State of the art of bioimplants manufacturing: part II

Cheng-Wei Kang , Feng-Zhou Fang

Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (2) : 137 -154.

PDF
Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (2) : 137 -154. DOI: 10.1007/s40436-018-0218-9
Article

State of the art of bioimplants manufacturing: part II

Author information +
History +
PDF

Abstract

The manufacturing of bioimplants not only involves selecting proper biomaterials with satisfactory bulk physicochemical properties, but also requires special treatments on surface chemistry or topography to direct a desired host response. The lifespan of a bioimplant is also critically restricted by its surface properties. Therefore, developing proper surface treatment technologies has become one of the research focuses in biomedical engineering. This paper covers the recent progress of surface treatment of bioimplants from the aspects of coating and topography modification. Pros and cons of various technologies are discussed with the aim of providing the most suitable method to be applied for different biomedical products. Relevant techniques to evaluate wear, corrosion and other surface properties are also reviewed.

Keywords

Bioimplant / Precision manufacturing / Surface treatment / Evaluation

Cite this article

Download citation ▾
Cheng-Wei Kang, Feng-Zhou Fang. State of the art of bioimplants manufacturing: part II. Advances in Manufacturing, 2018, 6(2): 137-154 DOI:10.1007/s40436-018-0218-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. JBJS, 2007, 89(4): 780-785.

[2]

Prakasam M, Locs J, Salma-Ancane K, et al. Biodegradable materials and metallic implants—a review. J Funct Biomater, 2017, 8(4): 44.

[3]

Roach P, Eglin D, Rohde K, et al. Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci Mater Med, 2007, 18(7): 1263-1277.

[4]

Hornberger H, Virtanen S, Boccaccini A. Biomedical coatings on magnesium alloys—a review. Acta Biomater, 2012, 8(7): 2442-2455.

[5]

Curtis A, Wilkinson C. Topographical control of cells. Biomaterials, 1997, 18(24): 1573-1583.

[6]

Bauer S, Schmuki P, von der Mark K, et al. Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog Mater Sci, 2013, 58(3): 261-326.

[7]

Wennerberg A, Albrektsson T, Andersson B, et al. A histomorghometric study of screw-shaped and removal torque titanium implants with three different surface topographies. Clin Oral Implant Res, 1995, 6(1): 24-30.

[8]

Wennerberg A, Hallgren C, Johansson C, et al. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implant Res, 1998, 9(1): 11-19.

[9]

Ramsden JJ, Allen DM, Stephenson DJ, et al. The design and manufacture of biomedical surfaces. CIRP Ann Manuf Technol, 2007, 56(2): 687-711.

[10]

Guo Y, Caslaru R. Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6Al-4V surfaces. J Mater Process Technol, 2011, 211(4): 729-736.

[11]

Hu T, Hu L, Ding Q. Effective solution for the tribological problems of Ti-6Al-4V: combination of laser surface texturing and solid lubricant film. Surf Coat Technol, 2012, 206(24): 5060-5066.

[12]

Heimann RB. Plasma-spray coating: principles and applications, 2008, Weinheim: Wiley

[13]

Mittal M, Nath S, Prakash S. Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. Mater Sci Eng C, 2013, 33(5): 2838-2845.

[14]

Mohseni E, Zalnezhad E, Bushroa AR. Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: a review paper. Int J Adhes Adhes, 2014, 48: 238-257.

[15]

Cook SD, Thomas KA, Kay JF, et al. Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system. Clin Orthop Relat Res, 1988, 230: 303

[16]

Søballe K, Hansen ES, Brockstedt-Rasmussen H, et al. Hydroxyapatite coating enhances fixation of porous coated implants: a comparison in dogs between press fit and noninterference fit. Acta Orthop Scand, 1990, 61(4): 299-306.

[17]

Jansen J, van de Waerden J, Wolke J, et al. Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res Part A, 1991, 25(8): 973-989.

[18]

Moroni A, Caja V, Sabato C, et al. Bone ingrowth analysis and interface evaluation of hydroxyapatite coated versus uncoated titanium porous bone implants. J Mater Sci Mater Med, 1994, 5(6): 411-416.

[19]

Mohseni E, Zalnezhad E, Bushroa AR. Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: a review paper. Int J Adhes Adhes, 2014, 48: 238-257.

[20]

Yang YC, Chang E. Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. Biomaterials, 2001, 22(13): 1827-1836.

[21]

Nimb L, Gotfredsen K, Steen JJ. Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study. Acta Orthop Belg, 1993, 59: 333

[22]

Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials, 2005, 26(3): 327-337.

[23]

Ong JL, Harris LA, Lucas LC, et al. X-ray photoelectron spectroscopy characterization of ion-beam sputter-deposited calcium phosphate coatings. J Am Ceram Soc, 1991, 74(9): 2301-2304.

[24]

Ozeki K, Yuhta T, Aoki H, et al. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique. Bio-Med Mater Eng, 2000, 10(3–4): 221-227.

[25]

Toque JA, Herliansyah M, Hamdi M, et al. Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing. J Mech Behav Biomed Mater, 2010, 3(4): 324-330.

[26]

Ozeki K, Fukui Y, Aoki H. Hydroxyapatite coated dental implants by sputtering technique. Biocybern Biomed Eng, 2006, 26(1): 95-101.

[27]

Ozeki K, Yuhta T, Fukui Y, et al. Phase composition of sputtered films from a hydroxyapatite target. Surf Coat Technol, 2002, 160(1): 54-61.

[28]

Van Dijk K, Schaeken H, Wolke J, et al. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials, 1996, 17(4): 405-410.

[29]

Rautray TR, Narayanan R, Kim KH. Ion implantation of titanium based biomaterials. Prog Mater Sci, 2011, 56(8): 1137-1177.

[30]

Sioshansi P, Tobin EJ. Surface treatment of biomaterials by ion beam processes. Surf Coat Technol, 1996, 83(1–3): 175-182.

[31]

Serekian P (2004) Hydroxyapatite: from plasma spray to electrochemical deposition. In: The fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Springer, pp 29–33

[32]

Krupa D, Baszkiewicz J, Kozubowski J, et al. Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials, 2002, 23(16): 3329-3340.

[33]

Choi JM, Kim HE, Lee IS. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials, 2000, 21(5): 469-473.

[34]

Chen XB, Li YC, Du PJ, et al. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater, 2009, 5(5): 1808-1820.

[35]

Yoshinari M, Oda Y, Kato T, et al. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials, 2001, 22(14): 2043-2048.

[36]

Blawert C, Dietzel W, Ghali E, et al. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv Eng Mater, 2006, 8(6): 511-533.

[37]

Zhang X, Zhao Z, Wu F, et al. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution. J Mater Sci, 2007, 42(20): 8523-8528.

[38]

Jo JH, Hong JY, Shin KS, et al. Enhancing biocompatibility and corrosion resistance of Mg implants via surface treatments. J Biomater Appl, 2012, 27(4): 469-476.

[39]

Sarkar P, Nicholson PS. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J Am Ceram Soc, 1996, 79(8): 1987-2002.

[40]

Wei M, Ruys A, Milthorpe B, et al. Electrophoretic deposition of hydroxyapatite coatings on metal substrates: a nanoparticulate dual-coating approach. J Sol Gel Sci Technol, 2001, 21(1): 39-48.

[41]

Soares GA, de Sena , Rossi AM, et al. Effect of electrophoretic apatite coating on osseointegration of titanium dental implants. Key Eng Mater, 2003, 254–256: 729-732.

[42]

Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Technol, 2000, 125(1): 407-414.

[43]

Zhang Z, Dunn MF, Xiao T et al (2002) Nanostructured hydroxyapatite coatings for improved adhesion and corrosion resistance for medical implants. Mater Res Soc Symp Proc 291–296

[44]

Larker HT, Larker R. Cahn RW, Haasen P, Kramer EJ. Hot isostatic pressing. Materials science and technology, 1991, Weinheim: VCH 146-174.

[45]

Khor K, Yip C, Cheang P. Post-spray hot isostatic pressing of plasma sprayed Ti-6Al-4V/hydroxyapatite composite coatings. J Mater Process Technol, 1997, 71(2): 280-287.

[46]

Bao Q, Chen C, Wang D, et al. Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl Surf Sci, 2005, 252(5): 1538-1544.

[47]

Cotell CM, Chrisey DB, Grabowski KS, et al. Pulsed laser deposition of hydroxylapatite thin films on Ti-6Al-4V. J Appl Biomater, 1992, 3(2): 87-93.

[48]

Fernández-Pradas J, García-Cuenca M, Clèries L, et al. Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy. Appl Surf Sci, 2002, 195(1): 31-37.

[49]

Cotell C. Pulsed laser deposition and processing of biocompatible hydroxylapatite thin films. Appl Surf Sci, 1993, 69(1–4): 140-148.

[50]

Klein LC. Sol-gel optics: processing and applications, 2013, New York: Springer

[51]

Uhlmann D, Suratwala T, Davidson K, et al. Sol-gel derived coatings on glass. J Non-Cryst Solids, 1997, 218: 113-122.

[52]

Wen C, Xu W, Hu W, et al. Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomater, 2007, 3(3): 403-410.

[53]

Phani A, Gammel F, Hack T, et al. Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys. Mater Corros, 2005, 56(2): 77-82.

[54]

Mavis B, Taş AC. Dip coating of calcium hydroxyapatite on Ti-6Al-4V substrates. J Am Ceram Soc, 2000, 83(4): 989-991.

[55]

Gu X, Zheng Y, Lan Q, Cheng Y, et al. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan. Biomed Mater, 2009, 4(4): 044109.

[56]

Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater, 2012, 8(1): 20-30.

[57]

Wang H, Guan S, Wang X, et al. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater, 2010, 6(5): 1743-1748.

[58]

Kumar RR, Wang M. Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Mater Lett, 2002, 55(3): 133-137.

[59]

Loh N, Sia K. An overview of hot isostatic pressing. J Mater Process Technol, 1992, 30(1): 45-65.

[60]

Fu Y, Batchelor A. Hot isostatic pressing of hydroxyapatite coating for improved fretting wear resistance. J Mater Sci Lett, 1998, 17(20): 1695-1696.

[61]

Kameyama T. Hybrid bioceramics with metals and polymers for better biomaterials. Bull Mater Sci, 1999, 22(3): 641-646.

[62]

Narayanan R, Seshadri S, Kwon T, et al. Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B Appl Biomater, 2008, 85(1): 279-299.

[63]

Boyd IW (1994) Thin film growth by pulsed laser deposition. In: Laser in der Technik/Laser in Engineering. Springer, pp 349–359

[64]

Eason R. Pulsed laser deposition of thin films: applications-led growth of functional materials, 2007, Southampton: Wiley

[65]

Jelinek M, Olsan V, Jastrabik L, et al. Effect of processing parameters on the properties of hydroxylapatite films grown by pulsed laser deposition. Thin Solid Films, 1995, 257(1): 125-129.

[66]

Arias JL, Mayor MB, Pou J, et al. Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials, 2003, 24(20): 3403-3408.

[67]

Blind O, Klein LH, Dailey B, et al. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4V substrates. Dent Mater, 2005, 21(11): 1017-1024.

[68]

Mehrotra RC. Chemistry of alkoxide precursors. J Non-Cryst Solids, 1990, 121(1–3): 1-6.

[69]

Olding T, Sayer M, Barrow D. Ceramic sol-gel composite coatings for electrical insulation. Thin Solid Films, 2001, 398: 581-586.

[70]

Zhang S, Li Q, Fan J, Kang W, Hu W, Yang X. Novel composite films prepared by sol-gel technology for the corrosion protection of AZ91D magnesium alloy. Prog Org Coat, 2009, 66(3): 328-335.

[71]

Kim HW, Kim HE, Knowles JC. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials, 2004, 25(17): 3351-3358.

[72]

Aegerter MA, Mennig M. Sol-gel technologies for glass producers and users, 2013, New York: Springer

[73]

Kern M, Thompson V. Effects of sandblasting and silica-coating procedures on pure titanium. J Dent, 1994, 22(5): 300-306.

[74]

Wennerberg A. The importance of surface roughness for implant incorporation. Int J Mach Tools Manuf, 1998, 38(5–6): 657-662.

[75]

Valverde GB, Jimbo R, Teixeira HS, et al. Evaluation of surface roughness as a function of multiple blasting processing variables. Clin Oral Implants Res, 2013, 24(2): 238-242.

[76]

Mohammadi Z, Ziaei-Moayyed A, Mesgar ASM. Grit blasting of Ti-6Al-4V alloy: optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings. J Mater Process Technol, 2007, 194(1): 15-23.

[77]

Arifvianto B, Suyitno K, Mahardika M. Influence of grit blasting treatment using steel slag balls on the subsurface microhardness, surface characteristics and chemical composition of medical grade 316L stainless steel. Surf Coat Technol, 2012, 210: 176-182.

[78]

Thompson G, Puleo D. Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation timecourse in vitro. Biomaterials, 1996, 17(20): 1949-1954.

[79]

Piattelli A, Degidi M, Paolantonio M, et al. Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials, 2003, 24(22): 4081-4089.

[80]

Müeller WD, Gross U, Fritz T, et al. Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin Oral Implants Res, 2003, 14(3): 349-356.

[81]

Jr Novaes AB, Souza SL, de Oliveira PT, et al. Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. Int J Oral Maxillofac Implants, 2002, 17(3): 377-383.

[82]

Piattelli M, Scarano A, Paolantonio M, et al. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol, 2002, 28(1): 2-8.

[83]

Le Guéhennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007, 23(7): 844-854.

[84]

Costa HL, Hutchings IM (2008) Ink-jet printing for patterning engineering surfaces. In: NIP & digital fabrication conference, 2008. vol 1. Society for Imaging Science and Technology, pp 256–259

[85]

Bruzzone A, Costa H, Lonardo P, et al. Advances in engineered surfaces for functional performance. CIRP Ann Manuf Technol, 2008, 57(2): 750-769.

[86]

Buser D, Nydegger T, Oxland T, et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res Part A, 1999, 45(2): 75-83.

[87]

Cooper LF, Zhou Y, Takebe J, et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials, 2006, 27(6): 926-936.

[88]

Ellingsen JE, Johansson CB, Wennerberg A, et al. Improved retention and bone-to-implant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants, 2004, 19(5): 659-666.

[89]

Aboushelib M, Feilzer A (2006) New surface treatment for zirconia based materials. European patent application (050773969)

[90]

Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bonding to zirconia using a new surface treatment. J Prosthodont, 2010, 19(5): 340-346.

[91]

Aboushelib MN, Salem NA, Taleb ALA, et al. Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique. J Oral Implantol, 2013, 39(5): 583-590.

[92]

Perrin D, Szmukler-Moncler S, Echikou C, et al. Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res, 2002, 13(5): 465-469.

[93]

Zinger O, Zhao G, Schwartz Z, et al. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials, 2005, 26(14): 1837-1847.

[94]

Pazos L, Corengia P, Svoboda H. Effect of surface treatments on the fatigue life of titanium for biomedical applications. J Mech Behav Biomed Mater, 2010, 3(6): 416-424.

[95]

Zinger O, Anselme K, Denzer A, et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials, 2004, 25(14): 2695-2711.

[96]

Fasasi A, Mwenifumbo S, Rahbar N, et al. Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications. Mater Sci Eng C, 2009, 29(1): 5-13.

[97]

Anselme K, Linez P, Bigerelle M, et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials, 2000, 21(15): 1567-1577.

[98]

Soboyejo W, Nemetski B, Allameh S, et al. Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Mater Res Part A, 2002, 62(1): 56-72.

[99]

Chen J, Ulerich J, Abelev E, et al. An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces. Mater Sci Eng C, 2009, 29(4): 1442-1452.

[100]

Chen J, Bly R, Saad M, et al. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs. Mater Sci Eng C, 2011, 31(5): 826-832.

[101]

Chen J, Mwenifumbo S, Langhammer C, et al. Cell/surface interactions and adhesion on Ti-6Al-4V: effects of surface texture. J Biomed Mater Res B Appl Biomater, 2007, 82(2): 360-373.

[102]

Ricci JL, Alexander H (2001) Laser microtexturing of implant surfaces for enhanced tissue integration. In: Key engineering materials 2001 (pp 179–202). Trans Tech Publ

[103]

Hsiao WT, Chang HC, Nanci A, et al. Surface microtexturing of Ti-6Al-4V using an ultraviolet laser system. Mater Des, 2016, 90: 891-895.

[104]

Soboyejo WO, Mercer C, Allameh S (2001) Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces. In: Key engineering materials 2001 (pp 203–230). Trans Tech Publ

[105]

Iordanova I, Antonov V, Gurkovsky S. Changes of microstructure and mechanical properties of cold-rolled low carbon steel due to its surface treatment by Nd:glass pulsed laser. Surf Coat Technol, 2002, 153(2): 267-275.

[106]

Montross CS, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue, 2002, 24(10): 1021-1036.

[107]

Ruschau JJ, John R, Thompson SR, et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium. Int J Fatigue, 1999, 21: S199-S209.

[108]

Vilar R. Laser surface modification of biomaterials: techniques and applications, 2016, Cambridge: Woodhead Publishing

[109]

Ho K, Newman S. State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf, 2003, 43(13): 1287-1300.

[110]

Prakash C, Kansal HK, Pabla B, et al. Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng B J Eng Manuf, 2016, 230(2): 331-353.

[111]

Peng PW, Ou KL, Lin HC, et al. Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium. J Alloy Compd, 2010, 492(1): 625-630.

[112]

Lee WF, Yang TS, Wu YC, et al. Nanoporous biocompatible layer on Ti-6Al-4V alloys enhanced osteoblast-like cell response. J Exp Clin Med, 2013, 5(3): 92-96.

[113]

Roy T, Choudhury D, Ghosh S, et al. Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty. Ceram Int, 2015, 41(1): 681-690.

[114]

Choudhury D, Walker R, Roy T, et al. Performance of honed surface profiles to artificial hip joints: an experimental investigation. Int J Precis Eng Manuf, 2013, 14(10): 1847-1853.

[115]

Brehl D, Dow T. Review of vibration-assisted machining. Precis Eng, 2008, 32(3): 153-172.

[116]

Thoe T, Aspinwall D, Wise M. Review on ultrasonic machining. Int J Mach Tools Manuf, 1998, 38(4): 239-255.

[117]

Spur G, Holl SE. Ultrasonic assisted grinding of ceramics. J Mater Process Technol, 1996, 62(4): 287-293.

[118]

Dambatta YS, Sarhan AA, Sayuti M, et al. Ultrasonic assisted grinding of advanced materials for biomedical and aerospace applications—a review. Int J Adv Manuf Technol, 2017, 92(9–12): 3825-3858.

[119]

Moriwaki T, Shamoto E. Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann Manuf Technol, 1991, 40(1): 559-562.

[120]

Klocke F (2000) Ultrasonic-assisted diamond turning of glass and steel. Ind Diamond Rev 229–239

[121]

Negishi N (2003) Elliptical vibration assisted machining with single crystal diamond tools. Dissertation, North Carolina State University

[122]

Gan J, Wang X, Zhou M, et al. Ultraprecision diamond turning of glass with ultrasonic vibration. Int J Adv Manuf Technol, 2003, 21(12): 952-955.

[123]

Kim JD, Choi IH. Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics. J Mater Process Technol, 1997, 68(1): 89-98.

[124]

Xu S, Kuriyagawa T, Shimada K, et al. Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces. Front Mech Eng, 2017, 12(1): 33-45.

[125]

Lu X, Leng Y. Electrochemical micromachining of titanium surfaces for biomedical applications. J Mater Process Technol, 2005, 169(2): 173-178.

[126]

Madore C, Piotrowski O, Landolt D. Through-mask electrochemical micromachining of titanium. J Electrochem Soc, 1999, 146(7): 2526-2532.

[127]

Sjöström T, Su B. Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte. Mater Lett, 2011, 65(23): 3489-3492.

[128]

Saikko V. Effect of contact area on the wear and friction of UHMWPE in circular translation pin-on-disk tests. J Tribol, 2017, 139(6): 061606.

[129]

Turger A, Köhler J, Denkena B, et al. Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants. Biomed Eng Online, 2013, 12(1): 84.

[130]

Bowsher J, Shelton J. A hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions. Wear, 2001, 250(1): 167-179.

[131]

Saikko V, Ahlroos T, Calonius O. A three-axis knee wear simulator with ball-on-flat contact. Wear, 2001, 249(3): 310-315.

[132]

Wilches L, Uribe J, Toro A. Wear of materials used for artificial joints in total hip replacements. Wear, 2008, 265(1): 143-149.

[133]

Lee JK, Maruthainar K, Wardle N, et al. Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. Knee, 2009, 16(4): 269-274.

[134]

Walker PS. Bergmann G, Kölbel R, Rohlmann A. Biomechanics of total knee replacement. Biomechanics: basic and applied research, 1987, Berlin: Springer 19-31.

[135]

Kang C, Huang H. Mechanical load-induced interfacial failure of a thin film multilayer in nanoscratching and diamond lapping. J Mater Process Technol, 2016, 229: 528-540.

[136]

Dearnley P. A brief review of test methodologies for surface-engineered biomedical implant alloys. Surf Coat Technol, 2005, 198(1): 483-490.

[137]

Kannan MB. Enhancing the performance of calcium phosphate coating on a magnesium alloy for bioimplant applications. Mater Lett, 2012, 76: 109-112.

[138]

Mohan L, Anandan C, Grips VW. Corrosion behavior of titanium alloy Beta-21S coated with diamond like carbon in Hank’s solution. Appl Surf Sci, 2012, 258(17): 6331-6340.

[139]

Karpagavalli R, Zhou A, Chellamuthu P, et al. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. J Biomed Mater Res Part A, 2007, 83(4): 1087-1095.

[140]

Zaveri N, McEwen GD, Karpagavalli R, et al. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids. J Nanopart Res, 2010, 12(5): 1609-1623.

[141]

Khan ZA, Hadfield M. Manufacturing induced residual stress influence on the rolling contact fatigue life performance of lubricated silicon nitride bearing materials. Mater Des, 2007, 28(10): 2688-2693.

[142]

Arafat M, Haseeb A, Dinan B, et al. Stress enhanced TiO2 nanowire growth on Ti-6Al-4V particles by thermal oxidation. Ceram Int, 2013, 39(6): 6517-6526.

[143]

Roy T, Choudhury D, Mamat AB, et al. Fabrication and characterization of micro-dimple array on Al2O3 surfaces by using a micro-tooling. Ceram Int, 2014, 40(1): 2381-2388.

[144]

Choudhury D, Ay Ching H, Mamat AB, et al. Fabrication and characterization of DLC coated microdimples on hip prosthesis heads. J Biomed Mater Res B Appl Biomater, 2015, 103(5): 1002-1012.

[145]

Taylor CA, Wayne MF, Chiu WK. Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation. Thin Solid Films, 2003, 429(1): 190-200.

[146]

Jun C, Zeng RC, Huang WJ, et al. Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated body fluids. Trans Nonferr Met Soc China, 2008, 18: s361-s364.

[147]

Kane SR, Ashby PD, Pruitt LA. Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements. J Biomed Mater Res Part A, 2010, 92(4): 1500-1509.

[148]

Dey A, Mukhopadhyay AK, Gangadharan S, et al. Nanoindentation study of microplasma sprayed hydroxyapatite coating. Ceram Int, 2009, 35(6): 2295-2304.

[149]

Kang CW, Huang H. Deformation, failure and removal mechanisms of thin film structures in abrasive machining. Adv Manuf, 2017, 5(1): 1-19.

Funding

Science Foundation Ireland http://dx.doi.org/10.13039/501100001602(15/RP/B3208)

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/