ESCAPE: an efficient and safe distributed UAV swarm exploration framework with collision avoidance perception

Yaoyang Bao , Siyuan Du , Qingwei Jiang , Yixuan Li , Bochao Zhao , Gang Wang , Qingwen Liu , Mingliang Xiong

Autonomous Intelligent Systems ›› 2025, Vol. 5 ›› Issue (1) : 30

PDF
Autonomous Intelligent Systems ›› 2025, Vol. 5 ›› Issue (1) :30 DOI: 10.1007/s43684-025-00123-y
Original Article
research-article

ESCAPE: an efficient and safe distributed UAV swarm exploration framework with collision avoidance perception

Author information +
History +
PDF

Abstract

Significant progress has been made in distributed unmanned aerial vehicle (UAV) swarm exploration. In complex scenarios, existing methods typically rely on shared trajectory information for collision avoidance, but communication timeliness issues may result in outdated trajectories being referenced when making collision avoidance decisions, preventing timely responses to the motion changes of other UAVs, thus elevating the collision risk. To address this issue, this paper proposes a new distributed UAV swarm exploration framework. First, we introduce an improved global exploration strategy that combines the exploration task requirements with the surrounding obstacle distribution to plan an efficient and safe coverage path. Secondly, we design a collision risk prediction method based on relative distance and relative velocity, which effectively assists UAVs in making timely collision avoidance decisions. Lastly, we propose a multi-objective local trajectory optimization function that considers the positions of UAVs and static obstacles, thereby planning safe flight trajectories. Extensive simulations and real-world experiments demonstrate that this framework enables safe and efficient exploration in complex environments.

Keywords

UAV Swarm Exploration / Collision Avoidance / Exploration Efficiency / Path Planning

Cite this article

Download citation ▾
Yaoyang Bao, Siyuan Du, Qingwei Jiang, Yixuan Li, Bochao Zhao, Gang Wang, Qingwen Liu, Mingliang Xiong. ESCAPE: an efficient and safe distributed UAV swarm exploration framework with collision avoidance perception. Autonomous Intelligent Systems, 2025, 5(1): 30 DOI:10.1007/s43684-025-00123-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang M., Feng C., Li Z., et al. . SOAR: simultaneous exploration and photographing with heterogeneous UAVs for fast autonomous reconstruction. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 202410975-10982.

[2]

Bartolomei L., Teixeira L., Chli M.. Fast multi-UAV decentralized exploration of forests. IEEE Robot. Autom. Lett., 2023, 8(9): 5576-5583.

[3]

Lin H., Yang X., Wen G., et al. . Fast UAV object-searching in large-scale and complex environments. IEEE Trans. Cybern., 2025, 55(6): 2993-3004.

[4]

Zhou B., Xu H., Shen S.. RACER: rapid collaborative exploration with a decentralized multi-UAV system. IEEE Trans. Robot., 2023, 39(3): 1816-1835.

[5]

Zhang T., Shen H., Yin Y., et al. . LECES: a low-bandwidth and efficient collaborative exploration system with distributed multi-UAV. IEEE Robot. Autom. Lett., 2024, 9(9): 7795-7802.

[6]

Zhou X., Zhu J., Zhou H., et al. . EGO-swarm: a fully autonomous and decentralized quadrotor swarm system in cluttered environments. 2021 IEEE International Conference on Robotics and Automation (ICRA), 20214101-4107.

[7]

Zhou Z., Wang G., Sun J., et al. . Efficient and robust time-optimal trajectory planning and control for agile quadrotor flight. IEEE Robot. Autom. Lett., 2023, 8(12): 7913-7920.

[8]

Yamauchi B.. A frontier-based approach for autonomous exploration. 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), 1997146-151

[9]

Cieslewski T., Kaufmann E., Scaramuzza D.. Rapid exploration with multi-rotors: a frontier selection method for high speed flight. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 20172135-2142.

[10]

Stachniss C., Grisetti G., Burgard W.. Information gain-based exploration using Rao-Blackwellized particle filters. Robotics: Science and Systems, 200565-72

[11]

Ahmad S., Mills A.B., Rush E.R., et al. . 3D reactive control and frontier-based exploration for unstructured environments. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 20212289-2296.

[12]

Zhou B., Zhang Y., Chen X., et al. . FUEL: fast UAV exploration using incremental frontier structure and hierarchical planning. IEEE Robot. Autom. Lett., 2021, 6(2): 779-786.

[13]

Connolly C.. The determination of next best views. 1985 IEEE International Conference on Robotics and Automation (ICRA), 1985432-435

[14]

Bircher A., Kamel M., Alexis K., et al. . Receding horizon “next-best-view” planner for 3D exploration. 2016 IEEE International Conference on Robotics and Automation (ICRA), 20161462-1468.

[15]

Schmid L., Pantic M., Khanna R., et al. . An efficient sampling-based method for online informative path planning in unknown environments. IEEE Robot. Autom. Lett., 2020, 5(2): 1500-1507.

[16]

Dang T., Papachristos C., Alexis K.. Visual saliency-aware receding horizon autonomous exploration with application to aerial robotics. 2018 IEEE International Conference on Robotics and Automation (ICRA), 20182526-2533.

[17]

Bircher A., Kamel M., Alexis K., et al. . Receding horizon “next-best-view” planner for 3D exploration and surface inspection. Auton. Robots, 2018, 42(2): 291-306.

[18]

Burgard W., Moors M., Stachniss C., et al. . Coordinated multi-robot exploration. IEEE Trans. Robot., 2005, 21(3): 376-386.

[19]

Butzke J., Likhachev M.. Planning for multi-robot exploration with multiple objective utility functions. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 20113254-3259

[20]

Tian Y., Liu K., Ok K., et al. . Search and rescue under the forest canopy using multiple UAVs. Int. J. Robot. Res., 2020, 39(10–11): 1201-1221.

[21]

Faigl J., Kulich M., Přeučil L.. Goal assignment using distance cost in multi-robot exploration. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 20123741-3746

[22]

Dong S., Xu K., Zhou Q., et al. . Multi-robot collaborative dense scene reconstruction. ACM Trans. Graph., 2019, 38(4): 1-16.

[23]

Zlot R., Stentz A., Dias M., et al. . Multi-robot exploration controlled by a market economy. 2002 IEEE International Conference on Robotics and Automation (ICRA), 20023016-3023

[24]

Smith A.J., Hollinger G.A.. Distributed inference-based multi-robot exploration. Auton. Robots, 2018, 42(8): 1651-1668.

[25]

Berhault M., Huang H., Keskinocak P., et al. . Robot exploration with combinatorial auctions. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 20031957-1962

[26]

Durham J.W., Carli R., Frasca P., et al. . Discrete partitioning and coverage control for gossiping robots. IEEE Trans. Robot., 2012, 28(2): 364-378.

[27]

Klodt L., Willert V.. Equitable workload partitioning for multi-robot exploration through pairwise optimization. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 20152809-2816.

[28]

Van Den Berg J., Guy S.J., Lin M., et al. . Reciprocal n-body collision avoidance. Robotics Research: The 14th International Symposium (ISRR), 20113-19.

[29]

Van Den Berg J., Snape J., Guy S.J., et al. . Reciprocal collision avoidance with acceleration-velocity obstacles. 2011 IEEE International Conference on Robotics and Automation (ICRA), 20113475-3482

[30]

Liu Z., Chen B., Zhou H., et al. . MAPPER: multi-agent path planning with evolutionary reinforcement learning in mixed dynamic environments. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 202011748-11754.

[31]

Bai C., Xiao T., Chen Y., et al. . Faster-LIO: lightweight tightly coupled lidar-inertial odometry using parallel sparse incremental voxels. IEEE Robot. Autom. Lett., 2022, 7(2): 4861-4868.

Funding

Key Technologies Research and Development Program(2022YFA1004700)

National Natural Science Foundation of China(62301308)

Science and Technology Commission of Shanghai Municipality(19511132101)

Aeronautical Science Foundation of China(20230007308001)

Fundamental Research Funds for the Central Universities(22120210543)

Transportation Science and Technology Development Plan in Tianjin Municipality of China(No. 2025-76)

RIGHTS & PERMISSIONS

The Author(s)

PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

/