State of the art of bioimplants manufacturing: part I

Cheng-Wei Kang, Feng-Zhou Fang

Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (1) : 20-40.

Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (1) : 20-40. DOI: 10.1007/s40436-017-0207-4
Article

State of the art of bioimplants manufacturing: part I

Author information +
History +

Abstract

Bioimplants are becoming increasingly important in the modern society due to the fact of an aging population and associated issues of osteoporosis and osteoarthritis. The manufacturing of bioimplants involves an understanding of both mechanical engineering and biomedical science to produce biocompatible products with adequate lifespans. A suitable selection of materials is the prerequisite for a long-term and reliable service of the bioimplants, which relies highly on the comprehensive understanding of the material properties. In this paper, most biomaterials used for bioimplants are reviewed. The typical manufacturing processes are discussed in order to provide a perspective on the development of manufacturing fundamentals and latest technologies. The review also contains a discussion on the current measurement and evaluation constraints of the finished bioimplant products. Potential future research areas are presented at the end of this paper.

Keywords

Bioimplant / Precision manufacturing / Precision metrology / Evaluation

Cite this article

Download citation ▾
Cheng-Wei Kang, Feng-Zhou Fang. State of the art of bioimplants manufacturing: part I. Advances in Manufacturing, 2018, 6(1): 20‒40 https://doi.org/10.1007/s40436-017-0207-4

References

[1.]
Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci, 2010, 2(1): 40-54.
CrossRef Google scholar
[2.]
Luthringer B, Feyerabend F, Willumeit-Römer R. Magnesium-based implants: a mini-review. Magnes Res, 2014, 27(4): 142-154.
[3.]
Geetha M, Singh A, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci, 2009, 54(3): 397-425.
CrossRef Google scholar
[4.]
Walczak J, Shahgaldi F, Heatley F. In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products. Biomaterials, 1998, 19(1–3): 229-237.
CrossRef Google scholar
[5.]
Case C, Langkamer V, James C, et al. Widespread dissemination of metal debris from implants. Bone Joint J, 1994, 76(5): 701-712.
CrossRef Google scholar
[6.]
Prikryl M, Srivastava S, Viviani G, et al. Role of corrosion in harrington and luque rods failure. Biomaterials, 1989, 10(2): 109-117.
CrossRef Google scholar
[7.]
Sumita M, Hanawa T, Ohnishi I et al (2003) Failure processes in biometallic materials. In: Milne I, Ritchie R, Karihaloo BL (eds) IMOR Karihaloo, comprehensive structural integrity, Pergamon, Oxford, pp 131–167
[8.]
Davis JR. Handbook of materials for medical devices, 2003, Metals Park: ASM International
[9.]
Shetty RH, Ottersberg WH. Metals in orthopedic surgery. Encycl Handb Biomater Bioeng, 1995, 1: 509-540.
[10.]
Lemons J, Niemann K, Weiss A. Biocompatibility studies on surgical-grade titanium-, cobalt-, and iron-base alloys. J Biomed Mater Res, Part A, 1976, 10(4): 549-553.
CrossRef Google scholar
[11.]
Escalas F, Galante J, Rostoker W, et al. Biocompatibility of materials for total joint replacement. J Biomed Mater Res, Part A, 1976, 10(2): 175-195.
CrossRef Google scholar
[12.]
Syrett BC, Davis EE. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants. J Biomed Mater Res, Part A, 1979, 13(4): 543-556.
CrossRef Google scholar
[13.]
Breme H, Biehl V, Helsen J (1998) Metals and implants. Metals Biomater 615(46):37–72
[14.]
David Y (1999) The biomedical engineering handbook. In: Bronzino JD (ed) The biomedical engineering handbook, 2nd edn. 2 Volume Set. CRC Press, Boca Raton
[15.]
Wiles P. The surgery of the osteo-arthritic hip. Br J Surg, 1958, 45(193): 488-497.
CrossRef Google scholar
[16.]
Wiles P. The classic: the surgery of the osteo-arthritic hip. Clin Orthop Relat Res, 2003, 417: 3-16.
[17.]
Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater, 2012, 8(11): 3888-3903.
CrossRef Google scholar
[18.]
Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep, 2015, 87: 1-57.
CrossRef Google scholar
[19.]
Taira M, Lautenschlager EP. In vitro corrosion fatigue of 316L cold worked stainless steel. J Biomed Mater Res, 1992, 26(9): 1131-1139.
CrossRef Google scholar
[20.]
Weldon L, McHugh P, Carroll W, et al. The influence of passivation and electropolishing on the performance of medical grade stainless steels in static and fatigue loading. J Mater Sci Mater Med, 2005, 16(2): 107-117.
CrossRef Google scholar
[21.]
Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr Mater, 2006, 54(11): 1949-1954.
CrossRef Google scholar
[22.]
Sudarshan T, Srivatsan T, Harvey D. Fatigue processes in metals—role of aqueous environments. Eng Fract Mech, 1990, 36(6): 827-852.
CrossRef Google scholar
[23.]
Ebara R. Corrosion fatigue crack initiation behavior of stainless steels. Procedia Eng, 2010, 2(1): 1297-1306.
CrossRef Google scholar
[24.]
Vahey J, Simonian P, Conrad E. Carcinogenicity and metallic implants. Am J Orthoped (Belle Mead, NJ), 1995, 24(4): 319-324.
[25.]
Lei M, Zhu X. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Biomaterials, 2001, 22(7): 641-647.
CrossRef Google scholar
[26.]
Nail-plates F. Corrosion of orthopaedic implants. J Bone Jt Surg B, 1959, 41: 810-820.
[27.]
Muley SV, Vidvans AN, Chaudhari GP, et al. An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomater, 2016, 30: 408-419.
CrossRef Google scholar
[28.]
Pramanik S, Agarwal AK, Rai K. Chronology of total hip joint replacement and materials development. Trends Biomater Artif Organs, 2005, 19(1): 15-26.
[29.]
Patel NR, Gohil PP. A review on biomaterials: scope, applications & human anatomy significance. Int J Emerg Technol Adv Eng, 2012, 2(4): 91-101.
[30.]
Alvarado J, Maldonado R, Marxuach J et al (2003) Biomechanics of hip and knee prostheses. Appl Eng Mech Med GED–University of Puerto Rico Mayaguez
[31.]
Evans E, Thomas I. The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals. Biomaterials, 1986, 7(1): 25-29.
CrossRef Google scholar
[32.]
Öztürk O, Türkan Uu, Erogˇlu AE. Metal ion release from nitrogen ion implanted CoCrMo orthopedic implant material. Surf Coat Technol, 2006, 200(20): 5687-5697.
CrossRef Google scholar
[33.]
Vidal CV, Muñoz AI. Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy. Electrochim Acta, 2009, 54(6): 1798-1809.
CrossRef Google scholar
[34.]
Ramsden JJ, Allen DM, Stephenson DJ, et al. The design and manufacture of biomedical surfaces. CIRP Ann Manuf Technol, 2007, 56(2): 687-711.
CrossRef Google scholar
[35.]
Rudolf E. A review of findings on chromium toxicity. Acta Med (Hradec Kralove) Suppl, 1998, 41(1): 55-65.
[36.]
Dayan A, Paine A. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol, 2001, 20(9): 439-451.
CrossRef Google scholar
[37.]
Barceloux DG, Barceloux D. Chromium. J Toxicol Clin Toxicol, 1999, 37(2): 173-194.
CrossRef Google scholar
[38.]
Barceloux DG, Barceloux D. Nickel. J Toxicol Clin Toxicol, 1999, 37(2): 239-258.
CrossRef Google scholar
[39.]
Anke M, Seifert M, Arnhold W, et al. The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man: part V: essentiality and toxicity of molybdenum. Acta Aliment, 2010, 39(1): 12-26.
CrossRef Google scholar
[40.]
Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elbow Surg, 2003, 12(1): 35-39.
CrossRef Google scholar
[41.]
Park JB, Lakes RS. Hasirci N, Hasirci V. Hard tissue replacement II: joints and teeth. Biomaterials, 2007, Boston: Springer 317-354.
[42.]
Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 1998, 19(18): 1621-1639.
CrossRef Google scholar
[43.]
Pais I, Feher M, Farkas E, et al. Titanium as a new trace element. Commun Soil Sci Plant Anal, 1977, 8(5): 407-410.
CrossRef Google scholar
[44.]
Okazaki Y. Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials, 2002, 23(9): 2071-2077.
CrossRef Google scholar
[45.]
Yaghoubi S, Schwietert CW, McCue JP. Biological roles of titanium. Biol Trace Elem Res, 2000, 78(1–3): 205.
CrossRef Google scholar
[46.]
Niinomi M. Biologically and mechanically biocompatible titanium alloys. Mater Trans, 2008, 49(10): 2170-2178.
CrossRef Google scholar
[47.]
Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A, 2002, 33(3): 477-486.
CrossRef Google scholar
[48.]
Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater, 2003, 4(5): 445-454.
CrossRef Google scholar
[49.]
Niinomi M. Recent titanium R&D for biomedical applications in Japan. JOM, 1999, 51(6): 32-34.
CrossRef Google scholar
[50.]
Charnley J. Total hip replacement by low-friction arthroplasty. Clin Orthop Relat Res, 1970, 72: 7-21.
[51.]
Ramakrishna S, Mayer J, Wintermantel E, et al. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol, 2001, 61(9): 1189-1224.
CrossRef Google scholar
[52.]
Kurella A, Dahotre NB. Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl, 2005, 20(1): 5-50.
CrossRef Google scholar
[53.]
Hench LL, Wilson J. An introduction to bioceramics, 1993, Singapore: World Scientific.
CrossRef Google scholar
[54.]
Katti KS. Biomaterials in total joint replacement. Colloids Surf B, 2004, 39(3): 133-142.
CrossRef Google scholar
[55.]
Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl, 2008, 23(3): 197-212.
CrossRef Google scholar
[56.]
Park JB, Bronzino JD. Biomaterials: principles and applications, 2002, Boca Raton: CRC Press.
CrossRef Google scholar
[57.]
De Aza P, De Aza A, Pena P, et al. Bioactive glasses and glass-ceramics. Bol Soc Esp Ceram Yvid, 2007, 46(2): 45.
CrossRef Google scholar
[58.]
Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc, 1991, 74(7): 1487-1510.
CrossRef Google scholar
[59.]
Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials, 1998, 19(16): 1473-1478.
CrossRef Google scholar
[60.]
Fujita Y, Yamamuro T, Nakamura T, et al. The bonding behavior of calcite to bone. J Biomed Mater Res, Part A, 1991, 25(8): 991-1003.
CrossRef Google scholar
[61.]
Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials, 1999, 20(1): 1-25.
CrossRef Google scholar
[62.]
Ikada Y. Recent research developments in biomaterials, 2002, India: Research Signpost
[63.]
Boutin P. Alumina and its use in surgery of the hip. (Experimental study). La Presse Medicale, 1971, 79(14): 639-640.
[64.]
Kokubo T. Bioceramics and their clinical applications. Laryngoscope, 2008, 92(1): 1103-1115.
[65.]
Heros RJ, Willmann G. Ceramics in total hip arthroplasty: history, mechanical properties, clinicalresults, and current manufacturing state of the art. Semin Arthroplast, 1998, 9: 114-122.
[66.]
De Aza A, Chevalier J, Fantozzi G, et al. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials, 2002, 23(3): 937-945.
CrossRef Google scholar
[67.]
Helmer J, Driskell T (1969) Research on bioceramics. In: Symposium on use of ceramics as surgical implants, South Carolina
[68.]
Christel P, Meunier A, Dorlot JM, et al. Biomechanical compatibility and design of ceramic implants for orthopedic surgery. Ann NY Acad Sci, 1988, 523(1): 234-256.
CrossRef Google scholar
[69.]
Chevalier J. What future for zirconia as a biomaterial?. Biomaterials, 2006, 27(4): 535-543.
CrossRef Google scholar
[70.]
Hummer CD, Rothman RH, Hozack WJ. Catastrophic failure of modular zirconia—ceramic femoral head components after total hip arthroplasty. J Arthroplasty, 1995, 10(6): 848-850.
CrossRef Google scholar
[71.]
Best S, Porter A, Thian E, et al. Bioceramics: past, present and for the future. J Eur Ceram Soc, 2008, 28(7): 1319-1327.
CrossRef Google scholar
[72.]
Fathi M, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol, 2008, 202(1): 536-542.
CrossRef Google scholar
[73.]
LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res, 2002, 395: 81-98.
CrossRef Google scholar
[74.]
Ducheyne P, Cuckler JM. Bioactive ceramic prosthetic coatings. Clin Orthop Relat Res, 1992, 276: 102-114.
[75.]
Mohseni E, Zalnezhad E, Bushroa AR. Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: a review paper. Int J Adhes Adhes, 2014, 48: 238-257.
CrossRef Google scholar
[76.]
Hench LL, Splinter RJ, Allen W, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Part A, 1971, 5(6): 117-141.
CrossRef Google scholar
[77.]
Jarcho M, Kay JF, Gumaer KI, et al. Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. J Bioeng, 1977, 1(2): 79-92.
[78.]
Bartolo P, Kruth JP, Silva J, et al. Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol, 2012, 61(2): 635-655.
CrossRef Google scholar
[79.]
Poser R, Magee F, Kay J et al (1990) In-vivo characterization of a hydroxylapatite coating. In: Transactions of the 16th annual meeting of the society for biomaterials, 1990, p 170
[80.]
Murr L, Amato K, Li S, et al. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater, 2011, 4(7): 1396-1411.
CrossRef Google scholar
[81.]
Murr L, Quinones S, Gaytan S, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater, 2009, 2(1): 20-32.
CrossRef Google scholar
[82.]
Lampman S. Wrought titanium and titanium alloys. ASM Int Metals Handb Tenth Edn, 1990, 2: 592-633.
[83.]
Balagna C, Faga M, Spriano S. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement. Mater Sci Eng C, 2012, 32(4): 887-895.
CrossRef Google scholar
[84.]
Jovanović M, Tadić S, Zec S, et al. The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy. Mater Des, 2006, 27(3): 192-199.
CrossRef Google scholar
[85.]
Lin CW, Ju CP, Lin JH. A comparison of the fatigue behavior of cast Ti-7.5 Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys. Biomaterials, 2005, 26(16): 2899-2907.
CrossRef Google scholar
[86.]
Harrysson OL, Cansizoglu O, Marcellin-Little DJ, et al. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C, 2008, 28(3): 366-373.
CrossRef Google scholar
[87.]
Eisen W, Ferguson B, German R et al (1998) Powder metal technologies and applications. In: Narayan R (ed) ASM handbook, vol 7. ASM International, USA, pp 308–2096
[88.]
Davim JP. Machining: fundamentals and recent advances, 2008, New York: Springer
[89.]
Dewidar MM, Yoon HC, Lim JK. Mechanical properties of metals for biomedical applications using powder metallurgy process: a review. Met Mater Int, 2006, 12(3): 193-206.
CrossRef Google scholar
[90.]
Kuboki Y, Takita H, Kobayashi D, et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res Part A, 1998, 39(2): 190-199.
CrossRef Google scholar
[91.]
Vasconcellos LMRd, Oliveira MVd, Graça MLdA, et al. Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater Res, 2008, 11(3): 275-280.
CrossRef Google scholar
[92.]
Dewidar MM, Khalil KA, Lim J. Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans Nonferr Metals Soc China, 2007, 17(3): 468-473.
CrossRef Google scholar
[93.]
Seah K, Thampuran R, Teoh S. The influence of pore morphology on corrosion. Corros Sci, 1998, 40(4–5): 547-556.
CrossRef Google scholar
[94.]
Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 2006, 27(13): 2651-2670.
CrossRef Google scholar
[95.]
Ning C, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials, 2002, 23(14): 2909-2915.
CrossRef Google scholar
[96.]
Grądzka-Dahlke M, Dąbrowski J, Dąbrowski B. Modification of mechanical properties of sintered implant materials on the base of Co-Cr-Mo alloy. J Mater Process Technol, 2008, 204(1): 199-205.
CrossRef Google scholar
[97.]
Elahinia MH, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci, 2012, 57(5): 911-946.
CrossRef Google scholar
[98.]
Gong X, Anderson T, Chou K (2012) Review on powder-based electron beam additive manufacturing technology. In: ASME/ISCIE international symposium on flexible automation. American Society of Mechanical Engineers, pp 507–515
[99.]
Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform, 2014, 23(6): 1917-1928.
CrossRef Google scholar
[100.]
Heinl P, Rottmair A, Körner C, et al. Cellular titanium by selective electron beam melting. Adv Eng Mater, 2007, 9(5): 360-364.
CrossRef Google scholar
[101.]
Heinl P, Müller L, Körner C, et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater, 2008, 4(5): 1536-1544.
CrossRef Google scholar
[102.]
Murr L, Gaytan S, Medina F, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc Lond A Math Phys Eng Sci, 2010, 368(1917): 1999-2032.
CrossRef Google scholar
[103.]
Kruth JP, Levy G, Klocke F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol, 2007, 56(2): 730-759.
CrossRef Google scholar
[104.]
Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci, 2007, 253(19): 8064-8069.
CrossRef Google scholar
[105.]
Hao L, Dadbakhsh S, Seaman O, et al. Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J Mater Process Technol, 2009, 209(17): 5793-5801.
CrossRef Google scholar
[106.]
Wang Y, Shen Y, Wang Z, et al. Development of highly porous titanium scaffolds by selective laser melting. Mater Lett, 2010, 64(6): 674-676.
CrossRef Google scholar
[107.]
Liverani E, Fortunato A, Leardini A, et al. Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of selective laser melting (SLM). Mater Des, 2016, 106: 60-68.
CrossRef Google scholar
[108.]
Xin XZ, Chen J, Xiang N, et al. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique. Cell Biochem Biophys, 2013, 67(3): 983-990.
CrossRef Google scholar
[109.]
Wilkes J, Hagedorn YC, Meiners W, et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyp J, 2013, 19(1): 51-57.
CrossRef Google scholar
[110.]
Zhang L, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scr Mater, 2011, 65(1): 21-24.
CrossRef Google scholar
[111.]
Pattanayak DK, Fukuda A, Matsushita T, et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater, 2011, 7(3): 1398-1406.
CrossRef Google scholar
[112.]
Weißmann V, Bader R, Hansmann H, et al. Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Mater Des, 2016, 95: 188-197.
CrossRef Google scholar
[113.]
Mueller B (2012) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Assem Autom 32(2):151–154
[114.]
Turger A, Köhler J, Denkena B, et al. Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants. Biomed Eng Online, 2013, 12(1): 84.
CrossRef Google scholar
[115.]
Hilerio I, Mathia T, Alepee C. 3D measurements of the knee prosthesis surfaces applied in optimizing of manufacturing process. Wear, 2004, 257(12): 1230-1234.
CrossRef Google scholar
[116.]
Sidpara AM, Jain V. Nanofinishing of freeform surfaces of prosthetic knee joint implant. Proc Inst Mech Eng Part B J Eng Manuf, 2012, 226(11): 1833-1846.
CrossRef Google scholar
[117.]
Denkena B, de Leon L, Turger A, et al. Prediction of contact conditions and theoretical roughness in manufacturing of complex implants by toric grinding tools. Int J Mach Tools Manuf, 2010, 50(7): 630-636.
CrossRef Google scholar
[118.]
Jain V. Abrasive-based nano-finishing techniques: an overview. Mach Sci Technol, 2008, 12(3): 257-294.
CrossRef Google scholar
[119.]
Zhang D, Li C, Jia D, et al. Grinding model and material removal mechanism of medical nanometer zirconia ceramics. Recent Pat Nanotechnol, 2014, 8(1): 2-17.
CrossRef Google scholar
[120.]
Ohmori H, Nakagawa T. Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels. CIRP Ann Manuf Technol, 1995, 44(1): 287-290.
CrossRef Google scholar
[121.]
Kotani H, Komotori J, Mizutani M et al (2009) Surface finishing and modification for cobalt-chromium-molybdenum alloy by electrolytic in-process dressing (ELID) grinding. In: 5th international conference on leading edge manufacturing in 21st century, LEM 2009
[122.]
Kotani H, Komotori J, Naruse T, et al. Development of a new grinding system for finishing of hemispherical inside surface. Int J Nanomanuf, 2013, 9(1): 77-86.
CrossRef Google scholar
[123.]
Cheung C, Ho L, Charlton P, et al. Analysis of surface generation in the ultraprecision polishing of freeform surfaces. Pro Inst Mech Eng Part B J Eng Manuf, 2010, 224(1): 59-73.
CrossRef Google scholar
[124.]
Zaborski S, Sudzik A, Wołyniec A. Electrochemical polishing of total hip prostheses. Arch Civ Mech Eng, 2011, 11(4): 1053-1062.
CrossRef Google scholar
[125.]
Zhang LC, Kiat E, Pramanik A(2009) A briefing on the manufacture of hip joint prostheses. In: 12th international symposium on advances in abrasive technology (ISAAT2009). Gold Coast, Australia, 2009, pp 212–216
[126.]
Basim GB, Ozdemir Z (2015) Chemical mechanical polishing implementation on dental implants. In: International conference on planarization/CMP technology (ICPT). IEEE, pp 1–4
[127.]
Ozdemir Z, Ozdemir A, Basim G. Application of chemical mechanical polishing process on titanium based implants. Mater Sci Eng C, 2016, 68: 383-396.
CrossRef Google scholar
[128.]
Landolt D. Fundamental aspects of electropolishing. Electrochim Acta, 1987, 32(1): 1-11.
CrossRef Google scholar
[129.]
Hryniewicz T, Rokicki R, Rokosz K. Co-Cr alloy corrosion behaviour after electropolishing and “magnetoelectropolishing” treatments. Mater Lett, 2008, 62(17): 3073-3076.
CrossRef Google scholar
[130.]
Hryniewicz T, Rokosz K, Rokicki R, et al. Nanoindentation and XPS studies of titanium TNZ alloy after electrochemical polishing in a magnetic field. Materials, 2015, 8(1): 205-215.
CrossRef Google scholar
[131.]
Hryniewicz T, Rokicki R, Rokosz K. Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field. Surf Coat Technol, 2008, 202(9): 1668-1673.
CrossRef Google scholar
[132.]
Magaino S, Matlosz M, Landolt D. An impedance study of stainless steel electropolishing. J Electrochem Soc, 1993, 140(5): 1365-1373.
CrossRef Google scholar
[133.]
Habibzadeh S, Li L, Shum-Tim D, et al. Electrochemical polishing as a 316L stainless steel surface treatment method: towards the improvement of biocompatibility. Corros Sci, 2014, 87: 89-100.
CrossRef Google scholar
[134.]
Fang F, Zhang X, Weckenmann A, et al. Manufacturing and measurement of freeform optics. CIRP Ann Manuf Technol, 2013, 62(2): 823-846.
CrossRef Google scholar
[135.]
Sidpara A, Jain V. Analysis of forces on the freeform surface in magnetorheological fluid based finishing process. Int J Mach Tools Manuf, 2013, 69: 1-10.
CrossRef Google scholar
[136.]
De Wild M, Amacher F, Bradbury CR, et al. Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, μCT, SEM, and XRD. J Biomed Mater Res B Appl Biomater, 2016, 104(3): 546-553.
CrossRef Google scholar
[137.]
Vyas N, Sammons R, Addison O, et al. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Sci Rep, 2016, 6: 32694.
CrossRef Google scholar
[138.]
Weckenmann A, Estler T, Peggs G, et al. Probing systems in dimensional metrology. CIRP Ann Manuf Technol, 2004, 53(2): 657-684.
CrossRef Google scholar
[139.]
Charlton P, Blunt L. Surface and form metrology of polished “freeform” biological surfaces. Wear, 2008, 264(5): 394-399.
CrossRef Google scholar
[140.]
Fang F, Zhang X, Gao W, et al. Nanomanufacturing—perspective and applications. CIRP Ann Manuf Technol, 2017, 66(2): 683-705.
CrossRef Google scholar
[141.]
Schellekens P, Rosielle N, Vermeulen H, et al. Design for precision: current status and trends. CIRP Ann Manuf Technol, 1998, 47(2): 557-586.
CrossRef Google scholar
[142.]
Brand U, Cao S, Hoffmann W et al (2001) A micro-probing system for dimensional metrology on microsystem components. In: International conference on European society for precision engineering and nanotechnology (EUSPEN). 2001, pp 266–269
[143.]
Danzebrink HU, Koenders L, Wilkening G, et al. Advances in scanning force microscopy for dimensional metrology. CIRP Ann Manuf Technol, 2006, 55(2): 841-878.
CrossRef Google scholar
[144.]
Seitavuopio P (2006) The roughness and imaging characterisation of different pharmaceutical surfaces. Dissertation, University of Helsinki. Dissertation, University of Helsninki, Finland
[145.]
Nemes C, Rozlosnik N, Ramsden J. Direct measurement of the viscoelasticity of adsorbed protein layers using atomic force microscopy. Phys Rev E, 1999, 60(2): R1166.
CrossRef Google scholar
[146.]
Savio E, Marinello F, Bariani P, Carmignato S. Feature-oriented measurement strategy in atomic force microscopy. CIRP Ann Manuf Technol, 2007, 56(1): 557-560.
CrossRef Google scholar
[147.]
Tamkin Sr JM (2010) A study of image artifacts caused by structured mid-spatial frequency fabrication errors on optical surfaces. Dissertation, The University of Arizona, USA
[148.]
Rudolph W, Kempe M. Trends in optical biomedical imaging. J Mod Opt, 1997, 44(9): 1617-1642.
CrossRef Google scholar
[149.]
Gale MFR, Landau MR, Hogert EN, et al. Changing surfaces—a theoretical and experimental approach. J Opt A Pure Appl Opt, 2003, 6(2): 187-192.
CrossRef Google scholar
Funding
Science Foundation Ireland http://dx.doi.org/10.13039/501100001602(15/RP/B3208)

Accesses

Citations

Detail

Sections
Recommended

/