Two-dimensional precise figuring of 500 mm-long X-ray mirror using one-dimensional ion beam system

Qiu-Shi Huang , Han-Dan Huang , Qiao-Yu Wu , Jun Yu , Zhong Zhang , Zhan-Shan Wang

Advances in Manufacturing ›› 2024, Vol. 12 ›› Issue (1) : 177 -184.

PDF
Advances in Manufacturing ›› 2024, Vol. 12 ›› Issue (1) : 177 -184. DOI: 10.1007/s40436-023-00459-9
Article

Two-dimensional precise figuring of 500 mm-long X-ray mirror using one-dimensional ion beam system

Author information +
History +
PDF

Abstract

In this study, a new method was developed to realize two-dimensional (2D) figure correction of grazing-incidence X-ray mirrors using a one-dimensional (1D) ion-beam figuring system. A mask of holes was specifically designed to generate removal functions at different widths and extend the figuring capability over a wide area. Accordingly, a long mirror could be manufactured. Using this method, the surface height root-mean-square (RMS) error of the center area of 484 mm ×16 mm was reduced from 11.49 nm to 2.01 nm, and the 1D meridional RMS error reached 1.0 nm. The proposed method exhibits high precision and cost effectiveness for production of long X-ray mirrors.

Keywords

Long-size mirrors / Ion beam figuring / Two-dimensional figure correction / Mask

Cite this article

Download citation ▾
Qiu-Shi Huang, Han-Dan Huang, Qiao-Yu Wu, Jun Yu, Zhong Zhang, Zhan-Shan Wang. Two-dimensional precise figuring of 500 mm-long X-ray mirror using one-dimensional ion beam system. Advances in Manufacturing, 2024, 12(1): 177-184 DOI:10.1007/s40436-023-00459-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peatman WB. Gratings, mirrors and slits: beamline design for soft X-ray synchrotron radiation sources, 2018, London: Routledge.

[2]

Jones RA. Fabrication using the computer controlled polisher. Appl Opt, 1978, 17(12): 1889-1892.

[3]

Xie Y, Yang J, Huang W, et al. A tool-path planning method used in computer controlled optical surfacing based on improved prim algorithm. Int J Adv Manuf Tech, 2022, 119(9): 5917-5927.

[4]

Yamauchi K, Mimura H, Inagaki K, et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining. Rev Sci Instrum, 2002, 73(11): 4028-4033.

[5]

Matsuyama S, Yasuda S, Yamada J, et al. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors. Sci Rep, 2017, 7(1): 1-8.

[6]

Allen LN, Keim RE, Lewis TS, et al. Surface error correction of a Keck 10-m telescope primary mirror segment by ion figuring. Proc SPIE, 1991, 1531: 195-204.

[7]

Wang T, Huang L, Kang H, et al. RIFTA: a robust iterative Fourier transform-based dwell time algorithm for ultra-precision ion beam figuring of synchrotron mirrors. Sci Rep, 2020, 10(1): 1-12.

[8]

Ice GE, Chung JS, Jonathan TZ, et al. Elliptical X-ray microprobe mirrors by differential deposition. Rev Sci Instrum, 2000, 71(7): 2635-2639.

[9]

Morawe C, Bras P, Labouré S et al (2021) Mirror figure correction on variable length scales. In: Proceedings vol 11837, advances in X-Ray/EUV optics and components XVI; 118370C. https://doi.org/10.1117/12.2595034

[10]

Ikenaga E, Yasui A, Kawamura N, et al. Hard X-ray photoemission spectroscopy at two public beamlines of SPring-8: current status and ongoing developments. Synchrotron Radiat News, 2018, 31(4): 10-15.

[11]

Siewert F, Buchheim J, Gwalt G, et al. On the characterization of a 1 m long, ultra-precise KB-focusing mirror pair for European XFEL by means of slope measuring deflectometry. Rev Sci Instrum, 2019, 90(2): 021713.

[12]

Liu C, Ice GE, Liu W, et al. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing. Appl Surf Sci, 2012, 258(6): 2182-2186.

[13]

Schindler A, Hänsel T, Frost F, et al. Ion beam finishing technology for high precision optics production. Opt Fab Test, 2002, 76: 64-66.

[14]

Thiess H, Lasser H, Siewert F. Fabrication of X-ray mirrors for synchrotron applications. Nucl Instrum Methods A, 2010, 616(2/3): 157-161.

[15]

Zhou L, Idir M, Bouet N, et al. One-dimensional ion-beam figuring for grazing-incidence reflective optics. J Synchrotron Radiat, 2016, 23(1): 182-186.

[16]

Wang T, Huang L, Vescovi M, et al. One-dimensional ion-beam figuring solution from Brookhaven National Laboratory. Adv Metrol X-Ray EUV Opt VIII, 2019, 11109: 43-50.

[17]

Peverini L, Guadalupi H, Michel T, et al. Reflective optics for EUV/X-ray sources at Thales SESO: possibilities and perspectives. Adv Metrol X-Ray EUV Opt IX, 2020, 11492: 92-104.

[18]

Wang T, Huang L, Zhu Y, et al. Development of a position–velocity–time-modulated two-dimensional ion beam figuring system for synchrotron X-ray mirror fabrication. Appl Opt, 2020, 11: 3306-3314.

[19]

Wang H, Huang S, Vescovi K. Universal dwell time optimization for deterministic optics fabrication. Opt Express, 2021, 29(23): 38737-38757.

[20]

Hand M, Alcock SG, Hillman M, et al. Ion beam figuring and optical metrology system for synchrotron X-ray mirrors. Adv Metrol X-Ray EUV Opt VIII, 2019, 11109: 51-57.

[21]

Wang H, Moriconi S, Sawhney K. Nano-precision metrology of X-ray mirrors with laser speckle angular measurement. Light Sci Appl, 2021, 10(1): 1-13.

[22]

Zhang Y, Huang Q, Yan S, et al. High-precision ion beam figuring of X-ray plane mirrors for the bendable KB focusing system. Front Phys, 2022, 10: 865411.

[23]

Jones RA. Optimization of computer controlled polishing. Appl Opt, 1977, 16(1): 218-224.

[24]

Yang B, Xie X, Li F, et al. Edge effect correction using ion beam figuring. Appl Opt, 2017, 56(32): 8950-8958.

Funding

National Key R&D Program of China(2022YFF0709101)

National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809(12235011)

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/