Study on 6-DOF active vibration-isolation system of the ultra-precision turning lathe based on GA-BP-PID control for dynamic loads
Bo Wang, Zhong Jiang, Pei-Da Hu
Advances in Manufacturing ›› 2024, Vol. 12 ›› Issue (1) : 33-60.
Study on 6-DOF active vibration-isolation system of the ultra-precision turning lathe based on GA-BP-PID control for dynamic loads
The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment. Most active vibration-isolation systems (AVIS) have been developed based on static loads. When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining, the system parameters change, and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates. To solve this problem, this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control (GA-BP-PID), which can automatically adjust the control parameters according to the machining conditions. Vibration-isolation simulations and experiments based on passive vibration isolation, a PID algorithm, and the GA-BP-PID algorithm under dynamic load machining conditions were conducted. The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions. This design is reasonable and feasible.
Ultra-precision diamond turning lathe / Active vibration isolation / Six degrees of freedom / Dynamic load / Genetic algorithm-back propagation neural network-PID (GA-BP-PID) control
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
Ding YY, Rui XT, Chen YH et al (2023) Theoretical and experimental investigation on the surface stripes formation in ultra-precision fly cutting machining. Int J Adv Manuf Technol 124:1041–1063. https://doi.org/10.1007/s00170-022-10493-9
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
Zhang B, Dong W, Li X et al (2020) Design of active-passive composite vibration isolation system of magnetic levitation and spring based on fuzzy PID control. In: Chinese automation congress, Shanghai, 6‒8 November, pp 2381–2386
|
[10.] |
|
[11.] |
Kheiri Sarabi B, Sharma M, Kaur D (2018) Active vibration control based on LQR technique for two degrees of freedom system. In: Nandi A, Sujatha N, Menaka R et al (eds) Computational signal processing and analysis. Lecture notes in electrical engineering, vol 490, Springer, Singapore. https://doi.org/10.1007/978-981-10-8354-9_15
|
[12.] |
|
[13.] |
Ab Rahim S, Muthalif AGA, Tunthim KK et al (2019) Active vibration isolation system (AVIS) using a voice coil actuator to improve free space optics communication. In: IEEE 10th control and system graduate research colloquium (ICSGRC), Shah Alam, Malaysia. https://doi.org/10.1109/ICSGRC.2019.8837053
|
[14.] |
|
[15.] |
Chen F (2018) Vibration suppression with electromagnetic hybrid vibration isolators. In: The 9th international conference on mechatronics and manufacturing (ICMM 2018), Phuket, Thailand. https://doi.org/10.1088/1757-899X/361/1/012012
|
[16.] |
Yonezawa H, Kajiwara I, Yonezawa A et al (2019) Model-free vibration control to enable vibration suppression of arbitrary structures. In: The 12th Asian control conference (ASCC), Kitakyushu, Japan, pp 289–294
|
[17.] |
Liu YJ, Xu H, Zhang YG et al (2017) Burner-electrode position control of calcium carbide furnace based on BP-PID controller. In: IEEE international conference on mechatronics and automation (ICMA), Takamatsu, Japan. https://doi.org/10.1109/ICMA.2017.8015920
|
[18.] |
|
[19.] |
|
[20.] |
Su Z, Li W, Xie W (2019) Simulation analysis of control system for six degrees of freedom damping platform based on Matlab. In: IOP conference series: materials science and engineering, vol 612, pp 032078. https://doi.org/10.1088/1757-899X/612/3/032078
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
Chen YP, Liu SR, Xiong C et al (2019) Research on UAV flight tracking control based on genetic algorithm optimization and improved bp neural network pid control. In: 2019 Chinese automation congress (CAC), Hangzhou, China. https://doi.org/10.1109/CAC48633.2019.8996179
|
[31.] |
|
/
〈 |
|
〉 |