Chatter prediction for uncertain parameters

Michael Löser , Andreas Otto , Steffen Ihlenfeldt , Günter Radons

Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (3) : 319 -333.

PDF
Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (3) : 319 -333. DOI: 10.1007/s40436-018-0230-0
Article

Chatter prediction for uncertain parameters

Author information +
History +
PDF

Abstract

The occurrence of chatter in milling processes was investigated in this study. The prediction of the stability lobes of metal cutting processes requires a model of the cutting force and a model of the dynamic machine tool behavior. Parameter uncertainties in the models may lead to significant differences between the predicted and measured stability behavior. One approach towards robust stability consists of running a large number of simulations with a random sample of uncertain parameters and determining the confidence levels for the chatter vibrations, which is a time-consuming task. In this paper, an efficient implementation of the multi frequency solution and the construction of an approximate solution is presented. The approximate solution requires the explicit calculation of the multi frequency solution only at a few parameter points, and the approximation error can be kept small. This study found that the calculation of the robust stability lobe diagram, which is based on the approximate solution, is significantly more efficient than an explicit calculation at all random parameter points. The numerically determined robust stability diagrams were in good agreement with the experimentally determined stability lobes.

Keywords

Milling / Chatter / Uncertainties / Vibration / Stability

Cite this article

Download citation ▾
Michael Löser, Andreas Otto, Steffen Ihlenfeldt, Günter Radons. Chatter prediction for uncertain parameters. Advances in Manufacturing, 2018, 6(3): 319-333 DOI:10.1007/s40436-018-0230-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Quintana G, Ciurana J. Chatter in machining processes: a review. Int J Mach Tools Manuf, 2011, 51: 363-376.

[2]

Altintas Y, Weck M. Chatter stability of metal cutting and grinding. CIRP Ann, 2004, 53(2): 619-642.

[3]

Kong F, Yu J, Zhou X. Analysis of fuzzy dynamic characteristics of machine cutting process: fuzzy stability analysis in regenerative-type-chatter. Int J Mach Tools Manuf, 1999, 39: 1299-1309.

[4]

Kong F, Yu J. Study of fuzzy stochastic limited cutting width on chatter. Int J Adv Manuf Technol, 2007, 33(7): 677-683.

[5]

Sims N, Manson G, Mann B. Fuzzy stability analysis of regenerative chatter in milling. J Sound Vib, 2010, 329: 1025-1041.

[6]

Hamann D, Walz NP, Fischer A, et al. Fuzzy arithmetical stability analysis of uncertain machining systems. Mech Syst Signal Proc, 2018, 98: 534-547.

[7]

Park SS, Qin YM. Robust regenerative chatter stability in machine tools. Int J Adv Manuf Technol, 2007, 33: 389-402.

[8]

Totis G. RCPM—a new method for robust chatter prediction in milling. Int J Mach Tools Manuf, 2009, 49: 273-284.

[9]

Hajdu D, Insperger T, Stepan G. Robust stability analysis of machining operations. Int J Adv Manuf Technol, 2017, 88: 45-54.

[10]

Insperger T, Lehotzky D, Stepan G. Regenerative delay, parametric forcing and machine tool chatter: a review. IFAC-PapersOnLine, 2015, 48(12): 322-327.

[11]

Lehotzky D, Insperger T, Khasawneh F, et al. Spectral element method for stability analysis of milling processes with discontinuous time-periodicity. Int J Adv Manuf Technol, 2017, 89: 2503-2514.

[12]

Butcher EA, Bobrenkov OA, Bueler E, et al. Analysis of milling stability by the Chebychev collocation method: algorithm and optimal stable immersion levels. J Comput Nonlinear Dyn, 2009, 4: 031003.

[13]

Budak E, Altintas Y. Analytical prediction of chatter stability in milling—part I: general formulation. J Dyn Syst Meas Contr, 1998, 120(1): 22-30.

[14]

Altintas Y, Stepan G, Merdol D, et al. Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol, 2008, 1: 35-44.

[15]

Merdol S, Altintas Y. Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng, 2004, 126: 459-466.

[16]

Löser M, Großmann K. Influence of parameter uncertainties on the computation of stability lobe diagrams. Procedia CIRP, 2016, 46: 460-463.

[17]

Otto A, Rauh S, Kolouch M, et al. Extension of Tlusty’s law for the identification of chatter stability lobes in multi-dimensional cutting processes. Int J Mach Tools Manuf, 2014, 82: 50-58.

[18]

Otto A, Radons G. Stability analysis of machine-tool vibrations in the frequency domain. IFAC-PapersOnLine, 2015, 48(12): 328-333.

[19]

Otto A, Rauh S, Ihlenfeldt S, et al. Stability of milling with non-uniform pitch and variable helix tools. Int J Adv Manuf Technol, 2017, 89: 2613-2625.

[20]

Großmann K, Löser M, Peukert C. Frequenzgangermittlung an einer rotierenden spindel. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 2012, 107(4): 240-243.

[21]

Cao Y, Altintas Y. Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations. Int J Mach Tools Manuf, 2007, 47: 1342-1350.

[22]

Rantatalo M, Aidanpää JO, Göransson B, et al. Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement. Int J Mach Tools Manuf, 2007, 47: 1034-1045.

[23]

Biermann D, Surmann T, Kehl G. Oszillatormodell für Werkzeugmaschinen zur Simulation von Zerspanprozessen. wt-online, 2008, 98(3): 185-190.

[24]

Insperger T, Stepan G, Bayly PV, et al. Multiple chatter frequencies in milling processes. J Sound Vib, 2003, 262: 333-345.

Funding

Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659(222380322)

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/