Investigation of electropolishing characteristics of tungsten in eco-friendly sodium hydroxide aqueous solution

Wei Han, Feng-Zhou Fang

Advances in Manufacturing ›› 2020, Vol. 8 ›› Issue (3) : 265-278.

Advances in Manufacturing ›› 2020, Vol. 8 ›› Issue (3) : 265-278. DOI: 10.1007/s40436-020-00309-y
Article

Investigation of electropolishing characteristics of tungsten in eco-friendly sodium hydroxide aqueous solution

Author information +
History +

Abstract

In this study, an eco-friendly electrolyte for electropolishing tungsten and the minimum material removal depth on the electropolished tungsten surface are investigated using an electrochemical etching method. Using a concentrated acid electrolyte, the polarization curve and current density transient are observed. For a NaOH electrolyte, the effects of interelectrode gap and electrolyte concentration on electropolishing are investigated. The differences in electropolishing characteristics are compared among different electrolyte types. Microholes are etched on the electropolished tungsten surface to determine the minimum material removal depth on the tungsten surface. Experimental results indicate the color effect due to a change in the thickness of the oxide film on the tungsten surface after electropolishing with a concentrated acid electrolyte. The surface roughness decreases with the interelectrode gap width owing to the increased current density when using the NaOH electrolyte. However, the electropolishing effect is less prominent with a significantly smaller gap because the generated bubbles are unable to escape from the narrow working gap in time. A material removal depth of less than 10 nm is achieved on the tungsten surface in an area of diameter 300 µm, using the electrochemical etching method.

Keywords

Electropolishing / NaOH solution / Surface roughness / Tungsten / Etching

Cite this article

Download citation ▾
Wei Han, Feng-Zhou Fang. Investigation of electropolishing characteristics of tungsten in eco-friendly sodium hydroxide aqueous solution. Advances in Manufacturing, 2020, 8(3): 265‒278 https://doi.org/10.1007/s40436-020-00309-y

References

[1.]
Fan HG, Tsai HL, Na SJ. Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding. Int J Heat Mass Transf, 2001, 44: 417-428.
CrossRef Google scholar
[2.]
Tanaka M, Shimizu T, Terasaki H, et al. Effects of activating flux on arc phenomena in gas tungsten arc welding. Sci Technol Weld Join, 2000, 5: 397-402.
CrossRef Google scholar
[3.]
Abyzov AM, Kidalov SV, Shakhov FM. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. J Mater Sci, 2011, 46: 1424-1438.
CrossRef Google scholar
[4.]
Ju BF, Chen YL, Fu M, et al. Systematic study of electropolishing technique for improving the quality and production reproducibility of tungsten STM probe. Sens Actuators A Phys, 2009, 155: 136-144.
CrossRef Google scholar
[5.]
Kelsey GS. The anodic oxidation of tungsten in aqueous base. J Electrochem Soc, 1977, 124: 814-819.
CrossRef Google scholar
[6.]
Han W, Kunieda M. A novel method to switch machining mode between micro-ECM and micro-EDM using oxide film on surface of tungsten electrode. Precis Eng, 2019, 56: 455-465.
CrossRef Google scholar
[7.]
Wang J, Fang FZ, Yan G, et al. Study on diamond cutting of ion implanted tungsten carbide with and without ultrasonic vibration. Nanomanuf Metrol, 2019, 2: 177-185.
CrossRef Google scholar
[8.]
Wang XL, Han LH, Geng YQ, et al. The simulation and research of etching function based on scanning electrochemical microscopy. Nanomanuf Metrol, 2019, 2: 160-167.
CrossRef Google scholar
[9.]
Fang FZ, Zhang N, Guo D, et al. Towards atomic and close-to-atomic scale manufacturing. Int J Extrem Manuf, 2019, 1: 1-33.
CrossRef Google scholar
[10.]
Fang FZ, Xu F. Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanuf Metrol, 2018, 1: 4-31.
CrossRef Google scholar
[11.]
Suzuki N, Haritani M, Yang J, et al. Elliptical vibration cutting of tungsten alloy molds for optical glass parts. CIRP Ann Manuf Technol, 2007, 56: 127-130.
CrossRef Google scholar
[12.]
Sarkar S, Sekh M, Mitra S, et al. Modeling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation. J Mater Process Technol, 2008, 17: 525-536.
[13.]
Chen HC, Lin JC, Yang YK, et al. Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Syst Appl, 2010, 37: 7147-7153.
CrossRef Google scholar
[14.]
Yang RT, Tzeng CJ, Yang YK, et al. Optimization of wire electrical discharge machining process parameters for cutting tungsten. Int J Adv Manuf Technol, 2012, 60: 135-147.
CrossRef Google scholar
[15.]
Masuzawa T. State of the art of micromachining. CIRP Ann Manuf Technol, 2000, 49: 473-488.
CrossRef Google scholar
[16.]
Reinhardt KA, Kern W. Handbook of silicon wafer cleaning technology, 2018, 3 Park Ridge: William Andrew
[17.]
Fang FZ, Zhang XD, Gao W, et al. Nanomanufacturing—perspective and applications. CIRP Ann Manuf Technol, 2017, 66: 683-705.
CrossRef Google scholar
[18.]
Bielmann M, Mahajan U, Singh RK. Effect of particle size during tungsten chemical mechanical polishing. Mater Res Soc Symp Proc, 1999, 2: 401-403.
[19.]
Larsen-Basse J, Liang H. Probable role of abrasion in chemo-mechanical polishing of tungsten. Wear, 1999, 233(235): 647-654.
CrossRef Google scholar
[20.]
Nanz G, Camilletti LE. Modeling of chemical—mechanical polishing: a review. IEEE Trans Semicond Manuf, 1995, 8(4): 382-389.
CrossRef Google scholar
[21.]
Wang F, Zhang X, Deng H. A comprehensive study on electrochemical polishing of tungsten. Appl Surf Sci, 2019, 475: 587-597.
CrossRef Google scholar
[22.]
Han W, Fang FZ. Investigation of electrochemical properties of electropolishing Co-Cr dental alloy. J Appl Electrochem, 2020, 50: 367-381.
CrossRef Google scholar
[23.]
Han W, Fang FZ. Two-step electropolishing of 316L stainless steel in a sulfuric acid-free electrolyte. J Mater Process Technol, 2020, 279: 116558.
CrossRef Google scholar
[24.]
Han W, Fang FZ. Fundamental aspects and recent developments in electropolishing. Int J Mach Tools Manuf, 2019, 139: 1-23.
CrossRef Google scholar
[25.]
Schubert N, Schneider M, Michaelis A, et al. Electrochemical machining of tungsten carbide. J Solid State Electrochem, 2018, 22: 859-868.
CrossRef Google scholar
[26.]
Han W, Fang FZ. Electropolishing of 316L stainless steel using sulfuric acid-free electrolyte. J Manuf Sci Eng, 2019, 141: 101015.
CrossRef Google scholar
[27.]
Hu YN, Zhou H, Liao LP, et al. Surface quality analysis of the electropolishing of cemented carbide. J Mater Process Technol, 2003, 139: 253-256.
CrossRef Google scholar
[28.]
Holstein N, Krauss W, Konys J, et al. Advanced electrochemical machining (ECM) for tungsten surface micro-structuring in blanket applications. Fusion Eng Des, 2016, 109: 956-960.
CrossRef Google scholar
[29.]
Lee ES, Shin TH. An evaluation of the machinability of nitinol shape memory alloy by electrochemical polishing. J Mech Sci Technol, 2011, 25: 963-969.
CrossRef Google scholar
[30.]
Rajurkar KP, Zhu D, McGeough JA, et al. New developments in electro-chemical machining. CIRP Ann Manuf Technol, 1999, 48: 567-579.
CrossRef Google scholar
[31.]
Piotrowski O, Madore C, Landoly D. The mechanism of electropolishing of titanium in methanol-sulfuric acid electrolytes. J Electrochem Soc, 1998, 145: 2362-2369.
CrossRef Google scholar
[32.]
Anik M. Effect of concentration gradient on the anodic behavior of tungsten. Corros Sci, 2006, 48: 4158-4173.
CrossRef Google scholar
[33.]
Anik M, Osseo-Asare K. Effect of pH on the anodic behavior of tungsten. J Electrochem Soc, 2002, 149: B224-B233.
CrossRef Google scholar
[34.]
Di PA, Di QF, Sunseri C. Anodic oxide films on tungsten-I. The influence of anodizing parameters on charging curves and film composition. Corros Sci, 1980, 20: 1067-1078.
CrossRef Google scholar
[35.]
Evans TE, Hart AC, Skedgell AN. The nature of the film on coloured stainless steel. Trans IMF, 1973, 51: 108-112.
CrossRef Google scholar
[36.]
Shimasaki T, Kunieda M. Study on influences of bubbles on ECM gap phenomena using transparent electrode. CIRP Ann Manuf Technol, 2016, 65: 225-228.
CrossRef Google scholar
[37.]
Zhang R, Ivey DG. Preparation of sharp polycrystalline tungsten tips for scanning tunneling microscopy imaging. J Vac Sci Technol B Microelectron Nanom Struct, 1996, 14: 1-10.
CrossRef Google scholar
[38.]
Krauss W, Holstein N, Konys J. Strategies in electro-chemical machining of tungsten for divertor application. Fusion Eng Des, 2007, 82: 1799-1805.
CrossRef Google scholar
[39.]
Park JJ, Il PS, Lee SB. Growth kinetics of passivating oxide film of Inconel alloy 600 in 0.1 M Na2SO4 solution at 25–300 °C using the abrading electrode technique and ac impedance spectroscopy. Electrochim Acta, 2004, 49: 281-292.
CrossRef Google scholar
[40.]
Schuster R, Kirchner V, Allongue P, et al. Electrochemical micromachining. Science, 2000, 289: 98-111.
CrossRef Google scholar
Funding
Science Foundation Ireland (15/RP/B3208); National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809(61635008); Enterprise Ireland http://dx.doi.org/10.13039/501100001588(713654); H2020 Marie Sk?odowska-Curie Actions http://dx.doi.org/10.13039/100010665(713654)

Accesses

Citations

Detail

Sections
Recommended

/