Study on 6-DOF active vibration-isolation system of the ultra-precision turning lathe based on GA-BP-PID control for dynamic loads
Bo Wang , Zhong Jiang , Pei-Da Hu
Advances in Manufacturing ›› 2024, Vol. 12 ›› Issue (1) : 33 -60.
Study on 6-DOF active vibration-isolation system of the ultra-precision turning lathe based on GA-BP-PID control for dynamic loads
The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment. Most active vibration-isolation systems (AVIS) have been developed based on static loads. When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining, the system parameters change, and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates. To solve this problem, this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control (GA-BP-PID), which can automatically adjust the control parameters according to the machining conditions. Vibration-isolation simulations and experiments based on passive vibration isolation, a PID algorithm, and the GA-BP-PID algorithm under dynamic load machining conditions were conducted. The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions. This design is reasonable and feasible.
Ultra-precision diamond turning lathe / Active vibration isolation / Six degrees of freedom / Dynamic load / Genetic algorithm-back propagation neural network-PID (GA-BP-PID) control
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
Ding YY, Rui XT, Chen YH et al (2023) Theoretical and experimental investigation on the surface stripes formation in ultra-precision fly cutting machining. Int J Adv Manuf Technol 124:1041–1063. https://doi.org/10.1007/s00170-022-10493-9 |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Zhang B, Dong W, Li X et al (2020) Design of active-passive composite vibration isolation system of magnetic levitation and spring based on fuzzy PID control. In: Chinese automation congress, Shanghai, 6‒8 November, pp 2381–2386 |
| [10] |
|
| [11] |
Kheiri Sarabi B, Sharma M, Kaur D (2018) Active vibration control based on LQR technique for two degrees of freedom system. In: Nandi A, Sujatha N, Menaka R et al (eds) Computational signal processing and analysis. Lecture notes in electrical engineering, vol 490, Springer, Singapore. https://doi.org/10.1007/978-981-10-8354-9_15 |
| [12] |
|
| [13] |
Ab Rahim S, Muthalif AGA, Tunthim KK et al (2019) Active vibration isolation system (AVIS) using a voice coil actuator to improve free space optics communication. In: IEEE 10th control and system graduate research colloquium (ICSGRC), Shah Alam, Malaysia. https://doi.org/10.1109/ICSGRC.2019.8837053 |
| [14] |
|
| [15] |
Chen F (2018) Vibration suppression with electromagnetic hybrid vibration isolators. In: The 9th international conference on mechatronics and manufacturing (ICMM 2018), Phuket, Thailand. https://doi.org/10.1088/1757-899X/361/1/012012 |
| [16] |
Yonezawa H, Kajiwara I, Yonezawa A et al (2019) Model-free vibration control to enable vibration suppression of arbitrary structures. In: The 12th Asian control conference (ASCC), Kitakyushu, Japan, pp 289–294 |
| [17] |
Liu YJ, Xu H, Zhang YG et al (2017) Burner-electrode position control of calcium carbide furnace based on BP-PID controller. In: IEEE international conference on mechatronics and automation (ICMA), Takamatsu, Japan. https://doi.org/10.1109/ICMA.2017.8015920 |
| [18] |
|
| [19] |
|
| [20] |
Su Z, Li W, Xie W (2019) Simulation analysis of control system for six degrees of freedom damping platform based on Matlab. In: IOP conference series: materials science and engineering, vol 612, pp 032078. https://doi.org/10.1088/1757-899X/612/3/032078 |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Chen YP, Liu SR, Xiong C et al (2019) Research on UAV flight tracking control based on genetic algorithm optimization and improved bp neural network pid control. In: 2019 Chinese automation congress (CAC), Hangzhou, China. https://doi.org/10.1109/CAC48633.2019.8996179 |
| [31] |
|
/
| 〈 |
|
〉 |