A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites

Ji-Peng Chen , Lin Gu , Guo-Jian He

Advances in Manufacturing ›› 2020, Vol. 8 ›› Issue (3) : 279 -315.

PDF
Advances in Manufacturing ›› 2020, Vol. 8 ›› Issue (3) : 279 -315. DOI: 10.1007/s40436-020-00313-2
Article

A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites

Author information +
History +
PDF

Abstract

Among the various types of metal matrix composites, SiC particle-reinforced aluminum matrix composites (SiCp/Al) are finding increasing applications in many industrial fields such as aerospace, automotive, and electronics. However, SiCp/Al composites are considered as difficult-to-cut materials due to the hard ceramic reinforcement, which causes severe machinability degradation by increasing cutting tool wear, cutting force, etc. To improve the machinability of SiCp/Al composites, many techniques including conventional and nonconventional machining processes have been employed. The purpose of this study is to evaluate the machining performance of SiCp/Al composites using conventional machining, i.e., turning, milling, drilling, and grinding, and using nonconventional machining, namely electrical discharge machining (EDM), powder mixed EDM, wire EDM, electrochemical machining, and newly developed high-efficiency machining technologies, e.g., blasting erosion arc machining. This research not only presents an overview of the machining aspects of SiCp/Al composites using various processing technologies but also establishes optimization parameters as reference of industry applications.

Keywords

SiCp/Al / Machining / Conventional / Wear mechanism / Nonconventional / Performance

Cite this article

Download citation ▾
Ji-Peng Chen, Lin Gu, Guo-Jian He. A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites. Advances in Manufacturing, 2020, 8(3): 279-315 DOI:10.1007/s40436-020-00313-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nicholls CJ, Boswell B, Davies IJ, et al. Review of machining metal matrix composites. Int J Adv Manuf Technol, 2017, 90: 2429-2441.

[2]

Sidhu SS, Batish A, Kumar S. Fabrication and electrical discharge machining of metal-matrix composites: a review. J Reinf Plast Compos, 2013, 32(17): 1310-1320.

[3]

Benal MM, Shivanand HK. Influence of heat treatment on the coefficient of thermal expansion of Al (6061) based hybrid composites. Mater Sci Eng A, 2006, 435/436(6): 745-749.

[4]

Mishra AK, Srivastava RK. Wear behaviour of Al-6061/SiC metal matrix composites. J Inst Eng, 2017, 98(2): 97-103.

[5]

Reddy AP, Krishna PV, Rao RN. Al/SiC NP and Al/SiC NP/X nanocomposites fabrication and properties: a review. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst, 2017, 231(4): 155-172.

[6]

Xiang J, Pang S, Xie L, et al. Investigation of cutting forces, surface integrity, and tool wear when high-speed milling of high-volume fraction SiCp/Al6063 composites in PCD tooling. Int J Adv Manuf Technol, 2018, 98(5/8): 1237-1251.

[7]

Tailor S, Mohanty R, Soni P, et al. Wear behavior of plasma sprayed nanostructured Al-SiC composite coatings: a comparative study. Trans Indian Inst Met, 2016, 69(6): 1179-1191.

[8]

Bushlya V, Lenrick F, Gutnichenko O, et al. Performance and wear mechanisms of novel superhard diamond and boron nitride based tools in machining Al-SiCp metal matrix composite. Wears, 2017, 376/377: 152-164.

[9]

Bains PS, Sidhu SS, Payal H. Fabrication and machining of metal matrix composites: a review. Mater Manuf Process, 2016, 31(5): 553-573.

[10]

Chambers AR. The machinability of light alloy MMCs. Compos A Appl Sci Manuf, 1996, 27(2): 143147

[11]

Zhao W, Gu L, Xu H, et al. A novel high efficiency electrical erosion process-blasting erosion arc machining. Procedia CIRP, 2013, 6: 621-625.

[12]

Ramnath BV, Elanchezhian C, Annamalai R, et al. Aluminium metal matrix composites-a review. Rev Adv Mater Sci, 2014, 38(5): 55-60.

[13]

Shukla M, Dhakad S, Agarwal P, et al. Characteristic behavior of aluminium metal matrix composites: a review. Mater Today Proc, 2018, 5(2): 5830-5836.

[14]

Soltani S, Khosroshahi RA, Mousavian RT, et al. Stir casting process for manufacture of Al-SiC composites. Rare Met, 2017, 36(7): 581-590.

[15]

Kainer K. Custom made materials for automotive and aerospace engineering. Metal matrix nanocomposites, 2006, Weinheim: Wiley 1-48.

[16]

Muraliraja R, Arunachalam R, Al-Fori I, et al. Development of alumina reinforced aluminum metal matrix composite with enhanced compressive strength through squeeze casting process. Proc Inst Mech Eng Part L J Mat Des Appl, 2019, 233(3): 307-314.

[17]

Sarfraz S, Jahanzaib M, Wasim A, et al. Investigating the effects of as-casted and in situ heat-treated squeeze casting of Al-3.5% Cu alloy. Int J Adv Manuf Technol, 2017, 89(9/12): 3547-3561.

[18]

Sarfraz MH, Jahanzaib M, Ahmed W, et al. Multi-response parametric optimization of squeeze casting process for fabricating Al 6061-SiC composite. Int J Adv Manuf Technol, 2019, 102(1/4): 759-773.

[19]

Kini UA, Sharma S, Jagannath K, et al. Characterization study of aluminium 6061 hybrid composite. Int J Chem Mol Nucl Mater Metall Eng, 2015, 9(6): 578-582.

[20]

Falsafi J, Rosochowska M, Jadhav P, et al. Lower cost automotive piston from 2124/SiC/25p metal-matrix composite. SAE Int J Engines, 2017, 10(4): 1984-1992.

[21]

Avci U, Temiz S. A new approach to the production of partially graded and laminated composite material composed of SiC-reinforced 7039 Al alloy plates at different rates. Compos B Eng, 2017, 131: 76-81.

[22]

Lee H, Choi JH, Jo MC, et al. Effects of strain rate on compressive properties in bimodal 7075 Al-SiCp composite. Met Mater Int, 2018, 24(4): 894-903.

[23]

Rodrıguez-Castro R, Wetherhold R, Kelestemur M. Microstructure and mechanical behavior of functionally graded Al A359/SiCp composite. Mater Sci Eng A, 2002, 323(1/2): 445-456.

[24]

Surappa M, Surappa MK. Dry sliding wear of fly ash particle reinforced A356 Al composites. Wear, 2008, 265(3/4): 349-360.

[25]

Chakraborty S, Kar S, Ghosh SK, et al. Parametric optimization of electric discharge coating on aluminium-6351 alloy with green compact silicon carbide and copper tool: a Taguchi coupled utility concept approach. Surf Interfaces, 2017, 7: 47-57.

[26]

Murty SN, Rao BN, Kashyap B. On the hot working characteristics of 2124 Al-SiCp metal matrix composites. Adv Compos Mater, 2002, 11(2): 105-120.

[27]

Karvanis K, Fasnakis D, Maropoulos A, et al. Production and mechanical properties of Al-SiC metal matrix composites. IOP Conf Ser Mater Sci Eng, 2016, 161: 012070

[28]

Min S. Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans Nonferrous Met Soc China, 2009, 19(6): 1400-1404.

[29]

Ozben T, Kilickap E, Cakır O. Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol, 2008, 198(1/3): 220-225.

[30]

Milan M, Bowen P. Tensile and fracture toughness properties of SiC reinforced al alloys: effects of particle size, particle volume fraction, and matrix strength. J Mater Eng Perform, 2004, 13(6): 775-783.

[31]

El-Kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des (1980–2015), 2014, 54: 348-353.

[32]

Hong SJ, Kim HM, Huh D, et al. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater Sci Eng, A, 2003, 347(1/2): 198-204.

[33]

Yan C, Lifeng W, Jianyue R. Multi-functional SiC/Al composites for aerospace applications. Chin J Aeronaut, 2008, 21(6): 578-584.

[34]

Huang Y, Chen G, Wang B, et al. Fabrication, microstructure and properties of the mid-fraction SiC particles/6061Al composites using an optimized powder metallurgy technique. Russ J Non-Ferrous Met, 2019, 60(3): 312-318.

[35]

Muthukrishnan N, Murugan M, Rao KP. An investigation on the machinability of Al-SiC metal matrix composites using PCD inserts. Int J Adv Manuf Technol, 2008, 38(5/6): 447-454.

[36]

Das S, Behera R, Majumdar G, et al. An experimental investigation on the machinability of powder formed silicon carbide particle reinforced aluminium metal matrix composites. Int J Heat Mass Transf, 2007, 50(25/26): 5054-5064.

[37]

Dabade UA, Joshi SS, Balasubramaniam R, et al. Surface finish and integrity of machined surfaces on Al/SiCp composites. J Mater Process Technol, 2007, 192/193(1): 166-174.

[38]

Ciftci I, Turker M, Seker U. CBN cutting tool wear during machining of particulate reinforced MMCs. Wear, 2004, 257(9/10): 1041-1046.

[39]

Ge Y, Xu J, Yang H. Diamond tools wear and their applicability when ultra-precision turning of SiCp /2009Al matrix composite. Wear, 2010, 269(11/12): 699-708.

[40]

Chou YK, Liu J. CVD diamond tool performance in metal matrix composite machining. Surf Coat Technol, 2005, 200(56): 1872-1878.

[41]

Xiang J, Xie L, Gao F, et al. Diamond tools wear in drilling of SiCp /Al matrix composites containing copper. Ceram Int, 2018, 44(5): 5341-5351.

[42]

Durante S, Rutelli G, Rabezzana F. Aluminum-based MMC machining with diamond-coated cutting tools. Surf Coat Technol, 1997, 94: 632-640.

[43]

Karabulut S, Karako H. Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters. Neural Comput Appl, 2017, 28(5): 313-327.

[44]

Sahin Y. The effects of various multilayer ceramic coatings on the wear of carbide cutting tools when machining metal matrix composites. Surf Coat Technol, 2005, 199(1): 112-117.

[45]

Errico GE, Calzavarini R. Turning of metal matrix composites. J Mater Process Technol, 2001, 119(13): 257-260.

[46]

Andrewes CJE, Feng HY, Lau WM. Machining of an aluminum/SiC composite using diamond inserts. J Mater Process Technol, 2000, 102(13): 25-29.

[47]

Yousefi R, Kouchakzadeh MA, Rahiminasab J, et al. The influence of SiC particles on tool wear in machining of Al/SiC metal matrix composites produced by powder extrusion. Adv Mater Res, 2011, 325: 393-399.

[48]

Manna A, Bhattacharayya B. Influence of machining parameters on the machinability of particulate reinforced Al/SiC MMC. Int J Adv Manuf Technol, 2005, 25(9/10): 850-856.

[49]

Hooper RM, Henshall JL, Klopfer A. The wear of polycrystalline diamond tools used in the cutting of metal matrix composites. Int J Refract Metal Hard Mater, 1999, 17(13): 103-109.

[50]

Malli NA, Aaditya V, Raghavan R. Study and analysis of PCD 1500 and 1600 grade inserts on turning Al 6061 alloy with 15% reinforcement of SiC particles on MMC. Int Proc Comput Sci Inf Technol, 2012, 31: 143-148.

[51]

Klkap E, Akr O, Aksoy M, et al. Study of tool wear and surface roughness in machining of homogenised SiC reinforced aluminium metal matrix composite. J Mater Process Technol, 2005, 164/165(10): 862-867.

[52]

Kremer A, Devillez A, Dominiak S, et al. Machinability of Al/SiC patriculate metal-matrix composites under dry conditions with CVD diamod-coated cabride tools. Mach Sci Technol, 2008, 12(2): 214-233.

[53]

Karthikeyan R, Ganesan G, Nagarazan RS, et al. A critical study on machining of Al/SiC composites. Adv Manuf Process, 2001, 16(1): 47-60.

[54]

Manna A, Bhattacharayya B. A study on machinability of Al/SiC-MMC. J Mater Process Technol, 2003, 140(1/3): 711-716.

[55]

Ciftci I. Cutting tool wear mechanism when machining particulate reinforced MMCs. Technology, 2009, 12(4): 275-282.

[56]

Bhushan RK. Multiresponse optimization of Al alloy-SiC composite machining parameters for minimum tool wear and maximum metal removal rate. J Manuf Sci Eng, 2013, 135(2): 021013

[57]

Das D, Chaubey AK, Nayak BB, et al. Investigation on cutting tool wear in turning Al 7075/SiCp metal matrix composite. IOP Conf Ser Mater Sci Eng, 2018, 377: 12110

[58]

Muthukrishnan N, Davim JP. An investigation of the effect of work piece reinforcing percentage on the machinability of Al-SiC metal matrix composites. Free Radic Biol Med, 2011, 49(1): 15-24.

[59]

Duan C, Sun W, Che M, et al. Effects of cooling and lubrication conditions on tool wear in turning of Al/SiCp composite. Int J Adv Manuf Technol, 2019, 103: 1467-1479.

[60]

Kalaichelvi V, Karthikeyan R, Sivakumar D, et al. Tool wear classification using fuzzy logic for machining of Al/SiC composite material. Model Numer Simul Mater Sci, 2012, 2(2): 28-36.

[61]

Chavoshi SZ. Tool flank wear prediction in CNC turning of 7075Al alloy SiC composite. Prod Eng Res Dev, 2011, 5(1): 37-47.

[62]

Pramanik A, Zhang LC, Arsecularatne JA. Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf, 2006, 46(14): 1795-1803.

[63]

Antnio CAC, Davim JP. Optimal cutting conditions in turning of particulate metal matrix composites based on experiment and a genetic search model. Compos A, 2002, 33(2): 213-219.

[64]

Wang J, Zuo J, Shang Z, et al. Modeling of cutting force prediction in machining high-volume SiCp/Al composites. Appl Math Model, 2019, 70: 1-17.

[65]

Gaitonde VN, Karnik SR, Davim JP. Some studies in metal matrix composites machining using response surface methodology. J Reinf Plast Compos, 2009, 28(20): 2445-2457.

[66]

Krishnamurthy L, Sridhara BK, Abdulbudan D. Comparative study on the machinability aspects of aluminium silicon carbide and aluminium graphite composites. Int J Mach Machinab Mater, 2011, 10(7/8): 137-152.

[67]

Dabade UA, Dapkekar D, Joshi SS. Modeling of chiptool interface friction to predict cutting forces in machining of Al/SiCp composites. Int J Mach Tools Manuf, 2009, 49(9): 690-700.

[68]

Ramasubramanian K, Arunachalam N, Rao MR. Wear performance of nano-engineered boron doped graded layer CVD diamond coated cutting tool for machining of Al-SiC MMC. Wear, 2019, 426: 1536-1547.

[69]

El-Gallab M, Sklad M. Machining of Al/SiC particulate metal matrix composites: part II: workpiece surface integrity. J Mater Process Technol, 1998, 83(13): 277-285.

[70]

Liu H, Wang S, Zong W. Tool rake angle selection in micro-machining of 45 vol.% SiCp/2024Al based on its brittle-plastic properties. J Manuf Process, 2019, 37: 556-562.

[71]

Lin JT, Bhattacharyya D, Ferguson WG. Chip formation in the machining of SiC-particle-reinforced aluminium-matrix composites. Compos Sci Technol, 1998, 58(2): 285-291.

[72]

Hung NP, Yeo SH, Lee KK, et al. Chip formation in machining particle-reinforced metal matrix composites. Adv Manuf Process, 1998, 13(1): 85-100.

[73]

Dabade UA, Joshi SS. Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol, 2009, 209(10): 4704-4710.

[74]

Ge YF, Xu JH, Fu YC. Surface generation and chip formation when ultra-precision turning of SiCp/Al composites. Adv Mater Res, 2010, 135: 282-287.

[75]

Kishawy H, Kannan S, Balazinski M. An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann, 2004, 53(1): 91-94.

[76]

Dandekar CR, Shin YC. Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Compos A Appl Sci Manuf, 2009, 40(8): 1231-1239.

[77]

Duan C, Sun W, Fu C, et al. Modeling and simulation of tool-chip interface friction in cutting Al/SiCp composites based on a three-phase friction model. Int J Mech Sci, 2018, 142: 384-396.

[78]

Wu Q, Xu WX, Zhang LC. Machining of particulate-reinforced metal matrix composites: an investigation into the chip formation and subsurface damage. J Mater Process Technol, 2019, 274: 116315

[79]

Wu Q, Xu W, Zhang L. A micromechanics analysis of the material removal mechanisms in the cutting of ceramic particle reinforced metal matrix composites. Mach Sci Technol, 2018, 22(4): 638-651.

[80]

Wang Y, Liao W, Yang K, et al. Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs. Int J Adv Manuf Technol, 2019, 100(5/8): 1393-1404.

[81]

Guo H, Wang D, Zhou L. FEM prediction of chip morphology during the machining of particulates reinforced Al matrix composites. Adv Mater Res, 2011, 188: 220-223.

[82]

Fathipour M, Hamedi M, Yousefi R. Numerical and experimental analysis of machining of Al (20 vol% SiC) composite by the use of abaqus software. Materialwiss Werkstofftech, 2013, 44(1): 14-20.

[83]

Sandhiya YN, Thamizharasan M, Subramanyam BA, et al. Finite element analysis of tool particle interaction, particle volume fraction, size, shape and distribution in machining of A356/SiCp. Mater Today Proc, 2018, 5(8): 16800-16806.

[84]

Dandekar CR, Shin YC. Modeling of machining of composite materials: a review. Int J Mach Tools Manuf, 2012, 57: 102-121.

[85]

Ge Y, Xu J, Yang H, et al. Workpiece surface quality when ultra-precision turning of SiCp/Al composites. J Mater Process Technol, 2008, 203(1/3): 166-175.

[86]

Davim JP. Diamond tool performance in machining metal matrix composites. J Mater Process Technol, 2002, 128(13): 100-105.

[87]

Pradhan S, Singh G, Bhagi LK. Study on surface roughness in machining of Al/SiCp metal matrix composite using desirability function analysis approach. Mater Today Proc, 2018, 5(14): 28108-28116.

[88]

Ding X, Liew WYH, Liu XD. Evaluation of machining performance of MMC with PCBN and PCD tools. Wear, 2005, 259(712): 1225-1234.

[89]

Sharma S. Optimization of machining process parameters for surface roughness of Al-composites. J Inst Eng India Ser C, 2013, 94(4): 327-333.

[90]

Davim JP. Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Technol, 2003, 132(1): 340-344.

[91]

Palanikumar K, Karthikeyan R. Assessment of factors influencing surface roughness on the machining of Al/SiC particulate composites. Mater Des, 2007, 28(5): 1584-1591.

[92]

Muthukrishnan N, Davim JP. Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol, 2009, 209(1): 225-232.

[93]

Aurich JC, Zimmermann M, Schindler S, et al. Effect of the cutting condition and the reinforcement phase on the thermal load of the workpiece when dry turning aluminum metal matrix composites. Int J Adv Manuf Technol, 2016, 82(5/8): 1317-1334.

[94]

Muthukrishnan N, Murugan M, Rao KP. Machinability issues in turning of Al-SiC (10p) metal matrix composites. Int J Adv Manuf Technol, 2008, 39(3/4): 211-218.

[95]

Ge YF, Xu JH, Yang H, et al. Machining induced defects and the influence factors when diamond turning of SiCp/Al composites. Appl Mech Mater, 2007, 10/12: 626-630.

[96]

Dabade U, Sonawane H, Joshi S. Cutting force and surface roughness in machining Al/SiC composites of varying composition. Mach Sci Technol, 2010, 14(2): 258-279.

[97]

Cheung CF, Chan KC, To S, et al. Effect of reinforcement in ultra-precision machining of Al6061/SiC metal matrix composites. Scr Mater, 2002, 47(2): 77-82.

[98]

Wang Y, Liao W, Yang K, et al. Investigation on cutting mechanism of SiCp/Al composites in precision turning. Int J Adv Manuf Technol, 2019, 100(1/4): 963-972.

[99]

Gnay M, Eker U. Evaluation of surface integrity during machining with different tool grades of SiCp/Al-Si composites produced by powder metallurgy. Mater Sci Forum, 2011, 672: 319-322.

[100]

Muguthu JN, Gao D. Profile fractal dimension and dimensional accuracy analysis in machining metal matrix composites (MMCs). Mater Manuf Process, 2013, 28(10): 1102-1109.

[101]

Bushlya V, Filip Lenric, Gutnichenko O, et al. Performance and wear mechanisms of novel superhard diamond and boron nitride based tools in machining Al-SiCp metal matrix composite. Wear, 2017, 376/377: 152-164.

[102]

Varadarajan YS, Vijayaraghavan L, Krishnamurthy R. Performance enhancement through microwave irradiation of k20 carbide tool machining Al/SiC metal matrix composite. J Mater Process Technol, 2006, 173(2): 185-193.

[103]

Shankar E, John MRS, Thirumurugan M, et al. Surface characteristics of Al(SiC)p metal matrix composites by roller burnishing process. Int J Mach Mach Mater, 2008, 3(3/4): 283-292.

[104]

Sadat A. On the quality of machined surface region when turning Al/SiC metal marix composites. Mach Sci Technol, 2009, 13(3): 338-355.

[105]

Aurich JC, Zimmermann M, Schindler S, et al. Turning of aluminum metal matrix composites: influence of the reinforcement and the cutting condition on the surface layer of the workpiece. Adv Manuf, 2016, 4(3): 225-236.

[106]

Bansal P, Upadhyay L. Effect of turning parameters on tool wear, surface roughness and metal removal rate of alumina reinforced aluminum composite. Procedia Technology, 2016, 23: 304-310.

[107]

Ramanujam R, Muthukrishnan N, Raju R. Optimization of cutting parameters for turning Al-SiC(10p) MMC using ANOVA and gray relational analysis. Int J Precis Eng Manuf, 2011, 12(4): 651-656.

[108]

Jeyapaul R, Sivasankar S (2011) Optimization and modeling of turning process for aluminium-silicon carbide composite using artificial neural network models. In: IEEE international conference on industrial engineering and engineering management, pp 773–778

[109]

Bhushan RK, Kumar S, Das S. GA approach for optimization of surface roughness parameters in machining of Al alloy SiC particle composite. J Mater Eng Perform, 2012, 21(8): 1676-1686.

[110]

Shetty R, Pai RB, Rao SS, et al. Taguchi’s technique in machining of metal matrix composites. J Braz Soc Mech Sci Eng, 2009, 31(1): 12-20.

[111]

Ramanujam R, Raju R, Muthukrishnan N. Taguchi multi-machining characteristics optimization in turning of Al-15% SiCp composites using desirability function analysis. J Stud Manuf, 2010, 1(2/3): 120-125.

[112]

Manna A, Bhattacharyya B. Taguchi method based optimization of cutting tool flank wear during turning of PR-Al/20vol.% SiC-MMC. Int J Mach Machinab Mater, 2006, 1(4): 488-499.

[113]

Sahoo AK, Pradhan S. Modeling and optimization of Al/SiCp MMC machining using Taguchi approach. Measurement, 2013, 46(9): 3064-3072.

[114]

Sahoo A, Pradhan S, Rout A. Development and machinability assessment in turning Al/SiCp-metal matrix composite with multilayer coated carbide insert using Taguchi and statistical techniques. Arch Civ Mech Eng, 2013, 13(1): 27-35.

[115]

Seeman M, Ganesan G, Karthikeyan R, et al. Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol, 2010, 48(5/8): 613-624.

[116]

Palanikumar K, Shanmugam K, Davim JP. Analysis and optimization of cutting parameters for surface roughness in machining Al/SiC particulate composites by PCD tool. Int J Mater Prod Technol, 2009, 37(1/2): 117-128.

[117]

Tamang S, Chandrasekaran M. Modeling and optimization of parameters for minimizing surface roughness and tool wear in turning Al/SiCp MMC, using conventional and soft computing techniques. Adv Prod Eng Manag, 2015, 10(2): 59-72.

[118]

Joardar H, Das N, Sutradhar G, et al. Application of response surface methodology for determining cutting force model in turning of LM6/SiCp metal matrix composite. Measurement, 2014, 47: 452-464.

[119]

Chandrasekaran M, Tamang S (2014) Desirability analysis and genetic algorithm approaches to optimize single and multi response characteristics in machining Al-SiCp MMC. Aimtdr, p 653

[120]

Kumar S, Bhushan RK, Das S. Machining performance of 7075 Al alloy SiC metal matrix composite with HSS and carbide tool. J Manuf Technol Res, 2014, 5(1/2): 17-41.

[121]

Bhushan RK, Kumar S, Das S. Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite. Int J Adv Manuf Technol, 2010, 50(5/8): 459-469.

[122]

Kumar R, Chauhan S. Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement, 2015, 65: 166-180.

[123]

Bhushan RK. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod, 2013, 39(1): 242-254.

[124]

Mohan B, Venugopal S, Rajadurai A, et al. Optimization of the machinability of the Al-SiC metal matrix composite using the dynamic material model. Metall Mater Trans A, 2008, 39(12): 2931-2940.

[125]

Bian R, He N, Li L, et al. Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill. Int J Adv Manuf Technol, 2014, 71(1/4): 411-419.

[126]

ClausB Nestler A, Schubert A. Investigation of surface properties in milling of SiC particle reinforced aluminium matrix composites (AMCs). Procedia CIRP, 2016, 46: 480-483.

[127]

Shen B, Sun FH, Zhang DC. Comparative studies on the cutting performance of HFCVD diamond and DLC coated WC-Co milling tools in dry machining Al/SiC-MMC. Adv Mater Res, 2010, 126: 220-225.

[128]

Huang S, Zhou L, Yu X, et al. Experimental study of high-speed milling of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol, 2012, 62(5/8): 487-493.

[129]

Huang S, Guo L, He H, et al. Study on characteristics of SiCp/Al composites during high-speed milling with different particle size of PCD tools. Int J Adv Manuf Technol, 2018, 95(5/8): 2269-2279.

[130]

Wang YJ, Pan MQ, Chen T, et al. Performance of cutting tools in high speed milling of SiCp/Al composites. Adv Mater Res, 2012, 591/593: 311-314.

[131]

Huang ST, Zhou L. Evaluation of tool wear when milling SiCp/Al composites. Eng Mater, 2011, 455: 226-231.

[132]

Ge Y, Xu J, Fu Y. Machinability of SiC particle reinforced 2009Al matrix composites when high-speed milling with PCD tools. Int J Mach Mach Mater, 2015, 17(2): 108-126.

[133]

Deng B, Wang H, Peng F et al (2018) Experimental and theoretical investigations on tool wear and surface quality in micro milling of SiCp/Al composites under dry and MQL conditions. In: ASME 2018 International Mechanical Engineering Congress and Exposition, american society of mechanical Engineers, pp V002T02A001–V002T02A001

[134]

Karthikeyan R, Raghukandan K, Naagarazan RS, et al. Optimizing the milling characteristics of Al-SiC particulate composites. Met Mater, 2000, 6(6): 539-547.

[135]

Ekici E, Samta G, Glesin M. Experimental and statistical investigation of the machinability of Al-10% SiC MMC produced by hot pressing method. Arab J Sci Eng, 2014, 39(4): 3289-3298.

[136]

Jayakumar K, Mathew J, Joseph MA, et al. Processing and end milling behavioural study of A356-SiCp composite. Mater Sci Forum, 2012, 710: 338-343.

[137]

Jayakumar K, Mathew J, Joseph MA. An investigation of cutting force and tool-work interface temperature in milling of Al-SiCp metal matrix composite. Proc Inst Mech Eng Part B J Eng Manuf, 2013, 227(3): 362-374.

[138]

Vallavi MA, Gandhi NMD, Velmurugan C. Application of genetic algorithm in optimisation of cutting force of Al/SiCp metal matrix composite in end milling process. Int J Mater Prod Technol, 2018, 56(3): 234-252.

[139]

Huang ST, Yu X, Zhou L. Experimental study and modeling of milling force during high-speed milling of SiCp/Al composites using regression analysis. Adv Mater Res, 2011, 188: 3-8.

[140]

Babu BG, Selladurai V, Shanmugam R. Analytical modeling of cutting forces of end milling operation on aluminum silicon carbide particulate metal matrix composite material using response surface methodology. J Eng Appl Sci, 2008, 3(2): 195-196.

[141]

Chen X, Xie L, Xue X, et al. Research on 3D milling simulation of SiCp /Al composite based on a phenomenological model. Int J Adv Manuf Technol, 2017, 92: 2715-2723.

[142]

Ge YF, Xu JH, Fu YC. Cutting forces when high-speed milling of SiCp/Al composites. Adv Mater Res, 2011, 308: 871-876.

[143]

Huang S, Guo L, Yang H, et al. Study on characteristics in high-speed milling SiCp/Al composites with small particles and high volume fraction by adopting PCD cutters with different grain sizes. Int J Adv Manuf Technol, 2019, 95: 1-9.

[144]

Zha H, Feng P, Zhang J, et al. Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites. Int J Adv Manuf Technol, 2018, 97: 1-11.

[145]

Qin S, Cai XJ, Zhang YS, et al. Experimental studies on machinability of 14 wt.% of SiC particle reinforced aluminium alloy composites. Mater Sci Forum, 2012, 723: 94-98.

[146]

Reddy NSK, Kwang-Sup S, Yang M. Experimental study of surface integrity during end milling of Al/SiC particulate metal-matrix composites. J Mater Process Technol, 2008, 201(1–3): 574-579.

[147]

Zhang GF, Tan YQ, Zhang B, et al. Effect of SiC particles on the machining of aluminum/SiC composite. Mater Sci Forum, 2009, 626: 219-224.

[148]

Liu J, Cheng K, Ding H, et al. Realization of ductile regime machining in micro-milling SiCp/Al composites and selection of cutting parameters. Proc Inst Mech Eng Part C J Mech Eng Sci, 2019, 233(12): 4336-4347.

[149]

Chandrasekaran M. Development of predictive model for surface roughness in end milling of Al-SiCp metal matrix composites using fuzzy logic. World Acad Sci Eng Technol, 2012, 6(7): 928-933.

[150]

Reddy KS, Vijayaraghavan L. Machining studies on milling of Al/SiCp composite. Int J Mach Mach Mater, 2011, 9(1/2): 116-130.

[151]

Wang T, Xie L, Wang X. 2D and 3D milled surface roughness of high volume fraction SiCp/Al composites. Def Technol, 2015, 11(2): 104-109.

[152]

Ghoreishi R, Roohi AH, Ghadikolaei AD. Analysis of the influence of cutting parameters on surface roughness and cutting forces in high speed face milling of Al/SiC MMC. Mater Res Express, 2018, 5(8): 086521

[153]

Huang S, Guo L, He H, et al. Experimental study on SiCp/Al composites with different volume fractions in high-speed milling with PCD tools. Int J Adv Manuf Technol, 2018, 97(5/8): 2731-2739.

[154]

Wang T, Xie L, Wang X, et al. Surface integrity of high speed milling of Al/SiC/65p aluminum matrix composites. Procedia CIRP, 2013, 8: 475-480.

[155]

Arokiadass R, Palaniradja K, Alagumoorthi N. Prediction of flank wear in end milling of particulate metal matrix composite-RSM approach. Int J Appl Eng Res, 2011, 6(5): 559-569.

[156]

Jeyakumar S, Marimuthu K, Ramachandran T. Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM. J Mech Sci Technol, 2013, 27(9): 2813-2822.

[157]

Krishna MV, Xavior MA. Experiment and statistical analysis of end milling parameters for Al/SiC using response surface methodology. Int J Eng Technol, 2015, 7: 2274-2285.

[158]

Rajeswari S, Sivasakthivel P. Optimisation of milling parameters with multi-performance characteristic on Al/SiC metal matrix composite using grey-fuzzy logic algorithm. Multidiscip Model Mater Struct, 2018, 14(2): 284-305.

[159]

Sujay P, Sankar BR, Umamaheswarrao P. Experimental investigations on acceleration amplitude in end milling of Al6061-SiC metal matrix composite. Procedia Comput Sci, 2018, 133: 740-745.

[160]

Ge YF, Xu JH, Fu YC. Experimental study on high-speed milling of SiCp/Al composites. Adv Mater Res, 2011, 291/294: 725-731.

[161]

Wang T, Xie L, Wang X, et al. Pcd tool performance in high-speed milling of high volume fraction SiCp/Al composites. Int J Adv Manuf Technol, 2015, 78(9/12): 1445-1453.

[162]

Tosun G, Muratoglu M. The drilling of an Al/SiCp metal-matrix composites. Part I: microstructure. Compos Sci Technol, 2004, 64(2): 299-308.

[163]

Haq AN, Marimuthu P, Jeyapaul R. Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. Int J Adv Manuf Technol, 2008, 37(3/4): 250-255.

[164]

Monaghan J, O’reilly P. The drilling of an Al/SiC metal-matrix composite. J Mater Process Technol, 1992, 33(4): 469-480.

[165]

Barnes S, Pashby IR, Hashim AB. Effect of heat treatment on the drilling performance of aluminium/SiC MMC. Appl Compos Mater, 1999, 6(2): 121-138.

[166]

Thakre AA, Soni S. Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology. Eng Sci Technol Int J, 2016, 19(3): 1199-1205.

[167]

Babu KV, Uthayakumar M, Jappes JTW, et al. Optimization of drilling process on Al-SiC composite using grey relation analysis. Int J Manuf Mater Mech Eng, 2015, 5(4): 17-31.

[168]

Tosun G, Muratoglu M. The drilling of Al/SiCp metal-matrix composites. Part 2: workpiece surface integrity. Compos Sci Technol, 2004, 64(10/11): 1413-1418.

[169]

Calatoru V, Balazinski M, Mayer J, et al. Diffusion wear mechanism during high-speed machining of 7475-T7351 aluminum alloy with carbide end mills. Wear, 2008, 265(11/12): 1793-1800.

[170]

Xiang J, Pang S, Xie L, et al. Mechanism based FE simulation of tool wear in diamond drilling of SiCp/Al composites. Materials, 2018, 11(2): 252

[171]

Huang S, Zhou L, Chen L, et al. Drilling of SiCp/Al metal matrix composites with polycrystalline diamond (PCD) tools. Mater Manuf Process, 2012, 27(10): 1090-1094.

[172]

Hu F, Xie L, Xiang J, et al. Finite element modelling study on small-hole peck drilling of SiCp/Al composites. Int J Adv Manuf Technol, 2018, 96(9/12): 3719-3728.

[173]

Zhou L, Huang S, Xu L, et al. Drilling characteristics of SiCp/Al composites with electroplated diamond drills. Int J Adv Manuf Technol, 2013, 69(5/8): 1165-1173.

[174]

Tosun G. Statistical analysis of process parameters in drilling of Al/SiC metal matrix composite. Int J Adv Manuf Technol, 2011, 55(5/8): 477-485.

[175]

Barnes S, Pashby IR. Through-tool coolant drilling of aluminum/SiC metal matrix composite. J Eng Mater Technol, 2000, 122(4): 384-388.

[176]

Somasundaram G, Boopathy SR (2010) Fabrication and friction drilling of aluminum silicon carbide metal matrix composite. In: Frontiers in automobile and mechanical engineering-2010. IEEE, pp 21–26

[177]

Somasundaram G, Boopathy RS, Palanikumar K. Modeling and analysis of roundness error in friction drilling of aluminum silicon carbide metal matrix composite. J Compos Mater, 2012, 46(2): 169-181.

[178]

Singh S, Singh I, Dvivedi A. Multi objective optimization in drilling of Al6063/10% SiC metal matrix composite based on grey relational analysis. Proc Inst Mech Eng Part B J Eng Manuf, 2013, 227(12): 1767-1776.

[179]

Karthikeyan R, Jaiganesh S, Pai B. Optimization of drilling characteristics for Al/SiCp composites using fuzzy/GA. Met Mater Int, 2002, 8(2): 163-168.

[180]

Dhavamani C, Alwarsamy T. Optimization of machining parameters for aluminum and silicon carbide composite using genetic algorithm. Procedia Eng, 2012, 38: 1994-2004.

[181]

Singh H, Kamboj A, Kumar S. Multi response optimization in drilling Al6063/SiC/15% metal matrix composite. Int J Chem Nucl Mater Metall Eng, 2014, 8(4): 281-286.

[182]

Ekici E, Motorcu AR. Evaluation of drilling Al/SiC composites with cryogenically treated HSS drills. Int J Adv Manuf Technol, 2014, 74(9/12): 1495-1505.

[183]

Davim JP, Antonio CC. Optimisation of cutting conditions in machining of aluminium matrix composites using a numerical and experimental model. J Mater Process Technol, 2001, 112(1): 78-82.

[184]

Zhou L, Huang ST, Yu XL. Experimental study of grinding characteristics on SiCp/Al composites. Key Eng Mater, 2011, 487: 135-139.

[185]

Huang S, Yu X, Wang F, et al. A study on chip shape and chipforming mechanism in grinding of high volume fraction SiC particle reinforced Al-matrix composites. Int J Adv Manuf Technol, 2015, 80(9/12): 1927-1932.

[186]

Ilio AD, Paoletti A. A comparison between conventional abrasives and superabrasives in grinding of SiC-aluminium composites. Int J Mach Tools Manuf, 2000, 40(2): 173-184.

[187]

Zhang GF, Zhang B, Deng ZH. Mechanisms of Al/SiC composite machining with diamond whiskers. Key Eng Mater, 2009, 404: 165-175.

[188]

Xu LF, Zhou L, Yu XL, et al. An experimental study on grinding of SiC/Al composites. Adv Mater Res, 2011, 188: 90-93.

[189]

Zhong ZW. Grinding of aluminium-based metal matrix composites reinforced with Al2O3 or SiC particles. Int J Adv Manuf Technol, 2003, 21(2): 79-83.

[190]

Ilio AD, Paoletti A, Tagliaferri V, et al. An experimental study on grinding of silicon carbide reinforced aluminium alloys. Int J Mach Tools Manuf, 1996, 36(6): 673-685.

[191]

Zhou L, Huang S, Yu X. Machining characteristics in cryogenic grinding of SiCp/Al composites. Acta Metall Sin, 2014, 27(5): 869-874.

[192]

Kumar KR, Vettivel S. Effect of parameters on grinding forces and energy while grinding Al (A356)/SiC composites. Tribol-Mater Surf Interfaces, 2014, 8(4): 235-240.

[193]

Lu S, Gao H, Bao Y, et al. A model for force prediction in grinding holes of SiCp/Al composites. Int J Mech Sci, 2019, 160: 1-14.

[194]

Thiagarajan C, Somasundaram S, Shankar P. Effect of grinding temperature during cylindrical grinding on surface finish of Al/SiC metal matrix composites. Int J Eng Sci, 2013, 2(12): 58-66.

[195]

Sun FH, Li X, Wang Y, et al. Studies on the grinding characteristics of SiC particle reinforced aluminum-based mmcs. Key Eng Mater, 2006, 304: 261-265.

[196]

Zhou L, Huang S, Zhang C. Numerical and experimental studies on the temperature field in precision grinding of SiCp/Al composites. Int J Adv Manuf Technol, 2013, 67(5/8): 1007-1014.

[197]

Du J, Zhang H, He W, et al. Simulation and experimental study on surface formation mechanism in machining of SiCp/Al composites. Appl Compos Mater, 2019, 26(1): 29-40.

[198]

Yin G, Wang D, Cheng J. Experimental investigation on micro-grinding of SiCp/Al metal matrix composites. Int J Adv Manuf Technol, 2019, 102: 1-15.

[199]

Chandrasekaran H, Johansson JO. Influence of processing conditions and reinforcement on the surface quality of finish machined aluminium alloy matrix composites. CIRP Ann, 1997, 46(1): 493-496.

[200]

Zhu CM, Gu P, Wu YY, et al. Surface roughness prediction model of SiCp/Al composite in grinding. Int J Mech Sci, 2019, 155: 98-109.

[201]

Pai D, Rao SS, Shetty R. Application of statistical tool for optimization of specific cutting energy and surface roughness on surface grinding of AlSiC35p composites. Int J Sci Stat Comput, 2011, 2(1): 16-32.

[202]

Hung N, Zhong Z, Zhong C. Grinding of metal matrix composites reinforced with silicon-carbide particles. Mater Manuf Process, 1997, 12(6): 1075-1091.

[203]

Nandakumar A, Rajmohan T, Vijayabhaskar S. Experimental evaluation of the lubrication performance in MQL grinding of nano SiC reinforced al matrix composites. Silicon, 2019, 11: 1-13.

[204]

Li JG, Du JG, Yao YX. A comparison of dry and wet machining of SiC particle-reinforced aluminum metal matrix composites. Adv Mater Res, 2012, 500: 168-173.

[205]

Du J, Zhou L, Li J, et al. Analysis of chip formation mechanism in mill-grinding of SiCp/Al composites. Mater Manuf Processe, 2014, 29(11/12): 1353-1360.

[206]

Du J, Li J, Yao Y, et al. Prediction of cutting forces in mill-grinding SiCp/Al composites. Mater Manuf Process, 2014, 29(3): 314-320.

[207]

Yao Y, Du JG, Li JG, et al. Surface quality analysis in millgrinding of SiCp/Al. Adv Mater Res, 2011, 299: 1060-1063.

[208]

Li J, Du J, Yao Y, et al. Experimental study of machinability in mill-grinding of SiCp/Al composites. J Wuhan Univ Technol-Mater Sci Ed, 2014, 29(6): 1104-1110.

[209]

Li JG, Du JG, Zhao H. Experimental study on the surface roughness with mill-grinding SiC particle reinforced aluminum matrix composites. Adv Mater Res, 2011, 188: 203-207.

[210]

Thiagarajan C, Sivaramakrishnan R, Somasundaram S. Modeling and optimization of cylindrical grinding of Al/SiC composites using genetic algorithms. J Braz Soc Mech Sci Eng, 2012, 34(1): 32-40.

[211]

Yao YX, Du JG, Li JG. Investigation of material removal rate in mill-grinding SiC particle reinforced aluminum matrix composites. Adv Mater Res, 2012, 500: 320-325.

[212]

Thiagarajan C, Sivaramakrishnan R, Somasundaram S. Experimental evaluation of grinding forces and surface finish in cylindrical grinding of Al/SiC metal matrix composites. Proc Inst Mech Eng Part B J Eng Manuf, 2011, 225(9): 1606-1614.

[213]

Huang S, Zhou L, Yu X, et al. Study of the mechanism of ductileregime grinding of SiCp/Al composites using finite element simulation. Int J Mater Res, 2012, 103(10): 1210-1217.

[214]

Kathiresan M, Sornakumar T. EDM studies on aluminum alloy-silicon carbide composites developed by vortex technique and pressure die casting. J Miner Mater Charact Eng, 2010, 9(1): 79

[215]

Ming W, Ma J, Zhang Z, et al. Soft computing models and intelligent optimization system in electro-discharge machining of SiC/Al composites. Int J Adv Manuf Technol, 2016, 87(1/4): 1-17.

[216]

Karthikeyan R, Raju S, Naagarazan RS, et al. Optimization of electrical discharge machining characteristics of SiCp/LM25Al composites using goal programming. J Mater Sci Technol, 2001, 17(s1): S57-S60.

[217]

Dev A, PatelK Pandey PM, et al. Machining characteristics and optimisation of process parameters in micro-EDM of SiCp/ Al composites. Int J Manuf Res, 2009, 4(4): 458-480.

[218]

Singh B, Kumar J, Kumar S. Investigating the influence of process parameters of ZNC EDM on machinability of A6061/10% SiC composite. Adv Mater Sci Eng, 2013.

[219]

Seo YW, Kim D, Ramulu M. Electrical discharge machining of functionally graded 15–35 vol% SiCp/Al composites. Adv Manuf Process, 2006, 21(5): 479-487.

[220]

Dhar S, Purohit R, Saini N, et al. Mathematical modeling of electric discharge machining of cast Al-4Cu-6Si alloy-10 wt.% SiCp composites. J Mater Process Technol, 2007, 194(1/3): 24-29.

[221]

Ramulu M, Paul G, Patel J. EDM surface effects on the fatigue strength of A 15 vol% SiC/Al metal matrix composite material. Compos Struct, 2001, 54(1): 79-86.

[222]

Uthayakumar M, Babu KV, Kumaran ST, et al. Study on the machining of Al-SiC functionally graded metal matrix composite using die-sinking EDM. Part Sci Technol, 2019, 37(1): 103-109.

[223]

Dvivedi A, Kumar P, Singh I. Effect of EDM process parameters on surface quality of Al 6063 SiCp metal matrix composite. Int J Mater Prod Technol, 2010, 39(3/4): 357-377.

[224]

Yu P, Xu J, Li Y et al (2018) Electrical discharge machining of SiCp/2024Al composites. In: 2018 IEEE international conference on manipulation. manufacturing and measurement on the nanoscale (3MNANO). pp 192–196

[225]

Khan F, Singh B, Kalra C. Experimental investigation of machining of Al/SiC MMC on EDM by using rotating and non-rotating electrode. Int J IT, 2012, 1: 50-53.

[226]

Singh NK, Prasad R, Johari D. Electrical discharge drilling of Al-SiC composite using air assisted rotary tubular electrode. Mater Today Proc, 2018, 5(11): 23769-23778.

[227]

Sidhu SS, Batish A, Kumar S. Neural network-based modeling to predict residual stresses during electric discharge machining of Al/SiC metal matrix composites. Proc Inst Mech Eng Part B J Eng Manuf, 2013, 227(11): 1679-1692.

[228]

Fard RK, Afza RA, Teimouri R. Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of AlSiC metal matrix composite. J Manuf Process, 2013, 15(4): 483-494.

[229]

Bhuyan RK, Routara BC, Parida AK. Using entropy weight, OEC and fuzzy logic for optimizing the parameters during EDM of Al-24 % SiCp MMC. Adv Prod Eng Manag, 2015, 10(4): 217-227.

[230]

Golshan A, Gohari S, Ayob A. Multi-objective optimisation of electrical discharge machining of metal matrix composite Al/SiC using nondominated sorting genetic algorithm. Int J Mechatron Manuf Syst, 2012, 5(5/6): 385-398.

[231]

SatpathyA Tripathy S, Senapati NP, et al. Optimization of EDM process parameters for AlSiC-20% SiC reinforced metal matrix composite with multi response using topsis. Mater Today Proc, 2017, 4(2): 3043-3052.

[232]

Puhan D, Mahapatra SS, Sahu J, et al. A hybrid approach for ultiresponse optimization of non-conventional machining on AlSiCp MMC. Measurement, 2013, 46(9): 3581-3592.

[233]

Bhuyan RK, Routara BC, Parida AK. An approach for optimization the process parameter by using topsis method of Al24%SiC metal matrix composite during EDM. Mater Today Proc, 2015, 2(4/5): 3116-3124.

[234]

Bhuyan RK, RoutaraB, Parida AK et al (2014) Parametric optimization of Al-SiC12% metal matrix composite machining by electrical discharge machine. In: India manufacturing technology design and research conference, pp 345–345

[235]

Raza MH, Wasim A, Ali MA, et al. Investigating the effects of different electrodes on Al6061-SiC-7.5 wt% during electric discharge machining. Int J Adv Manuf Technol, 2018, 99(9/12): 3017-3034.

[236]

Gopalakannan S, Senthilvelan T. EDM of cast Al/SiC metal matrix nanocomposites by applying response surface method. Int J Adv Manuf Technol, 2013, 67(1/4): 485-493.

[237]

Balasubramaniam V, Baskar N, Narayanan CS. Experimental investigations on EDM process for optimum cylindricity and SR through less machining time for Al6061/SiC composites. Asian J Res Soc Sci Humanit, 2016, 6(12): 126-134.

[238]

Singh PN, Raghukandan K, Pai BC. Optimization by grey relational analysis of EDM parameters on machining Al10%SiC composites. J Mater Process Technol, 2004, 155/156(6): 1658-1661.

[239]

Murugesan S, Balamurugan K. Optimization by grey relational analysis of EDM parameters in machining Al-15% SiC MMC using multihole electrode. J Appl Sci, 2012, 12(10): 963-970.

[240]

Senapati NP, Kumar R, Tripathy S et al (2017) Multi-objective optimization of EDM process parameters using PCA and topsis method during the machining of Al-20% SiCp metal matrix composite. In: Innovative design and development practices in aerospace and automotive engineering, pp 359–367

[241]

Mohan B, Rajadurai A, Satyanarayana KG. Effect of SiC and rotation of electrode on electric discharge machining of AlSiC composite. J Mater Process Technol, 2002, 124(3): 297-304.

[242]

Vishwakarma U, Dvivedi A, Kumar P. Finite element modeling of material removal rate in powder mixed electric discharge machining of Al-SiC metal matrix composites. Materials processing fundamentals, 2013, Cham: Springer 151-158.

[243]

Zhao WS, Meng QG, Wang ZL. Application research on powder mixed EDM in rough machining. J Mater Process Technol, 2002, 129(s1): 30-33.

[244]

Kansal H, Singh S, Kumar P. Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel. J Manuf Process, 2007, 9(1): 13-22.

[245]

Kansal HK. An experimental study of the machining parameters in powder mixed electric discharge machining of Al10%SiC metal matrix composites. Int J Mach Mach Mater, 2006, 1(4): 396-411.

[246]

Hu QF, Song YB, Hou JP, et al. Surface properties of SiCp/Al composite by powder-mixed EDM. Procedia CIRP, 2013, 6: 101-106.

[247]

Singh B, Kumar J, Kumar S. Influences of process parameters on MRR improvement in simple and powder-mixed EDM of AA6061/10% SiC composite. Mater Manuf Process, 2015, 30(3): 303-312.

[248]

Singh B, Kumar J, Kumar S. Investigation of the tool wear rate in tungsten powder-mixed electric discharge machining of AA6061/10% SiCp composite. Mater Manuf Process, 2016, 31(4): 456-466.

[249]

Singh B, Kumar J, Kumar S. Experimental investigation on surface characteristics in powder-mixed electrodischarge machining of AA6061/10% SiC composite. Mater Manuf Process, 2014, 29(3): 287-297.

[250]

Mohal S, Kumar H. Study on the multiwalled carbon nano tube mixed EDM of Al-SiCp metal matrix composite. Mater Today Procedings, 2017, 4(2): 3987-3993.

[251]

Mohal S, Kumar H. Parametric optimization of multiwalled carbon nanotube-assisted electric discharge machining of Al-10% SiCp metal matrix composite by response surface methodology. Mater Manuf Process, 2017, 32(3): 263-273.

[252]

Vishwakarma UK, Dvivedi A, Kumar P. Comparative study of powder mixed EDM and rotary tool EDM performance during machining of Al-SiC metal matrix composites. Int J Mach Mach Mater, 2014, 16(2): 113-128.

[253]

Arya RK, Dvivedi A, Karunakar DB. Parametric investigation of powder mixed electrical discharge machining of Al-SiC metal matrix composites. Int J Eng Innov Res, 2012, 1(6): 559-566.

[254]

Mohanty S, Routara B, Nanda B, et al. Study of machining characteristics of Al-SiCp12% composite in nano powder mixed dielectric electrical discharge machining using RSM. Mater Today Proc, 2018, 5(11): 25581-25590.

[255]

Behera S, Satapathy S, Ghadai SK. Parameter optimisation of powder mixed EDM of aluminium-based metal matrix composite using Taguchi and grey analysis. Int J Prod Qual Manag, 2015, 16(2): 148-168.

[256]

Mohanty S, Routara BC, Bhuayan RK. Experimental investigation of machining characteristics for Al-SiC12% composite in electro-discharge machining. Mater Today Proc, 2017, 4(8): 8778-8787.

[257]

Kumar H, Davim JP. Role of powder in the machining of Al-10 matrix composites by powder mixed electric discharge machining. J Compos Mater, 2011, 45(2): 133-151.

[258]

Pramanik A, Basak AK. Degradation of wire electrode during electrical discharge machining of metal matrix composites. Wear, 2016, 346/347: 124-131.

[259]

Adithan M. Unconventional machining processes, 2009, Chennai: Atlantic Publishers & Distributors

[260]

Satishkumar D, Kanthababu M, Vajjiravelu V, et al. Investigation of wire electrical discharge machining characteristics of Al6063/SiC composites. Int J Adv Manuf Technol, 2011, 56(9/12): 975-986.

[261]

Rozenek M, Kozak J, Dabrowski L, et al. Electrical discharge machining characteristics of metal matrix composites. J Mater Process Technol, 2001, 109(3): 367-370.

[262]

Shandilya P, Jain PK, Jain NK. On wire breakage and microstructure in WEDC of SiCp /6061 aluminum metal matrix composites. Int J Adv Manuf Technol, 2012, 61(9/12): 1199-1207.

[263]

Patil NG, Brahmankar P. Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis. Int J Adv Manuf Technol, 2010, 51(5/8): 599-610.

[264]

Ebeid S, Fahmy R, Habib S (2004) Mathematical modelling for wire electrical discharge machining of aluminum-silicon carbide composites. In: Proceedings of the 34th international MATADOR conference. Springer, pp 147–152

[265]

Yang WS, Chen GQ, Wu P, et al. Electrical discharge machining of Al2024-65 vol% SiC composites. Acta Metall Sin (Eng Lett), 2017, 30(5): 1-9.

[266]

Pramanik A. Electrical discharge machining of MMCs reinforced with very small particles. Mater Manuf Process, 2016, 31(4): 397-404.

[267]

Patil N, Brahmankar P. Some investigations into wire electro-discharge machining performance of Al/SiCp composites. Int J Mach Mach Mater, 2006, 1(4): 412-431.

[268]

Wang ZL, Geng S, Chi GX. Surface integrity associated with SiC/Al particulate composite by micro-wire electrical discharge machining. Mater Manuf Process, 2014, 29(5): 532-539.

[269]

Kanthababu M, Jegaraj JJR, Gowri S. Investigation on material removal rate and surface roughness in electrical discharge turning process of Al 7075-based metal matrix composites. Int J Manuf Technol Manag, 2016, 30(3/4): 216-239.

[270]

Shandilya P, Jain P, Jain N. Neural network based modeling in wire electric discharge machining of SiCp/6061 aluminum metal matrix composite. Adv Mater Res, 2012, 383: 6679-6683.

[271]

Shandilya P, Jain PK, Jain NK. Study on wire electric discharge machining based on response surface methodology and genetic algorithm. Adv Mater Res, 2012, 622/623: 1280-1284.

[272]

Shandilya P, Jain PK, Jain NK. RSM and ANN modeling approaches for predicting average cutting speed during WEDM of SiCp /6061 Al MMC. Procedia Eng, 2013, 64: 767-774.

[273]

Patil N, Brahmankar P. On the response surface modeling of wire electrical discharge machining of Al/SiCp metal matrix composites (MMCs). J Mach Form Technol, 2010, 2(1/2): 47-70.

[274]

Srivastava A, Dixit AR, Tiwari S. Experimental investigation of wire EDM process parameteres on aluminum metal matrix composite Al2024/SiC. Int J Adv Res Innov, 2014, 2: 511-515.

[275]

Saini V, Khan ZA, Siddiquee AN. Optimization of wire electric discharge machining of composite material (Al6061/SiCp) using Taguchi method. Int J Mech Prod Eng, 2013, 2(1): 61-64.

[276]

Phate MR, Toney SB, Phate VR. Analysis of machining parameters in wedm of Al/SiCp20 MMC using Taguchi-based grey-fuzzy approach. Modell Simul Eng, 2019, 2019: 1-13.

[277]

Geng XS, Wang YK, Song BY, et al. Optimization and analysis for surface roughness of SiCp/Al metal matrix composite by microWEDM. Adv Mater Res, 2013, 821: 1266-1270.

[278]

Babu KA, Venkataramaiah P. Multi-response optimization in wire electrical discharge machining (WEDM) of Al6061/SiCp composite using hybrid approach. J Manuf Sci Prod, 2015, 15(4): 327-338.

[279]

Rao TB, Krishna AG. Selection of optimal process parameters in WEDM while machining Al7075/SiCp metal matrix composites. Int J Adv Manuf Technol, 2014, 73(1/4): 299-314.

[280]

Chen J, Gu L, Xu H et al (2015) Research on the machining performance of SiC/Al composites utilizing the beam process. In: ASME 2015 international manufacturing science and engineering conference, p V001T02A046

[281]

Chen J, Gu L, Liu X, et al. Combined machining of SiC/Al composites based on blasting erosion arc machining and CNC milling. Int J Adv Manuf Technol, 2018, 96(1/4): 111-121.

[282]

Gu L, Chen J, Xu H, et al. Blasting erosion arc machining of 20 vol% SiC/Al metal matrix composites. Int J Adv Manuf Technol, 2016, 87(9/12): 2775-2784.

[283]

Chen J, Gu L, Zhu Y et al (2017) High efficiency blasting erosion arc machining of 50 vol% SiC/Al matrix composites. Proc Inst Mech Eng Part B J Eng Manuf. https://doi.org/10.1177/0954405417690553

[284]

Chen J, Gu L, Xu H, et al. Study on blasting erosion arc machining of Ti6Al4V alloy. Int J Adv Manuf Technol, 2016, 85(9/12): 2819-2829.

[285]

Xu H, Gu L, Chen J, et al. Machining characteristics of nickel-based alloy with positive polarity blasting erosion arc machining. Int J Adv Manuf Technol, 2015, 79(5/8): 937-947.

[286]

Kozak J. Mathematical models for computer simulation of electrochemical machining processes. J Mater Process Technol, 1998, 76(1/3): 170-175.

[287]

Hackert-Oschätzchen M, Lehnert N, Maritn A, et al. Surface characterization of particle reinforced aluminum-matrix composites finished by pulsed electrochemical machining. Procedia CIRP, 2016, 45: 351-354.

[288]

Kumar KS, Sivasubramanian R. Modeling of metal removal rate in machining of aluminum matrix composite using artificial neural network. J Compos Mater, 2011, 45(22): 2309-2316.

[289]

Senthilkumar C, Ganesan G, Karthikeyan R. Study of electrochemical machining characteristics of Al/SiCp composites. Int J Adv Manuf Technol, 2009, 43(3/4): 256-263.

[290]

Senthilkumar C, Ganesan G, Karthikeyan R, et al. Modelling and analysis of electrochemical machining of cast Al/20% SiCp composites. Mater Sci Technol, 2010, 26(3): 289-296.

[291]

Dharmalingam S, Marimuthu P, Raja K, et al. Experimental investigation on electrochemical micro machining of Al-10% wt SiCp based on Taguchi design of experiments. J Rev Mech Eng, 2014, 8(1): 80-88.

[292]

Lehnert N, Meichsner G, Hackert-Oschätzchen M, et al. Study on the influence of the processing speed in the generation of complex geometries in aluminium matrix composites by electrochemical precision machining. Procedia CIRP, 2018, 68: 713-718.

[293]

Miller F, Monaghan J. Non-conventional machining of particle reinforced metal matrix composite. Int J Mach Tools Manuf, 2000, 40(9): 1351-1366.

[294]

Parikh PJ, Lam SS. Parameter estimation for abrasive water jet machining process using neural networks. Int J Adv Manuf Technol, 2009, 40(5/6): 497-502.

[295]

Kanca MKE, Eyercioglu O. Prediction of surface roughness in abrasive waterjet machining of particle reinforced MMCs using genetic expression programming. Int J Adv Manuf Technol, 2011, 55(9/12): 955-968.

[296]

Axinte D, Srinivasu D, Kong M, et al. Abrasive water jet cutting of polycrystalline diamond: a preliminary investigation. Int J Mach Tools Manuf, 2009, 49(10): 797-803.

[297]

Hamatani G, Ramulu M. Machinability of high temperature composites by abrasive waterjet. J Eng Mater Technol, 1990, 112(4): 381-386.

[298]

Srinivas S, Babu NR. Role of garnet and silicon carbide abrasives in abrasive waterjet cutting of aluminum-silicon carbide particulate metal matrix composites. Int J Appl Res Mech Eng, 2011, 1: 109-122.

[299]

Srinivas S, Babu NR. Penetration ability of abrasive waterjets in cutting of aluminum-silicon carbide particulate metal matrix composites. Mach Sci Technol, 2012, 16(3): 337-354.

[300]

Patel R, Srinivas S (2017) Abrasive water jet turning of aluminum-silicon carbide metal matrix composites. In: Proceedings of 10th international conference on precision, meso, micro and nano engineering

[301]

Sharma V, Kumar V. Multi-objective optimization of laser curve cutting of aluminium metal matrix composites using desirability function approach. J Braz Soc Mech Sci Eng, 2016, 38(4): 1221-1238.

[302]

Sharma V, Kumar V. Investigating the quality characteristics of Al5052/SiC metal matrix composites machined by Co2 laser curve cutting. Proc Inst Mech Eng Part L J Mater Des Appl, 2018, 232(1): 3-19.

[303]

Biffi C, Capello E, Previtali B. Laser and lathe thread cutting of aluminium metal matrix composite. Int J Mach Mach Mater, 2009, 6(3/4): 250-269.

[304]

Padhee S, Pani S, Mahapatra S. A parametric study on laser drilling of Al/SiCp metal-matrix composite. Proc Inst Mech Eng Part B J Eng Manuf, 2012, 226(1): 76-91.

[305]

Hackert-Oschätzchen M, Meichsner G, Zinecker M, et al. Micro machining with continuous electrolytic free jet. Precis Eng, 2012, 36(4): 612-619.

[306]

Hackert-Oschätzchen M, Paul R, Kowalick M, et al. Multiphysics simulation of the material removal in jet electrochemical machining. Procedia CIRP, 2015, 31: 197-202.

[307]

Hackert-Oschätzchen M, Paul R, Martin A. Study on the dynamic generation of the jet shape in jet electrochemical machining. J Mater Process Technol, 2015, 223: 240-251.

[308]

Lehnert N, Hackert-Oschätzchen M, Martin A, et al. Derivation of guidelines for reliable finishing of aluminium matrix composites by jet electrochemical machining. Procedia CIRP, 2018, 68: 471-476.

[309]

Hackert-Oschätzchen M, Lehnert N, Martin A, et al. Jet electrochemical machining of particle reinforced aluminum matrix composites with different neutral electrolytes. IOP Conf Ser Mater Sci Eng, 2016, 118: 012036

[310]

Przestacki D, Szymański P. Metallographic analysis of surface layer after turning with laser-assisted machining of composite A359/20SiCp. Composites, 2011, 2: 102-106.

[311]

Dandekar CR, Shin YC. Multi-scale modeling to predict sub-surface damage applied to laser-assisted machining of a particulate reinforced metal matrix composite. J Mater Process Technol, 2013, 213(2): 153-160.

[312]

Zhang H, Kong X, Yang L, et al. High temperature deformation mechanisms and constitutive modeling for Al/SiCp/45 metal matrix composites undergoing laser-assisted machining. Mater Sci Eng A, 2015, 642: 330-339.

[313]

Wang Z, Xu J, Yu H, et al. Process characteristics of laserassisted micro machining of SiCp/2024Al composites. Int J Adv Manuf Technol, 2018, 94(9/12): 3679-3690.

[314]

Mirshamsi S, Movahhedy M, Khodaygan S. Experimental modeling and optimizing process parameters in the laser assisted machining of silicon carbide particle-reinforced aluminum matrix composites. Mater Res Express, 2019, 6(8): 086591

[315]

Przestacki D. Conventional and laser assisted machining of composite A359/20SiCp. Procedia Cirp, 2014, 14: 229-233.

[316]

Kong X, Yang L, Zhang H, et al. Optimization of surface roughness in laser-assisted machining of metal matrix composites using Taguchi method. Int J Adv Manuf Technol, 2017, 89(1/4): 529-542.

[317]

Kawalec M, Przestacki D, Bartkowiak K, et al. Laser assisted machining of aluminium composite reinforced by SiC particle. Int Congr Appl Lasers Electro-Opt, 2008.

[318]

Kong X, Zhang H, Yang L, et al. Carbide tool wear mechanisms in laser-assisted machining of metal matrix composites. Int J Adv Manuf Technol, 2016, 85(1/4): 365-379.

[319]

Bo Z, Liu CS, Zhu XS, et al. Research on vibration cutting performance of particle reinforced metallic matrix composites SiC/Al. J Mater Process Technol, 2002, 129(s1): 380-384.

[320]

Zhong Z, Lin G. Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles. Int J Adv Manuf Technol, 2006, 27(11/12): 1077-1081.

[321]

Kim J, Bai W, Roy A, et al. Hybrid machining of metal-matrix composite. Procedia CIRP, 2019, 82: 184-189.

[322]

Xiang DH, Zhi XT, Yue GX, et al. Study on surface quality of Al/SiCp composites with ultrasonic vibration high speed milling. Appl Mech Mater, 2010, 42: 363-366.

[323]

Zhi XT, Xiang DH, Deng JQ. Research on high volume fraction SiCp/Al removal mechanism under condition of ultrasonic vertical vibration. Appl Mech Mater, 2013, 373/375: 2038-2041.

[324]

Xu XX, Mo YL, Liu CS, et al. Drilling force of SiC particle reinforced aluminum-matrix composites with ultrasonic vibration. Key Eng Mater, 2009, 416: 243-247.

[325]

Kadivar MA, Yousefi R, Akbari J, et al. Burr size reduction in drilling of Al/SiC metal matrix composite by ultrasonic assistance. Adv Mater Res, 2012, 410: 279-282.

[326]

Xiang DH, Zhang YL, Yang GB, et al. Study on grinding force of high volume fraction SiCp/Al composites with rotary ultrasonic vibration grinding. Adv Mater Res, 2014, 1027: 48-51.

[327]

Zhou M, Zheng W. A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites. Int J Adv Manuf Technol, 2016, 87(9/12): 3211-3224.

[328]

Zheng W, Zhou M, Zhou L. Influence of process parameters on surface topography in ultrasonic vibration-assisted end grinding of SiCp/Al composites. Int J Adv Manuf Technol, 2017, 91(5/8): 2347-2358.

[329]

Zhou M, Wang M, Dong G. Experimental investigation on rotary ultrasonic face grinding of SiCp/Al composites. Adv Manuf Process, 2016, 31(5): 673-678.

[330]

Shanawaz AM, Sundaram S, Pillai UTS, et al. Grinding of aluminium silicon carbide metal matrix composite materials by electrolytic in-process dressing grinding. Int J Adv Manuf Technol, 2011, 57(1/4): 143-150.

[331]

Yu X, Huang S, Xu L. Elid grinding characteristics of SiCp/Al composites. Int J Adv Manuf Technol, 2016, 86(5/8): 1165-1171.

[332]

Agrawal SS, Yadava Vinod. Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites. Adv Manuf Process, 2013, 28(4): 381-389.

[333]

Agrawal SS, Yadava V. Development and experimental study of surface electrical discharge diamond grinding of Al10 wt%SiC composite. J Inst Eng, 2015, 97(1): 1-9.

[334]

Marimuthu S, Dunleavey J, Liu Y, et al. Waterjet guided laser drilling of SiC reinforced aluminium metal matrix composites. J Compos Mater, 2019, 53(26/27): 3787-3796.

[335]

Liu J, Yue T, Guo Z. An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. Int J Mach Tools Manuf, 2010, 50(1): 86-96.

Funding

Natural Science Foundation of CHINA(51575351)

Innovation and entrepreneurship project for high-level talents in Jiangsu province(164040022)

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/