Association rule mining for aircraft assembly process information based on fine-tuned LLM

Jiaji Shen , Weidong Zhao , Xianhui Liu , Ning Jia , Yingyao Zhang

Autonomous Intelligent Systems ›› 2026, Vol. 6 ›› Issue (1) : 2

PDF
Autonomous Intelligent Systems ›› 2026, Vol. 6 ›› Issue (1) :2 DOI: 10.1007/s43684-025-00111-2
Original Article
research-article

Association rule mining for aircraft assembly process information based on fine-tuned LLM

Author information +
History +
PDF

Abstract

The aircraft final assembly is a complex system, encompassing various aspects and multidimensional production factors. These numerous factors are interconnected, significantly impacting the efficiency of the final assembly process. To investigate the interrelationships among various production factors, this study introduces a specialized fine-tuning large language model for aircraft final assembly, termed Aircraft Final Assembly ChatGLM (AFA-ChatGLM). This model is designed to automatically extract essential information regarding key production factors from process documentation. Furthermore, the FP-Growth algorithm is employed to uncover association rules between these production factors and the various stages of the final assembly. Experimental results indicate that our method demonstrates outstanding performance in the aircraft final assembly domain. Specifically, for the assembly process documents of the C919 large passenger aircraft, our proposed model achieved a Precision of 82.7%, Recall of 89.1%, and F1 score of 85.4%, representing a substantial improvement over traditional word segmentation methods. leveraging the superior performance of the model, we utilized association rule mining techniques to construct 44,851 high-confidence association rules for the final assembly line of the C919, laying a foundation for subsequent optimization of the production line.

Keywords

Aircraft final assembly / Production factors / Large language model / Association rule mining

Cite this article

Download citation ▾
Jiaji Shen, Weidong Zhao, Xianhui Liu, Ning Jia, Yingyao Zhang. Association rule mining for aircraft assembly process information based on fine-tuned LLM. Autonomous Intelligent Systems, 2026, 6(1): 2 DOI:10.1007/s43684-025-00111-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Long T., Li Y., Chen J.. Productivity prediction in aircraft final assembly lines: comparisons and insights in different productivity ranges. J. Manuf. Syst., 2022, 62: 377-389

[2]

Ho G.T., Tang Y.M., Tsang K.Y., Tang V., Chau K.Y.. A blockchain-based system to enhance aircraft parts traceability and trackability for inventory management. Expert Syst. Appl., 2021, 179 115101

[3]

Zhou B., Li X., Liu T., Xu K., Liu W., Bao J.. Causalkgpt: industrial structure causal knowledge-enhanced large language model for cause analysis of quality problems in aerospace product manufacturing. Adv. Eng. Inform., 2024, 59 102333

[4]

Jeblick K., Schachtner B., Dexl J., Mittermeier A., Stüber A.T., Topalis J., Weber T., Wesp P., Sabel B.O., Ricke J., et al.. Chatgpt makes medicine easy to swallow: an exploratory case study on simplified radiology reports. Eur. Radiol., 2024, 34(5): 2817-2825

[5]

B. Zhang, D. Ding, L. Jing, G. Dai, N. Yin, How would stance detection techniques evolve after the launch of chatgpt? (2022). arXiv preprint. arXiv:2212.14548

[6]

Houlsby N., Giurgiu A., Jastrzebski S., Morrone B., De Laroussilhe Q., Gesmundo A., Attariyan M., Gelly S.. Parameter-efficient transfer learning for nlp. International Conference on Machine Learning, 201927902799PMLR

[7]

X.L. Li, P. Liang, Prefix-tuning: optimizing continuous prompts for generation (2021). arXiv preprint. arXiv:2101.00190

[8]

X. Liu, K. Ji, Y. Fu, W.L. Tam, Z. Du, Z. Yang, J. Tang, P-tuning v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks (2021). arXiv preprint. arXiv:2110.07602

[9]

E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, Lora: low-rank adaptation of large language models (2021). arXiv preprint. arXiv:2106.09685

[10]

L. Zhang, L. Zhang, S. Shi, X. Chu, B. Li, Lora-fa: memory-efficient low-rank adaptation for large language models fine-tuning (2023). arXiv preprint. arXiv:2308.03303

[11]

J. Chen, A. Zhang, X. Shi, M. Li, A. Smola, D. Yang, Parameter-efficient fine-tuning design spaces (2023). arXiv preprint. arXiv:2301.01821

[12]

L. Wang, B. Lin, R. Chen, K.-H. Lu, Using data mining methods to develop manufacturing production rule in iot environment. J. Supercomput., 1–24 (2022)

[13]

Ouyang S.-S., Song L., Liu X.-F., Chen C., Chen Z.-Y.. On sequential-pattern-based intelligent compilation of aircraft assembly process. J. Phys. Conf. Ser., 2021, 1820 012106IOP Publishing

[14]

Lin H.-K., Hsieh C.-H., Wei N.-C., Peng Y.-C.. Association rules mining in R for product performance management in industry 4.0. Proc. CIRP, 2019, 83: 699-704

[15]

Abdirad H., Mathur P.. Artificial intelligence for bim content management and delivery: case study of association rule mining for construction detailing. Adv. Eng. Inform., 2021, 50 101414

[16]

Zhang X., Tian D., Ren Q., Li M., Shen Y., Han S.. A hybrid deep semantic mining method considering fuzzy expressions for the automatic recognition of construction safety hazard information. Adv. Eng. Inform., 2024, 61 102507

[17]

Huang Y., Zhang Z., Tao Y., Hu H.. Quantitative risk assessment of railway intrusions with text mining and fuzzy rule-based bow-tie model. Adv. Eng. Inform., 2022, 54 101726

[18]

Shan Z., Miao W.. Covid-19 patient diagnosis and treatment data mining algorithm based on association rules. Expert Syst., 2023, 40(4 12814

[19]

Hongxia C., Jiamin Z., Wei Z.. Quality deviation control for aircraft using digital twin. J. Comput. Inf. Sci. Eng., 2021, 21 031008

[20]

Zhang J., Zhang P., Zhang J., Zhang P.. Design and implementation of flight data mining system. Time Series Analysis Methods and Applications for Flight Data, 2017215231

[21]

Jing W., Huaichao W., Jiyang Z.. Alarm association rules mining based on run log for civil aviation information system. 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), 2017836841 IEEE

[22]

Xu R., Luo F.. Risk prediction and early warning for air traffic controllers’ unsafe acts using association rule mining and random forest. Saf. Sci., 2021, 135 105125

[23]

Diaz-Garcia J.A., Ruiz M.D., Martin-Bautista M.J.. A survey on the use of association rules mining techniques in textual social media. Artif. Intell. Rev., 2023, 56(2): 1175-1200

[24]

Huang C.-C., Tseng T.-L., Chuang H.-F., Liang H.-F.. Rough-set-based approach to manufacturing process document retrieval. Int. J. Prod. Res., 2006, 44(14): 2889-2911

[25]

Kamsu-Foguem B., Rigal F., Mauget F.. Mining association rules for the quality improvement of the production process. Expert Syst. Appl., 2013, 40(4): 1034-1045

[26]

Zhou S.. [retracted] data mining and analysis of the compatibility law of traditional Chinese medicines based on fp-growth algorithm. J. Math., 2021, 2021(11045152

[27]

Zhou J., Guo X., Duan L., Yao Y., Shang Y., Wang Y., Xing B.. Moving toward a standardized diagnostic statement of pituitary adenoma using an information extraction model: a real-world study based on electronic medical records. BMC Med. Inform. Decis. Mak., 2022, 22(1 319

[28]

Li Z., Sun M.. Punctuation as implicit annotations for Chinese word segmentation. Comput. Linguist., 2009, 35(4): 505-512

[29]

H. He, J.D. Choi, The stem cell hypothesis: dilemma behind multi-task learning with transformer encoders (2021). arXiv preprint. arXiv:2109.06939

[30]

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al., Llama: open and efficient foundation language models (2023). arXiv preprint. arXiv:2302.13971

[31]

J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge, Y. Han, F. Huang, B. Hui, L. Ji, M. Li, J. Lin, R. Lin, D. Liu, G. Liu, C. Lu, K. Lu, J. Ma, R. Men, X. Ren, X. Ren, C. Tan, S. Tan, J. Tu, P. Wang, S. Wang, W. Wang, S. Wu, B. Xu, J. Xu, A. Yang, H. Yang, J. Yang, S. Yang, Y. Yao, B. Yu, H. Yuan, Z. Yuan, J. Zhang, X. Zhang, Y. Zhang, Z. Zhang, C. Zhou, J. Zhou, X. Zhou, T. Zhu, Qwen technical report (2023). arXiv preprint. arXiv:2309.16609

[32]

Church K.W.. Word2vec. Nat. Lang. Eng., 2017, 23(1): 155-162

Funding

National Key Research and Development Program of China(2023YFB3408600)

RIGHTS & PERMISSIONS

The Author(s)

PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

/