W, Ahmed S, Blackadar C, Bussin B, Ji Q, Mladjenovic SM, et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev 2022;185:114238.

[60]

Hu B, Li B, Li K, Liu YY, Li CH, Zheng LL, et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Sci Adv 2022; 8(7):eabm1418.

[61]

Qiu M, Tang Y, Chen JJ, Muriph R, Ye ZF, Huang CF, et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA 2022; 119(8):e2116271119.

[62]

Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol 2020; 15(4):313-20.

[63]

Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci USA 2021; 118(52):e2109256118.

[64]

Khawar IA, Kim JH, Kuh HJ. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 2015;201:78-89.

[65]

Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2022;341:227-46.

[66]

Hu J, Yuan XW, Wang F, Gao HL, Liu XL, Zhang W. The progress and perspective of strategies to improve tumor penetration of nanomedicines. Chinese Chem Lett 2021; 32(4):1341-7.

[67]

Shen RY, Peng LJ, Zhou WT, Wang D, Jiang Q, Ji J, et al. Anti-angiogenic nano-delivery system promotes tumor vascular normalizing and micro-environment reprogramming in solid tumor. J Control Release 2022;349:550-64.

[68]

Zinger A, Koren L, Adir O, Poley M, Alyan M, Yaari Z, et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 2019; 13(10):11008-21.

[69]

Wang L, Jiang W, Su YH, Zhan MX, Peng SJ, Liu H, et al. Self-splittable transcytosis nanoraspberry for NIR-II photo-immunometabolic cancer therapy in deep tumor tissue. Adv Sci 2022; 9(32):e2204067.

[70]

Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol 2015;1266:29-53.

[71]

Peng SJ, Men YZ, Xie RH, Tian YF, Yang WL. Biodegradable phosphorylcholine-based zwitterionic polymer nanogels with smart charge-conversion ability for efficient inhibition of tumor cells. J Colloid Interface Sci 2019;539:19-29.

[72]

Li Y, Yang HY, Thambi T, Park JH, Lee DS. Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials 2019;217:119299.

[73]

Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021;296:102509.

[74]

Pei DH, Buyanova M. Overcoming endosomal entrapment in drug delivery. Bioconjug Chem 2019; 30(2):273-83.

[75]

Ma D. Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale 2014; 6(12): 6415-6425.

[76]

Shete HK, Prabhu RH, Patravale VB. Endosomal escape: a bottleneck in intracellular delivery. J Nanosci Nanotechnol 2014; 14(1):460-74.

[77]

Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release 2011; 151(3):220-8.

[78]

Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 2012;64:290-301.

[79]

Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 2021; 17(12):e2006484.

[80]

Ge CC, Tian J, Zhao YL, Chen CY, Zhou RH, Chai ZF. Towards understanding of nanoparticle-protein corona. Arch Toxicol 2015; 89(4):519-39.

[81]

Jiang SY, Cao ZQ. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 2010; 22(9):920-32.

[82]

Keefe AJ, Jiang SY. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 2011; 4(1):59-63.

[83]

Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019; 48(3):757-70.

[84]

Zhang L, Cao ZQ, Bai T, Carr L, Ella-Menye JR, Irvin C, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 2013; 31(6):553-6.

[85]

Mi L, Jiang SY. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed Engl 2014; 53(7):1746-54.

[86]

Zhang P, Sun F, Tsao C, Liu SJ, Jain P, Sinclair A, et al. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc Natl Acad Sci USA 2015; 112(39):12046-51.

[87]

Yang W, Liu SJ, Bai T, Keefe AJ, Zhang L, Ella-Menye JR, et al. Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production. Nano Today 2014; 9(1):10-16.

[88]

Li BW, Yuan ZF, Zhang P, Sinclair A, Jain P, Wu K, et al. Zwitterionic nanocages overcome the efficacy loss of biologic drugs. Adv Mater 2018; 30(14):e1705728.

[89]

Shao Q, He Y, White AD, Jiang SY. Difference in hydration between carboxybetaine and sulfobetaine. J Phys Chem B 2010; 114(49):16625-31.

[90]

He Y, Hower J, Chen SF, Bernards MT, Chang Y, Jiang SY. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir 2008; 24(18):10358-64.

[91]

Kondo T, Nomura K, Gemmei-Ide M, Kitano H, Noguchi H, Uosaki K, et al. Structure of water at zwitterionic copolymer film-liquid water interfaces as examined by the sum frequency generation method. Colloids Surf B Biointerfaces 2014;113:361-7.

[92]

Kane RS, Deschatelets P, Whitesides GM. Kosmotropes form the basis of protein-resistant surfaces. Langmuir 2003; 19(6):2388-91.

[93]

Men YZ, Peng SJ, Yang P, Jiang Q, Zhang YH, Shen B, et al. Biodegradable zwitterionic nanogels with long circulation for antitumor drug delivery. ACS Appl Mater Interfaces 2018; 10(28):23509-21.

[94]

Peng SJ, Ouyang BS, Xin YJ, Zhao W, Shen S, Zhan MX, et al. Hypoxia-degradable and long-circulating zwitterionic phosphorylcholine-based nanogel for enhanced tumor drug delivery. Acta Pharm Sin B 2021; 11(2):560-71.

[95]

Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir 2019; 35(5):1778-87.

[96]

Shao Q, Mi L, Han X, Bai T, Liu SJ, Li YT, et al. Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses. J Phys Chem B 2014; 118(24):6956-62.

[97]

Shao Q, Jiang SY. Effect of carbon spacer length on zwitterionic carboxybetaines. J Phys Chem B 2013; 117(5):1357-66.

[98]

Peng SJ, Ouyang BS, Men YZ, Du Y, Cao YB, Xie RH, et al. Biodegradable zwitterionic polymer membrane coating endowing nanoparticles with ultra-long circulation and enhanced tumor photothermal therapy. Biomaterials 2020;231:119680.

[99]

Li B, Jain P, Ma J, Smith JK, Yuan Z, Hung HC, et al. Trimethylamine N-oxide-derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials. Sci Adv 2019; 5(6):eaaw9562.

[100]

Banskota S, Yousefpour P, Kirmani N, Li XH, Chilkoti A. Long circulating genetically encoded intrinsically disordered zwitterionic polypeptides for drug delivery. Biomaterials 2019;192:475-85.

[101]

Liu XS, Li H, Chen YJ, Jin Q, Ren KF, Ji J. Mixed-charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation. Adv Healthc Mater 2014; 3(9):1439-47.

[102]

Nejati S, Vadeghani EM, Khorshidi S, Karkhaneh A. Role of particle shape on efficient and organ-based drug delivery. Eur Polym J 2020;122:38961-76.

[103]

Liu XL, Zhong X, Li C. Challenges in cell membrane-camouflaged drug delivery systems: development strategies and future prospects. Chinese Chem Lett 2021; 32(8):2347-58.

[104]

Li AN, Zhao JW, Fu JR, Cai J, Zhang P. Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian J Pharm Sci 2021; 16(2):161-74.

[105]

Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 2016; 15(4):275-92.

[106]

Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11(8):2306-25.

[107]

Li J, Zheng M, Shimoni O, Banks WA, Bush AI, Gamble JR, et al. Development of novel therapeutics targeting the blood-brain barrier: from barrier to carrier. Adv Sci 2021; 8(16):e2101090.

[108]

Niu XQ, Chen JJ, Gao JQ. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: focus on recent advances. Asian J Pharm Sci 2019; 14(5):480-96.

[109]

Pang ZQ, Gao HL, Yu Y, Guo LR, Chen J, Pan SQ, et al. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem 2011; 22(6):1171-80.

[110]

Gaillard PJ, Appeldoorn CC, Rip J, Dorland R, van der Pol SM, Kooij G, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Control Release 2012; 164(3):364-9.

[111]

Lu W, Wan J, She ZJ, Jiang XG. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release 2007; 118(1):38-53.

[112]

Toman P, Lien CF, Ahmad Z, Dietrich S, Smith JR, An Q, et al. Nanoparticles of alkylglyceryl-dextran-graft-poly(lactic acid) for drug delivery to the brain: Preparation and in vitro investigation. Acta Biomater 2015;23:250-62.

[113]

Aryal M, Vykhodtseva N, Zhang YZ, Park J, McDannold N. Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release 2013; 169(1-2):103-11.

[114]

Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci 2016; 4(2):219-29.

[115]

Guo LR, Ren JF, Jiang XG. Perspectives on brain-targeting drug delivery systems. Curr Pharm Biotechnol 2012; 13(12):2310-18.

[116]

Qiao RR, Jia QJ, Huwel S, Xia R, Liu T, Gao FB, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 2012; 6(4):3304-10.

[117]

Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome AM. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 2015; 7(5):1782-90.

[118]

Jiang XY, Xin HL, Ren QY, Gu JJ, Zhu LJ, Du FY, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 2014; 35(1):518-29.

[119]

Liang S, Liu Y, Jin X, Liu G, Wen J, Zhang LL, et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res 2016; 9(4):1022-31.

[120]

Wu D, Qin M, Xu D, Wang L, Liu CY, Ren J, et al. A bioinspired platform for effective delivery of protein therapeutics to the central nervous system. Adv Mater 2019; 31(18):e1807557.

[121]

Meng XQ, Zhao Y, Han B, Zha CJ, Zhang YG, Li ZW, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun 2020; 11(1):594.

[122]

Wen J, Wu D, Qin M, Liu CY, Wang L, Xu D, et al. Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice. Nat Biomed Eng 2019; 3(9):706-16.

[123]

Han L, Liu CY, Qi HZ, Zhou JH, Wen J, Wu D, et al. Systemic delivery of monoclonal antibodies to the central nervous system for brain tumor therapy. Adv Mater 2019; 31(19):e1805697.

[124]

Xu D, Wu D, Qin M, Nih LR, Liu CY, Cao Z, et al. Efficient delivery of nerve growth factors to the central nervous system for neural regeneration. Adv Mater 2019; 31(33):e1900727.

[125]

Jin WL, Wu Y, Chen N, Wang QX, Wang YF, Li YS, et al. Early administration of MPCn(IVIg) selectively accumulates in ischemic areas to protect inflammation-induced brain damage from ischemic stroke. Theranostics 2021; 11(17):8197-217.

[126]

Xu Y, Shrestha N, Preat V, Beloqui A. Overcoming the intestinal barrier: a look into targeting approaches for improved oral drug delivery systems. J Control Release 2020;322:486-508.

[127]

Wang G, Zhao LC, Jiang QK, Sun YX, Zhao DY, Sun MC, et al. Intestinal OCTN2- and MCT1-targeted drug delivery to improve oral bioavailability. Asian J Pharm Sci 2020; 15(2):158-73.

[128]

Filipski KJ, Varma MV, El-Kattan AF, Ambler CM, Ruggeri RB, Goosen TC, et al. Intestinal targeting of drugs: rational design approaches and challenges. Curr Top Med Chem 2013; 13(7):776-802.

[129]

Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release 2012; 161(2):235-46.

[130]

Zhang C, Li JX, Xiao M, Wang D, Qu Y, Zou L, et al. Oral colon-targeted mucoadhesive micelles with enzyme-responsive controlled release of curcumin for ulcerative colitis therapy. Chinese Chem Lett 2022; 33(11):4924-9.

[131]

Hu SS, Yang ZX, Wang S, Wang LP, He QQ, Tang H, et al. Zwitterionic polydopamine modified nanoparticles as an efficient nanoplatform to overcome both the mucus and epithelial barriers. Chem Eng J 2022;428.

[132]

Han XF, Lu Y, Xie JB, Zhang E, Zhu H, Du H, et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat Nanotechnol 2020; 15(7):605-14.

[133]

Zhou YH, Chen XZ, Zhao D, Li D, He CL, Chen XS. A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral Exendin-4 delivery Adv Mater 2021; 33(32):e2102044.

[134]

Fan WF, Wei QY, Xiang JJ, Tang YS, Zhou Q, Geng Y, et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv Mater 2022; 34(16):e2109189.

[135]

Xie YM, Bagby TR, Cohen MS, Forrest ML. Drug delivery to the lymphatic system: 5importance in future cancer diagnosis and therapies Expert Opin Drug Deliv 2009; 6(8):785-92.

[136]

Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA 2014; 111(6):2307-12.

[137]

Li BW, Yuan ZF, He YW, Hung HC, Jiang SY. Zwitterionic nanoconjugate enables safe and efficient lymphatic drug delivery. Nano Lett 2020; 20(6):4693-9.

[138]

Castillo-Hair SM, Seelig G. Machine learning for designing next-generation mRNA therapeutics. ACC Chem Res 2022; 55(1):24-34.

[139]

Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 2020; 12(2):102.

[140]

Thomas SJ, Moreira ED, Kitchin N Jr, J Absalon, A Gurtman, S Lockhart, et al. Safety and efficacy of the bnt162b2 mRNA COVID-19 vaccine through 6 months. N Engl J Med 2021; 385(19):1761-73.

[141]

Kamar N, Abravanel F, Marion O, Couat C, Izopet J, Del Bello A. Three doses of an mRNA Covid-19 vaccine in solid-organ transplant recipients. N Engl J Med 2021; 385(7):661-2.

[142]

Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 2020;159:344-63.

[143]

Liu S, Wang X, Yu XL, Cheng Q, Johnson LT, Chatterjee S, et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J Am Chem Soc 2021; 143(50):21321-30.

[144]

Li ZM, Shan XT, Chen ZD, Gao NS, Zeng WF, Zeng XW, et al. Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv Sci 2020; 8(1):2002589.

[145]

Zhang ZW, Wang H, Tan T, Li J, Wang ZW, Li YP. Rational design of nanoparticles with deep tumor penetration for effective treatment of tumor metastasis. Adv Funct Mater 2018; 28(40):1801840.

[146]

Zhang YJ, Chen WZ, Yang CC, Fan QL, Wu W, Jiang XQ. Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. J Control Release 2016;237:115-24.

[147]

Hu J, Yuan XW, Wang F, Gao HL, XL L, Zang W. The progress and perspective of strategies to improve tumor penetration of nanomedicines. Chinese Chem Lett 2021; 32(4): 1341-1347.

[148]

Zhao Z, Feng Y, Xiang J, Liu J, Piao Y, Shao S, et al. Screening of zwitterionic liposomes with red blood cell-hitchhiking and tumor cell-active transporting capability for efficient tumor entrance. Adv Funct Mater 2023; 33(16):2214369.

[149]

Chen SQ, Zhong Y, Fan WF, Xiang JJ, Wang GW, Zhou Q, et al. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat Biomed Eng 2021; 5(9):1019-37.

[150]

Peng SJ, Wang H, Zhao W, Xin YJ, Liu Y, Yu XR, et al. Zwitterionic polysulfamide drug nanogels with microwave augmented tumor accumulation and on-demand drug release for enhanced cancer therapy. Adv Funct Mater 2020; 30(23):2001832.

[151]

Ou HL, Cheng TJ, Zhang YM, Liu JJ, Ding YX, Zhen JR, et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater 2018;65:339-48.

[152]

Wang S, Zhang FW, Yu GC, Wang ZT, Jacobson O, Ma Y, et al. Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery. Theranostics 2020; 10(15):6629-37.

[153]

He CB, Hu YP, Yin LC, Tang C, Yin CH. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010; 31(13):3657-66.

[154]

Mizuhara T, Saha K, Moyano DF, Kim CS, Yan B, Kim YK, et al. Acylsulfonamide-functionalized zwitterionic gold nanoparticles for enhanced cellular uptake at tumor pH. Angew Chem Int Ed Engl 2015; 54(22):6567-70.

[155]

Ranneh AH, Takemoto H, Sakuma S, Awaad A, Nomoto T, Mochida K, et al. An ethylenediamine-base sswitch to render the polyzwitterion cationic at tumorous pH for effective tumor accumulation of coated nanomaterials. Angew Chem Int Ed 2018;57:5057-61.

[156]

Ma CC, Wang ZL, Xu T, He ZY, Wei YQ. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020;40:107502.

[157]

Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Deliv Rev 2019;144:133-47.

[158]

Pan XH, Veroniaina H, Su N, Sha K, Jiang FL, Wu ZH, et al. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J Pharm Sci 2021; 16(6):687-703.

[159]

Verbeke R, Lentacker I, De Smedt SC, Dewitte H. The dawn of mRNA vaccines: the COVID-19 case. J Control Release 2021;333:511-20.

[160]

Ye L, Liu HM, Fei X, Ma D, He XZ, Tang QY, et al. Enhanced endosomal escape of dendrigraft poly-L-lysine polymers for the efficient gene therapy of breast cancer. Nano Res 2022; 15(2):1135-44.

[161]

Liu S, Cheng Q, Wei T, Yu XL, Johnson LT, Farbiak L, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater 2021; 20(5):701-10.

[162]

Li Y, Liu RY, Shi YJ, Zhang ZZ, Zhang X. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon. Theranostics 2015; 5(6):583-96.

AI Summary AI Mindmap
PDF (5500KB)

451

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/