Fine equiaxed dendritic structure of a medium carbon steel cast using pulsed magneto-oscillation melt treatment

Jie Sun , Cheng Sheng , Ding-Pu Wang , Jing Zhao , Yun-Hu Zhang , Hong-Gang Zhong , Gui Wang , Qi-jie Zhai

Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (2) : 189 -194.

PDF
Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (2) : 189 -194. DOI: 10.1007/s40436-017-0206-5
Article

Fine equiaxed dendritic structure of a medium carbon steel cast using pulsed magneto-oscillation melt treatment

Author information +
History +
PDF

Abstract

The application of a pulsed magneto-oscillation (PMO) technique during the solidification of a commercial high melting point medium carbon steel ingot (φ140 mm × 450 mm) produced fully equiaxed grains in the cast ingot, indicating that the PMO process significantly promotes heterogeneous nucleation near the solid-liquid interface. The vigorous convection induced by PMO forced the partly solidified grains to move from the solid-liquid interface and became randomly distributed throughout the melt, which resulted in the formation of uniformly sized equiaxed dendrites throughout the whole ingot. Building on the developed nucleation mechanism and a flow field simulation of pure aluminum, a PMO-induced grain refinement model for steel is proposed.

Keywords

Pulsed magneto-oscillation (PMO) / Grain refinement / Carbon steel / Simulation / Microstructure

Cite this article

Download citation ▾
Jie Sun, Cheng Sheng, Ding-Pu Wang, Jing Zhao, Yun-Hu Zhang, Hong-Gang Zhong, Gui Wang, Qi-jie Zhai. Fine equiaxed dendritic structure of a medium carbon steel cast using pulsed magneto-oscillation melt treatment. Advances in Manufacturing, 2018, 6(2): 189-194 DOI:10.1007/s40436-017-0206-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng S, Spencer JA, Milligan WW. Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater, 2003, 51(15): 4505-4518.

[2]

Li QS, Song CJ, Zhai QJ, et al. Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel. Mater Sci Eng A, 2007, 466(1): 101-105.

[3]

Liao XL, Zhai QJ, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum. Acta Mater, 2007, 55(9): 3103-3109.

[4]

Pei N, Gong YY, Li RX et al (2011) Mechanism of pulse magneto-oscillation grain refinement on pure Al. China Foundry 847–850

[5]

Gao YL, Li QS, Gong YY, et al. Comparative study on structural transformation of low-melting pure Al and high-melting stainless steel under external pulsed magnetic field. Mater Lett, 2007, 61(18): 4011-4014.

[6]

Eskin GI, Lutrasonic L. Treatment of light alloy metals, 1998, Amsterdam: Gordon & Breach

[7]

Atamanenko TV, Eskin DG, Zhang L, et al. Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti. Metall Mater Trans A, 2010, 41(8): 2056-2066.

[8]

Jian X, Meek TT, Han QY. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration. Scripta Mater, 2006, 54(5): 893-896.

[9]

Gui W, Dargusch MS, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy. J Cryst Growth, 2014, 408: 119-124.

[10]

Easton MA, Qian M, Prasad A, et al. Recent advances in grain refinement of light metals and alloys. Curr Opin Solid State Mat Sci, 2016, 20(1): 13-24.

[11]

Liang G, Chen S, Zhou Y, et al. Numerical simulation and experimental study of an ultrasonic waveguide for ultrasonic casting of 35CrMo steel. J Iron Steel Res Int, 2016, 23(8): 772-777.

[12]

Li HT, Wang Y, Fan ZY. Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al-Mg alloys. Acta Mater, 2012, 60(4): 1528-1537.

[13]

Raj M, Pandey JC. Optimisation of electromagnetic stirring in continuously cast steel billets using ultrasonic C-scan imaging technique. Ironmak Steelmak, 2008, 35(4): 288-296.

[14]

Griffiths WD, McCartney DG. The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys. Mater Sci Eng A, 1996, 216(1): 47-60.

[15]

Metan V, Eigenfeld K, Räbiger D, et al. Grain size control in Al-Si alloys by grain refinement and electromagnetic stirring. J Alloy Compd, 2009, 487(1): 163-172.

[16]

Iwai K, Kohama T. Solidified structure of S45C steel with and without the imposition of electromagnetic field. ISIJ Int, 2010, 50(2): 187-190.

[17]

Gong YY, Luo J, Jing JX, et al. Structure refinement of pure aluminum by pulse magneto-oscillation. Mater Sci Eng A, 2008, 497(1): 147-152.

[18]

Yin ZX, Gong YY, Li B, et al. Refining of pure aluminum cast structure by surface pulsed magneto-oscillation. J Mater Process Tech, 2012, 212(12): 2629-2634.

[19]

Liang D, Liang ZY, Zhai QJ, et al. Nucleation and grain formation of pure Al under pulsed magneto-oscillation treatment. Mater Lett, 2014, 130: 48-50.

[20]

Cheng YF, Yin ZX, Cao X et al (2012) Refinement effect of pulse magneto-oscillation on solidification structure of medium carbon steel. In: EPD Congress 2012. Wiley, Orlando, pp 129–134

[21]

Edry I, Mordechai T, Frage N, et al. Effects of treatment duration and cooling rate on pure aluminum solidification upon pulse magneto-oscillation treatment. Metall Mater Trans A, 2016, 47(3): 1261-1267.

[22]

Edry I, Frage N, Hayun S. The effect of pulse magneto-oscillation treatment on the structure of aluminum solidified under controlled convection. Mater Lett, 2016, 182: 118-120.

[23]

Flemings MC. Solidification processing, 1974, New York: McGraw-Hill

[24]

Asai S. Birth and recent activities of electromagnetic processing of materials. ISIJ Int, 1989, 29(12): 981-992.

[25]

Zhao J, Yu JH, Li QX, et al. Structure of slowly solidified 30Cr2Ni4MoV casting with surface pulsed magneto-oscillation. Mater Sci Tech, 2015, 31: 1589-1594.

[26]

Zhao J, Cheng YF, Han K, et al. Numerical and experimental studies of surface-pulsed magneto-oscillation on solidification. J Mater Process Tech, 2016, 229: 286-293.

[27]

Zhang L, Li W, Yao JP, et al. Effects of pulsed magnetic field on microstructures and morphology of the primary phase in semisolid A356 Al slurry. Mater Lett, 2012, 66(1): 190-192.

[28]

Kolesnichenko AF, Podoltsev AD, Kucheryavaya IN. Action of pulse magnetic field on molten metal. ISIJ Int, 1994, 34(9): 715-721.

[29]

StJohn DH, Prasad A, Easton MA, et al. The contribution of constitutional supercooling to nucleation and grain formation. Metall Mater Trans A, 2015, 46(11): 4868-4885.

[30]

Ma XP, Yang YS, Wang B. Effect of pulsed magnetic field on superalloy melt. Int J Heat Mass Tran, 2009, 52(23): 5285-5292.

[31]

Murakami K, Fujiyama T, Koike A, et al. Influence of melt flow on the growth directions of columnar grains and columnar dendrites. Acta Metall, 1983, 31(9): 1425-1432.

Funding

the National Natural Science Foundation of China(51320105003)

Shanghai government(14DZ2261200)

the Science and Technology Commission of Shanghai Municipality(15520710800)

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/