Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges

Yuankai Sun , Xinchi Jiang , Jianqing Gao

Asian Journal of Pharmaceutical Sciences ›› 2024, Vol. 19 ›› Issue (1) : 100867

PDF (2769KB)
Asian Journal of Pharmaceutical Sciences ›› 2024, Vol. 19 ›› Issue (1) : 100867 DOI: 10.1016/j.ajps.2023.100867
Review Article

Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges

Author information +
History +
PDF (2769KB)

Abstract

Ischemic stroke (IS) causes severe disability and high mortality worldwide. Stem cell (SC) therapy exhibits unique therapeutic potential for IS that differs from current treatments. SC's cell homing, differentiation and paracrine abilities give hope for neuroprotection. Recent studies on SC modification have enhanced therapeutic effects for IS, including gene transfection, nanoparticle modification, biomaterial modification and pretreatment. These methods improve survival rate, homing, neural differentiation, and paracrine abilities in ischemic areas. However, many problems must be resolved before SC therapy can be clinically applied. These issues include production quality and quantity, stability during transportation and storage, as well as usage regulations. Herein, we reviewed the brief pathogenesis of IS, the “multi-mechanism” advantages of SCs for treating IS, various SC modification methods, and SC therapy challenges. We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.

Graphical abstract

Schematic illustration of using SCs to treat IS. From the mechanism of SC therapy to SC modification to the challenges of SC therapy.

Keywords

Ischemic stroke / Stem cell therapy / Stem cell modification / Cell therapy challenge

Cite this article

Download citation ▾
Yuankai Sun, Xinchi Jiang, Jianqing Gao. Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges. Asian Journal of Pharmaceutical Sciences, 2024, 19(1): 100867 DOI:10.1016/j.ajps.2023.100867

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U22A20383, 82003668); the Natural Science Foundation of Zhejiang Province (LD22H300002, LQ21H300002 ); and Ningbo Technology Innovation 2025 Major Special Project (2022Z150).

References

[1]

GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019:a systematic analysis for the Global Burden of Disease Study 2019. In:Lancet Neurol, 20; 2021. p. 795-820.

[2]

Lavados PM, Hoffmeister L, Moraga AM, Vejar A, Vidal C, Gajardo C, et al. Incidence, risk factors, prognosis, and health-related quality of life after stroke in a low-resource community in Chile (ÑANDU): a prospective population-based study. Lancet Glob Health 2021;9:e340-51.

[3]

Powers WJ. Acute ischemic stroke. N Engl J Med 2020;383:252-60.

[4]

Campbell BCV, Stroke Khatri P. Lancet Lond Engl 2020;396:129-42.

[5]

Xu J, Zhang X, Jin A, Pan Y, Li Z, Meng X, et al. Trends and risk factors associated with stroke recurrence in China, 2007-201. JAMA Netw Open 2022;5:e2216341.

[6]

Maaijwee NAMM, Rutten-Jacobs LCA, Schaapsmeerders P, van Dijk EJ, de Leeuw FE. Ischaemic stroke in young adults: risk factors and long-term consequences. Nat Rev Neurol 2014;10:315-25.

[7]

Wang Y, Li S, Pan Y, Li H, Parsons MW, Campbell BCV, et al. Tenecteplase versus alteplase in acute ischaemic cerebrovascular events (TRACE-2): a phase 3, multicentre, open-label, randomised controlled, non-inferiority trial. Lancet Lond Engl 2023;401:645-54.

[8]

Yang P, Zhang Y, Zhang L, Zhang Y, Treurniet KM, Chen W, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. N Engl J Med 2020;382:1981-93.

[9]

Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy6 to 24 h after stroke with a mismatch between deficit and infarct. N Engl J Med 2018;378:11-21.

[10]

He L, Huang G, Liu H, Sang C, Liu X, Chen T. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci Adv 2020;6:eaay9751.

[11]

Ho YJ, Hsu HC, Wu BH, Lin YC, Liao LD, Yeh CK. Preventing ischemia-reperfusion injury by acousto-mechanical local oxygen delivery. J Control Release Off J Control Release Soc 2023;356:481-92.

[12]

Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: applications for natural compounds from medicinal herbs. Biomed Pharmacother Biomedecine Pharmacother 2022;148:112719.

[13]

Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012;32:1959-72.

[14]

Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022;7:272.

[15]

Li Z, Dong X, Tian M, Liu C, Wang K, Li L, et al. Stem cell-based therapies for ischemic stroke: a systematic review and meta-analysis of clinical trials. Stem Cell Res Ther 2020;11:252.

[16]

Huang T, Zhang T, Jiang X, Li A, Su Y, Bian Q, et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci Adv 2021;7:eabj0534.

[17]

Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng 2021;12:2041731420986711.

[18]

Wei H, Li F, Xue T, Wang H, Ju E, Li M, et al. MicroRNA-122-functionalized DNA tetrahedron stimulate hepatic differentiation of human mesenchymal stem cells for acute liver failure therapy. Bioact Mater 2023;28:50-60.

[19]

Lin W, Huang L, Li Y, Fang B, Li G, Chen L, et al. Mesenchymal stem cells and cancer: clinical challenges and opportunities. BioMed Res Int 2019;2019:2820853.

[20]

Chen H, Zhou L. Treatment of ischemic stroke with modified mesenchymal stem cells. Int J Med Sci 2022;19:1155-62.

[21]

Zhang T, Li F, Xu Q, Wang Q, Jiang X, Liang Z, et al. Ferrimagnetic nanochains-based mesenchymal stem cell engineering for highly efficient post-stroke recovery. Adv Funct Mater 2019;29:1900603.

[22]

Li N, Guo XY, Zhou J, Yan XL, Yu FF. Atorvastatin pretreatment ameliorates mesenchymal stem cell migration through miR-146a/CXCR4 signaling. Tissue Eng Regen Med 2021;18:863-73.

[23]

Ma J, Zhang S, Liu J, Liu F, Du F, Li M, et al. Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells. Small Weinh Bergstr Ger 2019;15:e1902011.

[24]

Jiang XC, Xiang JJ, Wu HH, Zhang TY, Zhang DP, Xu QH, et al. Neural stem cells transfected with reactive oxygen species-responsive polyplexes for effective treatment of ischemic stroke. Adv Mater Deerfield Beach Fla 2019;31:e1807591.

[25]

Reddy LVK, Murugan D, Mullick M, Begum Moghal ET, Sen D. Recent approaches for angiogenesis in search of successful tissue engineering and regeneration. Curr Stem Cell Res Ther 2020;15:111-34.

[26]

Takahashi H, Asahina R, Fujioka M, Matsui TK, Kato S, Mori E, et al. Ras-like Gem GTPase induced by Npas 4 promotes activity-dependent neuronal tolerance for ischemic stroke. Proc Natl Acad Sci USA 2021;118:e2018850118.

[27]

Li S, Wang Y, Wu M, Younis MH, Olson AP, Barnhart TE, et al. Spleen-targeted glabridin-loaded nanoparticles regulate polarization of monocyte/macrophage (Mo /M ϕ) for the treatment of cerebral ischemia-reperfusion injury. Adv Mater Deerfield Beach Fla 2022;34:e2204976.

[28]

Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022;7:215.

[29]

Taylor MJ, Thompson AM, Alhajlah S, Tuxworth RI, Ahmed Z. Inhibition of Chk2 promotes neuroprotection, axon regeneration, and functional recovery after CNS injury. Sci Adv 2022;8:eabq2611.

[30]

Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011;17:796-808.

[31]

Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke 2006;37:1334-9.

[32]

Yang SH, Liu R. Four decades of ischemic penumbra and its implication for ischemic stroke. Transl Stroke Res 2021;12:937-45.

[33]

Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2014;115:157-88.

[34]

Tymianski M, Charlton MP, Carlen PL, Tator CH. Secondary Ca2 + overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res 1993;607:319-23.

[35]

Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020;158:104877.

[36]

Feng J, Chen X, Shen J. Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke. Expert Opin Ther Targets 2017;21:305-17.

[37]

Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W, et al. Oxidative stress and DNA damage after cerebral ischemia: potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 2018;134:208-17.

[38]

Gupta R, Ghosh S. Putative roles of mitochondrial voltage-dependent anion channel, Bcl-2 family proteins and c-Jun N-terminal kinases in ischemic stroke associated apoptosis. Biochim Open 2017;4:47-55.

[39]

Li C, Sun T, Jiang C. Recent advances in nanomedicines for the treatment of ischemic stroke. Acta Pharm Sin B 2021;11:1767-88.

[40]

Bhatia K, Jain V, Aggarwal D, Vaduganathan M, Arora S, Hussain Z, et al. Dual antiplatelet therapy versus aspirin in patients with stroke or transient ischemic attack: meta-analysis of randomized controlled trials. Stroke 2021;52:e217-23.

[41]

Kapil N, Datta YH, Alakbarova N, Bershad E, Selim M, Liebeskind DS, et al. Antiplatelet and anticoagulant therapies for prevention of ischemic stroke. Clin Appl Thromb Off J Int Acad Clin Appl Thromb 2017;23:301-18.

[42]

Lun R, Dhaliwal S, Zitikyte G, Roy DC, Hutton B, Dowlatshahi D. Comparison of ticagrelor vs clopidogrel in addition to aspirin in patients with minor ischemic stroke and transient ischemic attack: a network meta-analysis. JAMA Neurol 2022;79:141-8.

[43]

Warach SJ, Dula AN, Milling TJ. Tenecteplase thrombolysis for acute ischemic stroke. Stroke 2020;51:3440-51.

[44]

Pu Y. Comparison of different types of endovascular mechanical embolectomy in acute ischemic stroke. Rev Assoc Médica Bras 2019;65:342-7.

[45]

Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol 2021;335:113518.

[46]

Wei Z, Lyu Y, Yang X, Chen X, Zhong P, Wu D. Therapeutic values of human urinary kallidinogenase on cerebrovascular diseases. Front Neurol 2018;9:403.

[47]

Zhong J, Li RW, Wang J, Wang Y, Ge HF, Xian JS, et al. Neuroprotection by cattle encephalon glycoside and ignotin beyond the time window of thrombolysis in ischemic stroke. Neural Regen Res 2021;16:312-8.

[48]

Zhao K, Li GZ, Nie LY, Ye XM, Zhu GY. Edaravone for acute ischemic stroke: a systematic review and meta-analysis. Clin Ther 2022;44:e29-38.

[49]

Amekura S, Shiozawa K, Kiryu C, Yamamoto Y, Fujisawa A. Edaravone, a scavenger for multiple reactive oxygen species, reacts with singlet oxygen to yield 2-oxo-3-(phenylhydrazono)-butanoic acid. J Clin Biochem Nutr 2022;70:240-7.

[50]

Aznaouridis K, Masoura C, Vlachopoulos C, Tousoulis D. Statins in stroke. Curr Med Chem 2019;26:6174-85.

[51]

Christophe B, Karatela M, Sanchez J, Pucci J, Connolly ES. Statin therapy in ischemic stroke models: a meta-analysis. Transl Stroke Res 2020;11:590-600.

[52]

Du Y, Huo Y, Yang Q, Han Z, Hou L, Cui B, et al. Ultrasmall iron-gallic acid coordination polymer nanodots with antioxidative neuroprotection for PET/MR imaging-guided ischemia stroke therapy. Explor Beijing China 2023;3:20220041.

[53]

Man S, Xian Y, Holmes DN, Matsouaka RA, Saver JL, Smith EE, et al. Association between thrombolytic door-to-needle time and 1-year mortality and readmission in patients with acute ischemic stroke. JAMA 2020;323:2170-84.

[54]

Tewary M, Shakiba N, Zandstra PW. Stem cell bioengineering: building from stem cell biology. Nat Rev Genet 2018;19:595-614.

[55]

Zhou L, Zhu H, Bai X, Huang J, Chen Y, Wen J, et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Res Ther 2022;13:195.

[56]

Caplan AI. MSCs: the sentinel and safe-guards of injury. J Cell Physiol 2016;231:1413-16.

[57]

Mabotuwana NS, Rech L, Lim J, Hardy SA, MurthaLA, Rainer PP, et al. Paracrine factors released by stem cells of mesenchymal origin and their effects in cardiovascular disease: a systematic review of pre-clinical studies. Stem Cell Rev Rep 2022;18:2606-28.

[58]

Hu H, Hu X, Li L, Fang Y, Yang Y, Gu J, et al. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of MiR-21-5p. Biomolecules 2022;12:883.

[59]

Lv B, Li F, Fang J, Xu L, Sun C, Han J, et al. Activated microglia induce bone marrow mesenchymal stem cells to produce glial cell-derived neurotrophic factor and protect neurons against oxygen-glucose deprivation injury. Front Cell Neurosci 2016;10:283.

[60]

Davis C, Savitz SI, Satani N. Mesenchymal stem cell derived extracellular vesicles for repairing the neurovascular unit after ischemic stroke. Cells 2021;10:767.

[61]

Go V, Sarikaya D, Zhou Y, Bowley BGE, Pessina MA, Rosene DL, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells enhance myelin maintenance after cortical injury in aged rhesus monkeys. Exp Neurol 2021;337:113540.

[62]

Xu W, Zheng J, Gao L, Li T, Zhang J, Shao A. Neuroprotective effects of stem cells in ischemic stroke. Stem Cells Int 2017;2017:4653936.

[63]

Duan W, Lopez MJ, Hicok K. Adult multipotent stromal cell cryopreservation: pluses and pitfalls. Vet Surg VS 2018;47:19-29.

[64]

Moll G, Geißler S, Catar R, Ignatowicz L, Hoogduijn MJ, Strunk D, et al. Cryopreserved or fresh mesenchymal stromal cells: only a matter of taste or key to unleash the full clinical potential of MSC therapy? Adv Exp Med Biol 2016;951:77-98.

[65]

Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999;96:25-34.

[66]

Zhao T, Zhu T, Xie L, Li Y, Xie R, Xu F, et al. Neural stem cells therapy for ischemic stroke: progress and challenges. Transl Stroke Res 2022;13:665-75.

[67]

Boese AC, Eckert A, Hamblin MH, Lee JP. Human neural stem cells improve early stage stroke outcome in delayed tissue plasminogen activator-treated aged stroke brains. Exp Neurol 2020;329:113275.

[68]

Yang H, Wang C, Chen H, Li L, Ma S, Wang H, et al. Neural stem cell-conditioned medium ameliorated cerebral ischemia-reperfusion injury in rats. Stem Cells Int 2018;2018:4659159.

[69]

Korshunova I, Rhein S, García-González D, Stölting I, Pfisterer U, Barta A, et al. Genetic modification increases the survival and the neuroregenerative properties of transplanted neural stem cells. JCI Insight 2020;5:e126268 126268.

[70]

Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 2003;34:2258-63.

[71]

Xiao D, Liu X, Zhang M, Zou M, Deng Q, Sun D, et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun 2018;9:2865.

[72]

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-7.

[73]

Duan R, Gao Y, He R, Jing L, Li Y, Gong Z, et al. Induced pluripotent stem cells for ischemic stroke treatment. Front Neurosci 2021;15:628663.

[74]

Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002;110:385-97.

[75]

Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001;19:1134-40.

[76]

Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother Biomedecine Pharmacother 2021;140:111709.

[77]

Xia Y, Hu G, Chen Y, Yuan J, Zhang J, Wang S, et al. Embryonic stem cell derived small extracellular vesicles modulate regulatory T cells to protect against ischemic stroke. ACS Nano 2021;15:7370-85.

[78]

Bohaciakova D, Hruska-Plochan M, Tsunemoto R, Gifford WD, Driscoll SP, Glenn TD, et al. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res Ther 2019;10:83.

[79]

Lach MS, Wroblewska J, Kulcenty K, Richter M, Trzeciak T, Suchorska WM. Chondrogenic differentiation of pluripotent stem cells under controllable serum-free conditions. Int J Mol Sci 2019;20:2711.

[80]

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003;100:5807-12.

[81]

Sowa K, Nito C, Nakajima M, Suda S, Nishiyama Y, Sakamoto Y, et al. Impact of dental pulp stem cells overexpressing hepatocyte growth factor after cerebral ischemia/reperfusion in rats. Mol Ther Methods Clin Dev 2018;10:281-90.

[82]

Suda S, Nito C, Yokobori S, Sakamoto Y, Nakajima M, Sowa K, et al. Recent advances in cell-based therapies for ischemic stroke. Int J Mol Sci 2020;21:6718.

[83]

Wang DR, Wang YH, Pan J, Tian WD. Neurotrophic effects of dental pulp stem cells in repair of peripheral nerve after crush injury. World J Stem Cells 2020;12:1196-213.

[84]

Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005;80:836-42.

[85]

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76.

[86]

Oh SH, Jeong YW, Choi W, Noh JE, Lee S, Kim HS, et al. Multimodal therapeutic effects of neural precursor cells derived from human-induced pluripotent stem cells through episomal plasmid-based reprogramming in a rodent model of ischemic stroke. Stem Cells Int 2020;2020:4061516.

[87]

Hsieh HL, Liang CC, Lu CY, Yang JT, Chung CY, Ko YS, et al. Induced pluripotent stem cells can improve thrombolytic effect of low-dose rt-PA after acute carotid thrombosis in rat. Stem Cell Res Ther 2021;12:549.

[88]

Li Q, Niu X, Yi Y, Chen Y, Yuan J, Zhang J, et al. Inducible pluripotent stem cell-derived small extracellular vesicles rejuvenate senescent blood-brain barrier to protect against ischemic stroke in aged mice. ACS Nano 2023;17:775-89.

[89]

Baker EW, Platt SR, Lau VW, Grace HE, Holmes SP, Wang L, et al. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci Rep 2017;7:10075.

[90]

Chen SJ, Chang CM, Tsai SK, Chang YL, Chou SJ, Huang SS, et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev 2010;19:1757-67.

[91]

Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: from physiology to therapeutics. Stem Cells Dayt Ohio 2020;38:1241-53.

[92]

Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999;283:845-8.

[93]

Bang OY, Jin KS, Hwang MN, Kang HY, Kim BJ, Lee SJ, et al. The effect of CXCR4 overexpression on mesenchymal stem cell transplantation in ischemic stroke. Cell Med 2012;4:65-76.

[94]

Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004;10:858-64.

[95]

Wang Z, Cai Y, Zhang Q, Li J, Lin B, Zhao J, et al. Upregulating HIF-1 αto boost the survival of neural stem cells via functional peptides-complexed MRI-visible nanomedicine for stroke therapy. Adv Healthc Mater 2022;11:2201630.

[96]

Tang C, Wang C, Zhang Y, Xue L, Li Y, Ju C, et al. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett 2019;19:4470-7.

[97]

Mai CL, Tan Z, Xu YN, Zhang JJ, Huang ZH, Wang D, et al. CXCL12-mediated monocyte transmigration into brain perivascular space leads to neuroinflammation and memory deficit in neuropathic pain. Theranostics 2021;11: 1059-78.

[98]

Shi J, Yang Y, Yin N, Liu C, Zhao Y, Cheng H, et al. Engineering CXCL12 biomimetic decoy-integrated versatile immunosuppressive nanoparticle for ischemic stroke therapy with management of overactivated brain immune microenvironment. Small Methods 2022;6:e2101158.

[99]

Bang OY, Moon GJ, Kim DH, Lee JH, Kim S, Son JP, et al. Stroke induces mesenchymal stem cell migration to infarcted brain areas Via CXCR4 and C-Met signaling. Transl Stroke Res 2017;8:449-60.

[100]

Chia YC, Anjum CE, Yee HR, Kenisi Y, Chan MKS, Wong MBF, et al. Stem cell therapy for neurodegenerative diseases: how do stem cells bypass the blood-brain barrier and home to the brain? Stem Cells Int 2020;2020:8889061.

[101]

Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, et al. Potential mechanisms and perspectives in ischemic stroke treatment using stem cell therapies. Front Cell Dev Biol 2021;9:646927.

[102]

Fisher M. Pericyte signaling in the neurovascular unit. Stroke 2009;40:S13-5.

[103]

Kriska J, Janeckova L, Kirdajova D, Honsa P, Knotek T, Dzamba D, et al. Wnt/ β-catenin signaling promotes differentiation of ischemia-activated adult neural stem/progenitor cells to neuronal precursors. Front Neurosci 2021;15:628983.

[104]

Ge H, Zhang C, Yang Y, Chen W, Zhong J, Fang X, et al. Ambroxol upregulates glucocerebrosidase expression to promote neural stem cells differentiation into neurons through Wnt/ β-catenin pathway after ischemic stroke. Front Mol Neurosci 2020;13:596039.

[105]

Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine effects of mesenchymal stem cells in ischemic stroke: opportunities and challenges. Mol Neurobiol 2022;59:6281-306.

[106]

Li G, Yu F, Lei T, Gao H, Li P, Sun Y, et al. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies. Neural Regen Res 2016;11:1015-24.

[107]

Fan X-L, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci CMLS 2020;77:2771-94.

[108]

Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991;350:230-2.

[109]

Moon S, Chang MS, Koh SH, Choi YK. Repair mechanisms of the neurovascular unit after ischemic stroke with a focus on VEGF. Int J Mol Sci 2021;22:8543.

[110]

Zhou Y, Yamamoto Y, Xiao Z, Ochiya T. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med 2019;8:1025.

[111]

Yoo SW, Chang DY, Lee HS, Kim GH, Park JS, Ryu BY, et al. Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF- β. Neurobiol Dis 2013;58:249-57.

[112]

Lockard GM, Alayli A, Monsour M, Gordon J, Schimmel S, Elsayed B, et al. Probing interleukin-6 in stroke pathology and neural stem cell transplantation. Int J Mol Sci 2022;23:15453.

[113]

Wang J, Xie L, Yang C, Ren C, Zhou K, Wang B, et al. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front Cell Neurosci 2015;9:361.

[114]

Lin X, Zhang Y, Liu W, Dong J, Lu J, Di Q, et al. Granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells for the treatment of ischemic stroke. Neural Regen Res 2012;7:1220-7.

[115]

Zhang Y, Yu S, Tuazon JP, Lee JY, Corey S, Kvederis L, et al. Neuroprotective effects of human bone marrow mesenchymal stem cells against cerebral ischemia are mediated in part by an anti-apoptotic mechanism. Neural Regen Res 2019;14:597-604.

[116]

Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018;16:263-75.

[117]

Guo QQ, Wang SS, Zhang SS, Xu HD, Li XM, Guan Y, et al. ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J 2020;39:e103111.

[118]

Zhang TG, Miao CY. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharm Sin B 2023;13:1028-35.

[119]

Lu M, Guo J, Wu B, Zhou Y, Wu M, Farzaneh M, et al. Mesenchymal stem cell-mediated mitochondrial transfer: a therapeutic approach for ischemic stroke. Transl Stroke Res 2021;12:212-29.

[120]

Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012;18:759-65.

[121]

Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem 2010;397:3173-8.

[122]

Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 2004;22:1393-8.

[123]

Kim H, Nam K, Nam JP, Kim HS, Kim YM, Joo WS, et al. VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs). J Control Release 2015;220:222-8.

[124]

Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing Mol Cell 2007;27:435-48.

[125]

Yang H, Han M, Li J, Ke H, Kong Y, Wang W, et al. Delivery of miRNAs through metal-organic framework nanoparticles for assisting neural stem cell therapy for ischemic stroke. ACS Nano 2022;16:14503-16.

[126]

Yang Y, Wang X, Hu X, Kawazoe N, Yang Y, Chen G. Influence of cell morphology on mesenchymal stem cell transfection. ACS Appl Mater Interfaces 2019;11:1932-41.

[127]

Wang Y, Yang Y, Wang X, Kawazoe N, Yang Y, Chen G. The varied influences of cell adhesion and spreading on gene transfection of mesenchymal stem cells on a micropatterned substrate. Acta Biomater 2021;125:100-11.

[128]

Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001;7:33-40.

[129]

Loh XJ, Lee TC, Dou Q, Deen GR. Utilising inorganic nanocarriers for gene delivery. Biomater Sci 2016;4:70-86.

[130]

Liu L, Li M, Xu M, Wang Z, Zeng Z, Li Y, et al. Actively targeted gold nanoparticle composites improve behavior and cognitive impairment in Parkinson’s disease mice. Mater Sci Eng C Mater Biol Appl 2020;114:111028.

[131]

Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Mol 2020; 25(1):112.

[132]

Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: A novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res 2022;13:716-37.

[133]

Shyu WC, Lee YJ, Liu DD, Lin SZ, Li H. Homing genes, cell therapy and stroke. Front Biosci J Virtual Libr 2006;11:899-907.

[134]

Huang X, Zhang F, Wang Y, Sun X, Choi KY, Liu D, et al. Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing. ACS Nano 2014;8:4403-14.

[135]

Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F, et al. The magnetofection method: Using magnetic force to enhance gene delivery. Biol Chem 2003;384:737-47.

[136]

García-Belda P, Prima-García H, Aliena-Valero A, Castelló-Ruiz M, Ulloa-Navas MJ, Ten-Esteve A, et al. Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: an ultrastructural insight into cell fate within the brain. Nanomedicine Nanotechnol Biol Med 2022;39:102464.

[137]

Tang C, Luo J, Yan X, Huang Q, Huang Z, Luo Q, et al. Melanin nanoparticles enhance the neuroprotection of mesenchymal stem cells against hypoxic-ischemic injury by inhibiting apoptosis and upregulating antioxidant defense. Cell Biol Int 2022;46:933-46.

[138]

Xu J, Zhang Y, Liu Y, You Y, Li F, Chen Y, et al. Vitality-enhanced dual-modal tracking system reveals the dynamic fate of mesenchymal stem cells for stroke therapy. Small 2022;18:2203431.

[139]

Li J, Zhang Y, Lou Z, Li M, Cui L, Yang Z, et al. Magnetic nanobubble mechanical stress induces the piezo1-Ca 2 + -BMP2/Smad pathway to modulate neural stem cell fate and MRI/ultrasound dual imaging surveillance for ischemic stroke. Small 2022;18:2201123.

[140]

Liu H, Sun R, Wang L, Chen X, Li G, Cheng Y, et al. Biocompatible iron oxide nanoring-labeled mesenchymal stem cells: an innovative magnetothermal approach for cell tracking and targeted stroke therapy. ACS Nano 2022;16:18806-21.

[141]

Huang B, Jiang XC, Zhang TY, Hu YL, Tabata Y, Chen Z, et al. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int J Pharm 2017;531:90-100.

[142]

Martin JR, Patil P, Yu F, Gupta MK, Duvall CL. Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels. Biomaterials 2020;263:120377.

[143]

Won YW, Patel AN, Bull DA. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 2014;35:5627-35.

[144]

Xu R, Duan C, Meng Z, Zhao J, He Q, Zhang Q, et al. Lipid microcapsules promoted neural stem cell survival in the infarcted area of mice with ischemic stroke by inducing autophagy. ACS Biomater Sci Eng 2022;8:4462-73.

[145]

Li Y, Dong Y, Ran Y, Zhang Y, Wu B, Xie J, et al. Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res Ther 2021;12.

[146]

Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med 2018;22:1428-42.

[147]

Kirsch M, Rach J, Handke W, Seltsam A, Pepelanova I, StraußS ,etal. Comparative analysis of mesenchymal stem cell cultivation in fetal calf serum, human serum, and platelet lysate in 2D and 3D systems. Front Bioeng Biotechnol 2021;8:598389.

[148]

Kim M, Yun HW, Park DY, Choi BH, Min BH. Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells. Tissue Eng Regen Med 2018;15:427-36.

[149]

Petrenko Y, SykováE, KubinováŠ. Thetherapeuticpotential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res Ther 2017;8:94.

[150]

Hsu TW, Lu YJ, Lin YJ, Huang YT, Hsieh LH, Wu BH, et al. Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials 2021;272:120765.

[151]

Wei N, Yu SP, Gu X, Taylor TM, Song D, Liu XF, et al. Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant 2013;22:977-91.

[152]

Liu L, Gao J, Yuan Y, Chang Q, Liao Y, Lu F. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol Int 2013;37:551-60.

[153]

Singec I, Snyder EY. Inflammation as a matchmaker: revisiting cell fusion. Nat Cell Biol 2008;10:503-5.

[154]

Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, et al. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 2015;272:78-87.

[155]

Jiang XC, Wu HH, Zhang T, Dong YF, Li YS, Huang T, et al. Biological nano agent produced by hypoxic preconditioning stem cell for stroke treatment. Nano Res 2023;16:7413-21.

[156]

Zheng J, Mao X, Wang D, Xia S. Preconditioned MSCs alleviate cerebral ischemia-reperfusion injury in rats by improving the neurological function and the inhibition of apoptosis. Brain Sci 2022;12:631.

[157]

Carrero R, Cerrada I, LledóE, Dopazo J, García-García F, Rubio MP, et al. IL1 βinduces mesenchymal stem cells migration and leucocyte chemotaxis through NF- κB. Stem Cell Rev Rep 2012;8:905-16.

[158]

Olsen TR, Ng KS, Lock LT, Ahsan T, Rowley JA. Peak MSC-are we there yet? Front Med 2018;5:178.

[159]

Zhang Y, Na T, Zhang K, Yang Y, Xu H, Wei L, et al. GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs. J Tissue Eng Regen Med 2022;16:934-44.

[160]

Kawabori M, Shichinohe H, Kuroda S, Houkin K. Clinical trials of stem cell therapy for cerebral ischemic stroke. Int J Mol Sci 2020;21:7380.

[161]

Ornelas-González A, González-González M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: gMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol 2021;41:1081-95.

[162]

Wang J, Wei Y, Zhao S, Zhou Y, He W, Zhang Y, et al. The analysis of viability for mammalian cells treated at different temperatures and its application in cell shipment. PLoS ONE 2017;12:e0176120.

[163]

Jiang B, Yan L, Miao Z, Li E, Wong KH, Xu RH. Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation. Biomaterials 2017;133:275-86.

[164]

Gong P, Tian Q, He Y, He P, Wang J, Guo Y, et al. Dental pulp stem cell transplantation facilitates neuronal neuroprotection following cerebral ischemic stroke. Biomed Pharmacother Biomedecine Pharmacother 2022;152:113234.

[165]

Savitz SI, Yavagal D, RappardG, Likosky W, RutledgeN, Graffagnino C, et al. A phase 2 randomized, sham-controlled trial of internal carotid artery infusion of autologous bone marrow-derived ALD-401 cells in patients with recent stable ischemic stroke (RECOVER-Stroke). Circulation 2019;139:192-205.

[166]

Foster AA, Marquardt LM, Heilshorn SC. The diverse roles of hydrogel mechanics in injectable stem cell transplantation. Curr Opin Chem Eng 2017;15:15-23.

[167]

Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T, et al. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 2011;31:235-42.

[168]

Wang L, Lin Z, Zhang H, Shao B, Xiao L, Jiang H, et al. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci Ther 2014;20:317-26.

[169]

Chen Y, Peng D, Li J, Zhang L, Chen J, Wang L, et al. A comparative study of different doses of bone marrow-derived mesenchymal stem cells improve post-stroke neurological outcomes via intravenous transplantation. Brain Res 2023;1798:148161.

[170]

Toyoshima A, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, WangF ,etal. Intra-arterialtransplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PLoS ONE 2015;10:e0127302.

AI Summary AI Mindmap
PDF (2769KB)

786

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/