Deformation mechanism of gallium nitride in nanometric cutting
Xu Ma, Min Lai, Feng-Zhou Fang
Deformation mechanism of gallium nitride in nanometric cutting
Gallium nitride (GaN) is a third-generation semiconductor and an important optical material requiring high surface integrity. In this study, molecular dynamics simulations were conducted to investigate the machining mechanism of single-crystal GaN during nanometric cutting. The stress distribution and generation/motion of dislocations in GaN during nanometric cutting were found to be closely related to slip systems. The relationship between the crystal phase transformation and dislocations during cutting was also identified. Microcracks occur during the unloading of stress perpendicular to the (0 0 0 1) plane. The fluctuation of the cutting forces during cutting was explained from the perspective of crystal phase transformation. This study helps understand the deformation mechanism of materials with hexagonal close-packed crystal structures in nanometric cutting and promotes the development of relevant mechanical processing technologies.
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
[34.] |
Xu Y, Zhu F, Wang M et al (2018) Molecular dynamics simulation of GaN nano-grinding. In:20th electronics packaging technology conference, IEEE, pp 468−472
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
[39.] |
|
[40.] |
|
[41.] |
|
[42.] |
Zhu Q, Shao JL, Pan H et al (2021) Collapse of stacking fault tetrahedron and dislocation evolution in copper under shock compression. J Nucl Mater 554:153081. https://doi.org/10.1016/j.jnucmat.2021.153081
|
[43.] |
|
[44.] |
|
[45.] |
|
[46.] |
|
[47.] |
|
[48.] |
|
[49.] |
|
[50.] |
|
[51.] |
|
[52.] |
|
[53.] |
Fang F, Lai M (2017) Crack initiation. In: Laperrière (Ed), CIRP encyclopedia of production engineering, Springer, Berlin Heidelberg, pp 1–7
|
[54.] |
|
/
〈 |
|
〉 |