Model reconstruction for worn blades based on hybrid surface registrations
Kang Cui , Rui-Song Jiang , Lin Jing
Advances in Manufacturing ›› 2022, Vol. 10 ›› Issue (3) : 479 -494.
Model reconstruction for worn blades based on hybrid surface registrations
Model reconstruction is crucial in blade repair because it directly determines the shape precision and finish of a repaired surface. However, owing to insufficient surface data pertaining to defective regions and the unique deformation caused by harsh environments, modeling a worn blade remains difficult. Hence, a model reconstruction method for worn blades is developed in this study. Unlike conventional methods of constructing and interpolating sectional curves, the proposed method focuses on modifying a nominal computer aided design (CAD) model to reconstruct the worn blade. Through weighted rigid registration and constraint-based non-rigid registration, the design surface extracted from the nominal CAD model can be deformed to align with the surface data of the worn blade without a significant loss of its initial shape. Verification results show that the deformed design surface exhibits sufficient smoothness and accuracy for guiding tool path generation in the subsequent blade repair.
Turbine blades / Repair / Model reconstruction / Registration
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
Piya C, Wilson JM, Murugappan S et al (2011) Virtual repair: geometric reconstruction for remanufacturing gas turbine blades. In: ASME international design engineering technical conferences and computers and information in engineering conference, 28–31 August, Washinton DC, USA |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
/
| 〈 |
|
〉 |